過去記事一覧
AASJホームページ > 2019年 > 8月 > 22日

自閉症の科学10:新しい発想の大規模コホート研究SPARK

2019年8月22日
SNSシェア

シモンズ財団

自閉症スペクトラム(ASD)に関する論文を読んでいて、研究の多くがSimons Foundation(写真は会長のMarilyn Simmons)の助成を受けていることに気づきました。この財団のことは全く知りませんでしたが、Webで調べると、数学者で天才ディーラーと呼ばれたJames Simonsとその妻Marilynにより1994年に設立された財団で、Simons氏の専門だった数学やコンピューターサイエンスを中心に基礎科学を支援している財団のようです。2015年の支出が4.3億ドルという規模は、東大の全収入約2000億円と比べて、かなり大きな財団であることがわかります。

中でもASD研究はこの財団が焦点を当てている分野の3本の柱の一つになっています。おかげで、財団のホームページの論文のリストを見るだけで、ASDの基礎研究の現状がよく分かるようになっており大変重宝です。この財団が助成する活動の中で最も注目したいのが、SPARKと名付けられた新しい発想のコホート研究です。これについては2月号のNeuronに現状報告が掲載されているので、今日はそれを紹介します(SPARK: A US cohort of 50,000 families to accelerate autism research (SPARK: 自閉症研究を加速するための50000家族のコホート研究), Neuron 97:488, 2018)。

このレポートはSPARKプロジェクトのコンソーシアムから発表されており、SPARKの目的や現状、そして解決すべき困難などが率直に述べられています。読み通してみるとよく練られた計画で、このような計画が民間財団のサポートで実現するところが米国の活力だと感銘を受けました。

コホート研究の困難

コホート研究とは、特定の集団を長期にわたって追跡する研究で、例えば肥満の児童は将来心臓発作を起こしやすいかなどを調べるとき、児童の時期に対象を選び、成人になるまで心臓発作の発症を追いかけるような研究です。私が読んだ最も長いコホート研究は、スコットランドで始められた2ヶ国語環境で育つと認知症になりにくいかという研究で、スタートしたのが1936年、調査が行われたのが2010年という80年近い追跡研究でした。

ただこのようなコホート研究は、対象に呼びかけ、登録してもらい、さらにコホート期間中に様々なデータを提供してもらう事が大変で、膨大な労力とコストがかかります。我が国では、研究のほとんどが公的な資金で行われるため、本当に長期の研究を支え続けるのが難しくなっています。

SPARKの概要

SPARK研究は、コホート研究の困難に、様々な新しい方法を用いて挑戦しようとする斬新な取り組みだと思います。何よりも、私的な財団支援することで、例えば政策変更で研究が中断する心配がありません。この安定した助成を基盤として目指しているのが、遺伝と症状の詳細な相関関係を明らかにする事です。

ASDは多様な脳の状態(neurodiversity)として捉えられるようになっています。というのも、400-1000もの遺伝子が関連する複雑な状態で、一つとして同じ状態はないのです。ただ、こう割り切ってしまうと話が終わってしまいます。Neurodiversityを認めた上で重要なのが、本人と家族の詳しいゲノム検査に、症状や生活についてのできるだけ詳しい情報を関連づける作業です。極めて多様な状態がありますから、このような関連づけが可能になるためには最低5万家族以上のデータが必要になります。しかし言うは易く行うは難しで、コホート研究について少しでも知識があると、とてつもないプロジェクトだと尻込みしてしまいます。

SPARKも困難を理解した上で、21世紀に進む個人と個人が直接つながる(ピア・ツー・ピア)ネットワークを利用して、患者さん、主治医、研究者をつなぐことでより少ない労力でこれを実現する様々な工夫を凝らしています。

まず感心するのが、最適な構築を最初から決めることは不可能で、様々な試行錯誤を繰り返しながら発展させるしかないと割り切っている点です。多くのコホート研究では、科学性を盾に最初から計画しすぎて、計画倒れに終わることが多いように思いますが、SPARKではともかくASDの子供、家族および主治医をSPARKとネットで双方的につないでデータを蓄積するとともに、SPARKをハブとして、外部のすべての研究者とネットで結合する構造の構築を進めているようです。

次に感心するのが、このネットワークを構築するため、当然のようにゲノム検査の結果を参加者に戻すことを決めていることです。児童に関わるゲノムデータを本人や家族に戻すことは、我が国でも議論になっていると思いますが、詳しい理由は述べませんが、私はこれなしに双方向性のネット構築はないと思っています。

また、ゲノムデータの戻し方もよく計画されています。最初に調べた結果を一回きりで戻すのではなく、メンバーのデータを毎年最新の研究に基づいて解析し直し、そこで何か見つかった場合に関係する家族に連絡するという方法を採用しています。家族とSPARKが長年にわたって対話するという意味では素晴らしい方法だと思います。すでに500家族のパイロットゲノム研究が行われ、5%の家族に結果を知らせることができたようで、計画の検証も着々と行っているようです。

もちろん遺伝子解析だけではこのプロジェクトは完成しません。最も重要なのが遺伝子の違いに関連する行動などの変化を可能な限り集める事です。考えるだけで大変だと思いますが、ネットを利用して、様々な可能性が試されると期待します。事実、問診票の結果や、行動解析などSPARK拠点で集めた個人データは、ほかの人のデータおよびゲノムと関連づけた後、家族に返す仕組みになっています。これもネットワークの活動性を維持するために重要なことだと思います。

とはいえ、行動をデータ化するのは簡単なことではありません。SPARKは最初から高望みはしないという戦略で、データは時間をかけて集めればいいと割り切っているようです。例えばいくつかの決まった質問票で簡単に得られるデータを核にして、そこに主治医からのデータや、米国では患者さんと研究者をつなごうと進んでいるSync for Scienceのような外部のデータシェアサイトからもデータを集められるオープンな構造にしているようです。Sync for Scienceについてはこのレポートを読むまで、全く知りませんでしたが、我が国のこの分野の政策に関わる人にどのぐらい周知されているのでしょうか。研究者や医師と患者さんや家族の関係を根本的に見直すチャレンジですから、後追いでも、マネでもいいので、我が国でも進めてもらいたいものです。

できるだけ少ない労力でこうして立ち上げたネットワークを維持する様々な工夫も紹介されています。このために最も重要なことが、参加者に常にコミットしているという気持ちを持ってもらうことだというのは、納得です。そのため例えば、ASDについて学ぶことのできるスマートフォンプログラム、あるいは最近の注目すべき研究成果、そして何よりもSPARKから生まれた成果をスマートフォンやPCで知らせることを重視しています。

まだスタートしたばかりだと思いますが検証の目的で様々な研究を進めているようです。たとえば、ASDと診断された子供を妊娠していた時の環境暴露についてアンケート調査がすでに行われています。実際2000人近い対象に回答をお願いしたところ、なんと60%ものお母さんが妊娠時に暴露された様々な物質に対する回答を寄せており、現在のところメンバーとSPARKの対話が維持できていることを伺わせます。

現在約2万家族の登録が集まっているようですが、参加者がコミットメントする気持ちを維持するためのノウハウの蓄積も貴重です。例えば、登録の意思はあっても、必要項目を完全に書き入れ、またインフォームドコンセントを終えるのは面倒なものです。どうしても時間がかかっていたこの作業を、ユーモアたっぷりにお願いするSNSのメッセージを流す事で登録が72%まで上昇したこと、あるいは遺伝子検査のサンプル提出を抽選でiPadを提供するというプログラムで、3割から6割にアップさせたことなどが紹介されています。今後新しく計画するウェブを用いたコホート研究には本当に貴重な情報になると思います。

感想

さすが民間助成ならではの、長期的視野を持ちながら柔軟な、未来型のコホート研究だと感銘を受けました。何事も官に頼ってしまう我が国では、願うべくもない取り組みですが、ASD研究に国境はありません。SPARKから生まれる様々な成果が、我が国のASD診療にも生かされることは間違いないと思います。個人的にはシモンズ財団ウォッチを続けて、面白い話があればまた紹介したいと思っています。

自閉症の科学9 瞳孔反射で自閉症発症を予測する

2019年8月22日
SNSシェア

「目は口ほどに物を言う」と言われているように、瞳孔は私たちに様々な事を教えてくれます。医師が死亡診断を下す時、必ず瞳孔反射を調べるのがその例ですが、実際には私たちが見ているものに興味を持っているかどうか、どのように物を認識しているのかどうかなど、様々な事を知る科学的手段として使われています。例えば、言葉でのコミュニケーションが取れない赤ちゃんの場合、興味を示しているかどうかは瞳孔の大きさで判断します。

とすると、当然外界への関心が低下するASDでも瞳孔の反応に何らかの変化が起こると考えられます。実際そのような研究がこれまでも行われ、ASDの児童や成人では瞳孔反射が遅くなっていることが報告されています。

今日紹介する論文を発表したウプサラ大学のグループも同じようにASDリスクと瞳孔反射の関係に興味を持ち、乳児期という早い段階にASDのリスクを予測する手段として使えないか調べていたようです。そして、2015年に発表した論文で、家族歴からASDのリスクが高いと推定される10ヶ月齢の乳児では、児童や大人とは逆に、光に対する瞳孔反射が早いことを報告しています(Nystrom et al, Molecular Autism, 6:10, 2015 )。

しかしこの論文で調べられた乳児は、あくまでもASDリスクが高いと想定されるだけで、本当にASDが発症するかどうかは追跡しないとわかりません。そこで最初の研究で調べた乳児をASDと診断できる3歳児まで追跡したのが今日紹介したい論文です(Nystrom et al, Enhanced pupillary light reflex in infancy is associated with autism diagnosis in toddlerhood (乳児期の瞳孔反射の亢進は幼児期の自閉症診断と相関する)Nature Communications 9:1678, 2018, DOI: 10.1038/s41467-018-03985-4)。

乳児が自然に行動している間に瞳孔反射を調べるのは簡単ではありません。この研究ではトビー社の視線追跡装置を用いて、自然状態で反射を繰り返し測定するのに成功しています。

最初の論文では、先に生まれた兄弟がASDと診断されている場合をハイリスク群、全くASDの家族歴がない群を通常群としてデータを比べ、ハイリスク群で瞳孔反射が高まっていることを報告していますが、この研究では147人のハイリスク群の中から3歳時でASDを発症した29人(20%)、ハイリスク群でもASDが発症しなかった118人、そして通常リスクで発症もなかった3群に分けています。

まず10ヶ月時の瞳孔反射をこの3群でプロットし直し、瞳孔反射とASD発症の相関を調べています。結果はシンプルで、ASDを発症した乳児は、ASDを発症しなかったハイリスク群の乳児と比べても瞳孔反射速度が高まっており、通常児と比べるとその差はさらにはっきりし、平均で20%ぐらい反射速度が上がっています。また瞳孔反射の数値は、2種類のASD診断指標を用いた重症度と正の相関を示します。そして、ASDの子供だけ発達に伴い瞳孔反射が大きく変化します。

もちろん他の臨床検査と同じで、実際には通常児とASDの間での検査値のオーバーラップは大きく、傾向は見られても、これだけで診断するとなると、かなりな異常値を示す乳児に限られるように思います。しかし、「瞳孔反射が高めで、次の年に変化が大きい場合は要注意」といった具合に一つの指標として使っていくことは可能だと思います。おそらく、個人差の原因を取り除いた検査の開発ができると、もっと正確な診断が可能になるかもしれません。

いずれにせよこの研究は、1)ASDという複雑な状態が、様々な神経活動の変化が総合された結果であること、2)ASDでは瞳孔反射のような感覚系の変化が強く見られること、3)このような変化は生まれた時には用意されており、発達を通して特徴的な状態が形成されること、を教えてくれます。

今後乳児期のこのような単純な反応がASD発症に関わるという発見を、現在進むMRIなどの脳構造研究と相関させることができると、ASDのメカニズム理解や診断に大きく貢献する予感がします。今後に期待したい研究です。

自閉症の科学8 自閉症の神経科学的研究の現状

2019年8月22日
SNSシェア

現役を退いてすでに5年を超えたが、分野を問わず論文を読んでいて実感するのが、自閉症スペクトラム(ASD)についての研究の進展だ。私が門外漢であるためより興味を惹かれることもあるが、最新のテクノロジーが集められて研究が進んでいる領域であることは間違いない。ただ、実際の治療に携わる医師や心理士、教育者は、なかなか最新の研究をフォローするだけの余裕がないと思う。そんな人たちにわかりやすく最近の研究を紹介したのが今日紹介する総説だ。もちろん、一般の研究者にとっても、あるいはASDの子供を持つ家族の方にとっても、神経科学から浮き上がってくるASDの輪郭を掴むには良い総説だと思い紹介することにした(Muhle et al, The emerging clinical neuroscience of autism spectrum disorder (新しく現れてきた自閉症スペクトラムの臨床神経科学) JAMA Psychiatry 75:514, 2018)。

ASDは症状も、原因も極めて多様な病気で、その数も米国では1-2%と驚くべき数に達している。重要なのは多様性にもかかわらずASDとしてまとめられる症状を共有していることだ。しかしこのことは、ASDと診断して満足してしまうと、多様性を見失い治療の可能性を失う事すらありうることを意味する。この総説では冒頭に16p11.2欠失症候群とASDの併発している症例を例にあげ、生物学的原因を丹念に調べれば、この遺伝的変化に認可されているリスペリドンやアリピプラゾールによる治療も可能であることを強調し、ASDの生物学についての知識を持つことの重要性を説いている。その上で、1)遺伝要因、2)環境要因、3)脳イメージング、4)疾患モデル、の各項目にわけ、最近の研究状況をまとめている。

1) 遺伝要因

一卵性双生児で発症の一致率が50-80%、兄弟では25%という数字は、ASDが多様であっても特定の遺伝子の組み合わせを反映した状態であることを示している。このため、遺伝的変異をゲノム全体について特定できる新しいゲノムテクノロジー(マイクロアレー、エクソーム解析、全ゲノム解析)に大きな期待が集まり、多くの研究が行われた。

この結果、数多くの神経機能に直接関わる分子や、その分子の発現に関わる分子の変異(点突然変異、欠失、重複)などがASDと相関していることがわかった。しかし、欠失など大きな遺伝子変異が200種類、一塩基レベルの小さな変異に至っては何百もの変異がASDと相関することがわかり、最初の期待は戸惑いに変わってしまった。すなわち、多くの遺伝病のように単純な分子レベルの因果性を構想することができない点だ。

このことは、ASDを遺伝性が高いが、分子メカニズムが多様である状態として理解する必要性を示唆している。すなわち、症状は同じでも、各人の遺伝的条件に応じて、その症状を考え、治療を計画する必要がある。とすると、ASDのゲノム検査の重要性は明らかで、てんかんや知能の低下がある場合はいうに及ばす、ASDの疑いがある場合はほぼ全員にゲノム検査が行われることが必要になる。

2) 環境要因

一卵性双生児の場合ですら必ずしも発症が一致しないことは、生前・生後の環境要因も無視できないことを示している。このすきまに、「はしかワクチンが自閉症を誘発する」というWakefieldの世紀の大捏造が生まれたわけだが、例えば早産でASDのリスクが高まることは統計学的に証明されており、このことは脳発生に影響を及ぼすあらゆる外的要因がASDの誘因になることを意味している。事実、科学的な疫学調査で、早産、低酸素、虚血、母親の肥満、糖尿など内的要因がASDリスクを高めることが証明されている。

食品や環境に存在する化学物質のような外的要因のリストも膨大になっている。ただ神経細胞の発達に影響を持つことの明らかな薬剤を除くと、内因性の要因と比べて因果性の特定が難しく、細胞や動物レベルの研究で因果性を調べることが必要になる。

3) 脳のイメージング

MRIをはじめ様々な機器を使う脳イメージングのテクノロジーは急速に発展し、これまで測定が難しかった幼児でも検査が可能になっている。この結果、脳内の変化の多くが生まれる前の発達期に起こっていることがわかってきた。このおかげで、場合によっては6ヶ月という速さで診断する可能性も生まれている。

イメージング技術を使って明らかになった最も重要な発見は、ASDの子供は生後6ヶ月から12ヶ月にかけて脳皮質が拡大することで、シナプスの剪定の低下などが議論されているが、解釈のためには研究が必要だ。同じように、2-4歳までの発達期でも、扁桃体をはじめ社会性に関わる様々な脳領域が大きくなる一方、各領域の間の結合性は逆に低下する場合が多い。これとは逆に、皮質下の神経結合は高まっているという報告があり、総合すると脳の局所的な回路が高まる一方、広い領域を統合する回路の結合性が低下するのがASDの特徴ではないかと考えられている。

しかし、これらの検査でASDを他の病気から区別して診断できるかというと、脳の構造の多様性は大きく、イメージングだけで診断するのはまだ難しいことも現実だ。

4) 疾患モデル

コンピュータで病気を再構成するインシリコのバーチャルモデルから試験管内の細胞を用いるモデルまで、様々なASDモデルが開発されてきた。特に遺伝的要因によるASDモデル動物は、脆弱性X、Rett症候群、MECP2重複症など多くが作成され、研究に用いられている。最近では、MECP2欠損のサルのモデルも開発され、より人間に近い動物での研究に期待が集まっている。

もちろんASDを多様な症状の集まりとして考える場合、それぞれの症状に対応する動物モデルはマウスであっても十分役に立つ。特に、薬剤や遺伝子治療の可能性を試すときには動物モデルは必須で、「動物の脳は人の脳とは異なる」と片付けず、地道にモデルを開発する努力が必要だと思う。

もう一つ重要な領域は、情報科学分野を用いた疾患モデル研究で、遺伝子データと、症状や、イメージング、さらにはiPS由来の神経細胞反応性などを統合した人工知能を開発すべく、研究が加速している。 

以上がこの総説の内容だが、最終的メッセージは、Kannerが自閉症を定義した時代には考えられなかった、ASDの生物学が急速に進んでいることに尽きる。そして、ゲノム診断や、イメージング解析など、新しい展開に即応した検査を行うことが、将来の治療法開発につながる。

この総説に書かれていることは、自閉症についての個々の論文として、これまでなんども紹介してきたが、この総説は本当によくまとまっているので、この分野に関わる方にぜひ読んでほしい。

自閉症の科学 7 自閉症の考古学

2019年8月22日
SNSシェア

今日のタイトルを見て、「自閉症と考古学?」と驚かれる読者も多いと思います。私も、Penny Spikinsさんの本や論文を読むまで、考古学と自閉症が関係するなんて考えたこともありませんでした。

Penny Spikinsさんは現在ヨーク大学考古学の講師で、石器時代の遺物から人間の優しさや道徳性といった「美しい心の存在」を読み解くという、大変ユニークな研究にチャレンジしています。私自身は、最初彼女が2015年に出版した「How compassion made us human(どのように思いやりの心が私たちを人間にしたのか?)」という著書を読んで以来、彼女の考えに魅せられました。

最近彼女は、現代の自閉症スペクトラム(ASD)の人たちを、石器時代の遺物を通して考える研究を精力的に行なっています。2016年にTime and Mindに掲載された論文では、自閉症をneurodiversity(神経の多様性)と捉える現代の主流となった考え方をさらに進めて、自閉症傾向こそ人類の進化に欠かせない重要な性質として積極的に捉えるべきだという主張を展開しています。

これについて紹介した私のブログを引用しておきましょう。

「なぜ社会性に問題があるとされる自閉症が、今も淘汰されず1-2%という高い頻度で存在しているのか?」という問いに対して、「共同的道徳性の誕生が人類進化の必要条件だが、これには多様な人材を擁することが重要になる。自閉症的傾向を持つ人材は、一つのタイプとして社会に必要とされ、また尊敬されたとしても、進化で淘汰されることはなかった」という答えが結論になっている。

Spikinsさんの新しい論文

そのSpikinsさんが年一回発行されるオープンアクセスの雑誌Open Archeologyに、またまた意欲的な論文を発表したので、自閉症の科学7として紹介することにしました(Spikins et al, How Do We Explain Autistic Traits in European Upper Palaeolithic Art(ヨーロッパの旧石器時代の美術に見られる自閉症的特徴をどう説明すればいいのか)Open Archaeology 4: 262-279, 2018)。

ほとんど同じ内容が、彼女が最近ウェッブに発表した新しいオンラインブック「Prehistory of Autism(自閉症の先史学)」にさらに詳しく述べられているので、併せて紹介しておきます

研究の概要

多くの自閉症児は社会性が低下しているためどうしても言葉の発達が遅れることが多いのですが、知能は正常な場合が大半です。なかには、以前アスペルガー症候群と診断されていた、様々な分野で高い能力を発揮する人たちもいます。例えば、一度見た景色をはっきりと記憶し、絵として正確に描くことができる人がいます(有名なStephen Wiltshireの絵が紹介されているサイトをご覧ください)。この高い視覚認知能力を持つ子供については多くの研究が行われてきましたが、Drake& WinnerのScientific Americanに発表した論文で紹介されているASDの子供たちの絵を見ると、たしかにこの子供たちは世界を違う目で見る能力を持っているのがよくわかります(Mind Scientific American Special edition, Spring 2017)。

特殊な例の話と思われるかもしれません。しかし、Block designやFigure Disembeddingと呼ばれる(説明は省きます)視覚テストで調べると、明らかに自閉症児のほうが一般児より優れていることを示す報告があります(J.Autism Dev. Disord 44:3245, 2014)。間違いなく、ASDの人たちは、一般人には出来ない世界の見方をしているようです。

さてSpikinsさんの新しい論文では、ASDの人たちが示す特殊な視覚認知能力の背景には、local processing bias (部分的情報処理バイアス:LPB)とよばれる、全体にとらわれることなく細部を表現する能力があると分析しています。この能力は決してASDに限られるわけではないのですが、ASDを多くの遺伝子が関わる一つの状態と捉えると、ASDの人たちにLPBを支える遺伝子プールがより多く集まっていると言っていいでしょう。

ASDの人の絵には一般人にはない高い空間認識能力に基づくリアリズムが現れていることを確認した上で、Spikinsさんは次にフランス・ショーべ洞窟で発見された世界最古の壁画や(冒頭の写真に示した)、ドイツ・シュターデル洞窟で発見されたライオンマンのフィギャーのように、現代から見てもリアリズムの粋と言える作品は、誰が作成したのかと問います。

彼女にとって、答えは明白です。壁画やフィギャーに現れるリアリズム、すなわちlocal processing biasの強い作品は決して旧石器時代の人類一般の特徴ではなく、特殊な能力を支える遺伝子プールを持っていた一部の人に限られいたと考えています。そして、この能力を支える遺伝子プールが、ASDの人たちにより強く受け継がれ、ASDの人たちが示す優れた表現能力に結実しているというわけです。

現代のASDと3万年以上前の石器時代のアートを比べるというとてつもない発想ですが、言われてみると高い説得力があります。そしてこの結果は、人類進化の早い時期から脳に生まれたneurodiversity(多様性)を大事に育む思いやりこそが、人類成功のカギだったことを示しています。

ASDがもつ能力を理解しつつも、社会への適応性の欠如を理由に、アスペルガーやナチスは子供たちを排除しました。それに対しSpikinsさんは、ASDの持つ可能性をもっと発掘し、石器時代の人類が行ったように、ASDの能力を活かせる社会を作ることこそ、21世紀の目指すべき社会だと主張しています。これからも頑張ってほしい研究者だと期待しています。

限定戦争は難しい

2019年8月22日
SNSシェア

おそらく人類誕生以来、人間は戦争を繰り返してきた。確かに、未開民族の研究では、多くの戦争は相手を殲滅させる全面戦争というより、できるだけ生命の犠牲が少ない形で白黒をつける儀式と考えられているが、数千年前、帝国が誕生し国家間の戦争が始まると、全面戦争が普通になっていったことは、多くの資料が物語っている。

この生存を重視する自制に基づく限定戦争から、全面戦争への転換がいつ起こったのか、それぞれの文化や民族が持つ国家観によるところが大きいが、マヤ文化では9−10世紀の古典時代の終期以前には、集団の間で争っても、全面戦争を防ぐ合意が存在していたと考えられてきた。

ところが最近米国地質学研究所のグループは、マヤ文明でも7世紀にはすでに相手を殲滅する目的の全面戦争が行われていたことを碑文と発掘資料から明らかにしNature Human Behaviourに発表した (Wahl et al, Palaeoenvironmental, epigraphic and archaeological evidence of total warfare among the Classic Maya , Nature Human Behaviour :https://doi.org/10.1038/s41562-019-0671-x)。

全て詳細は省くが、この研究では碑文に書かれた「(西暦に換算して)696年5月21日にがWitznaがPuluuy(燃え尽きた)」という表現が、どの程度の破壊であったのかを、Witzna近くの湖の炭素沈殿物から推察している。

結果は碑文と一致して、400年から650年まで何回か大きな火事が起こったこと、650年に最大の火事が起こって、その後人間の活動がこの地域からほとんど消滅したことを発見している。

この結果は、Puluuyという単語が、単純な火事を指すのではなく、全面戦争という意味を持っており、650年の戦争で、その地域は人間が生活できないところまで完全に破壊されたことを物語っている。

これまでマヤ古代文明では、わが国と同じでその地域の支配者やその一族が犠牲になることで、戦争は終わると考えられてきたが、そうではなかったという結論だ。

これと比較すると、わが国で多くの争いを終わらせた切腹という儀式がいかに人道的なものであったのかよく理解できるが、ひょっとしたらこの背景には、天皇という、独立した国家観が君臨していたおかげかも知れない。


8月22日 頭が固くなるメカニズム(8月22日号 Nature 掲載論文)

2019年8月22日
SNSシェア

年をとると頭が固くなるとよく言われるが、機能を支える脳組織までが固くなっているとは、今日紹介するケンブリッジ大学幹細胞研究所からの論文を読むまで想像だにしなかった。タイトルは「Niche stiffness underlies the ageing of central nervous system progenitor cells (ニッチが固くなることが神経前駆細胞の老化の背景にある)」だ。

もともと著者らはOPCと呼ばれる脳に存在する多能性の幹細胞の老化について研究していた様だ。新生児と老化マウスから採取したOPCを通常の条件で培養すると、たしかに老化OPCの増殖は遅い。ただ、この性質が老化した脳という環境によって誘導された結果なのか、OPC自体の老化なのかを調べるために、老化OPCを新生児の脳に移植すると、若返って増殖能を回復することを発見する。すなわち、脳の環境が違っている。

このニッチによるOPCの老化の分子メカニズムを探るべく、老化脳と新生児脳の組織から全て細胞を取り除き、マトリックスだけにしてOPCを培養すると、ニッチは細胞ではなく、マトリックスにより形成されていること、そして実際にはマトリックスが硬いとOPCの老化が進むことを、コンドロイチナーゼでマトリックスを分解して柔らかくする実験で確かめる。すなわち、老化マトリックスも酵素処理で柔らかくすると、老化OPCが若返る。

そこで、ただOPCを培養する基質の硬さを変えるだけで同じことが起こるかどうか、硬さの違うハイドロゲルの上でOPCを培養すると、柔らかいハイドロゲルの上で培養した老化OPCが若返る一方、硬いハイドロゲルの上で培養した新生児OPCが老化することを発見する。

ここまでくると、細胞が硬さを認識するメカニズムが老化を決めていると想像できるので、メカノセンサー分子PIEZO1に焦点を絞って研究を行い、老化OPC ではPIEZO1の発現が高まっていることを確認し、さらにこのセンサーの発現を落とすと、老化した環境でもOPCの増殖が維持できることを明らかにする。

最後に老化マウスの脳内のPIEZO1をCRISPRシステムを利用して発現量を落とすと、増殖が高まり、さらにミエリンの再生能も高まることを明らかにし、老化によって固くなった頭を認識している機構がOPC上のPIEZOであることを明らかにする。

最後に、PIEZOの正常での機能を確かめる目的で、この分子を新生児期にノックダウンすると、OPCの数が5倍に増えることがわかり、この分子がOPCの脳内での数を決める分子であると確認している。

話はこれだけで、PIEZOが上昇するのが、頭が固くなった結果なのかがはっきりしない点は問題だが、文字通り頭が固いことについての研究だと思うと、面白い。

カテゴリ:論文ウォッチ
2019年8月
 1234
567891011
12131415161718
19202122232425
262728293031