AASJホームページ > 新着情報 > 論文ウォッチ > 9月9日 AIと医療について考える I 皮膚病変とAI

9月9日 AIと医療について考える I 皮膚病変とAI

2018年9月9日
ウェッブへのアクセスが確保できるかどうか少し不安な場所への旅行が近づいて、論文もダウンロードできないのではないかなどと心配し、穴が開かないように実は今日からアップする2日分は、前もって日本を離れる前に予約投稿をしていた。いまナミビア砂漠の端の街について見ると、携帯はつながらないのに、ホテルではWiFiが繋がる。ただ、明日、明後日はさらに砂漠の中に行くのでまだまだ安心はできない。ガラパゴスの時には全く繋がらなかった。そこで、計画どおり今日からは、いつものスタイルの論文紹介はお休みして、AIと医療について論文を読みながらかんがえてみたい。

せっかく特集的にまとめて書くとして何を題材に選ぼうかと考えていた時、中村祐輔さんがディレクターを務めるAIホスピタルプロジェクトについての記事を読んだので、AIについての自分自身の理解を深めるプロセスを書いたらいいのではと考えた。皆さんもご存知のように。AIは我が国でも最重点項目で、各省庁の大型予算が走っており、中村さんををヘッドとしたAIホスピタルプロジェクトはそのなかの一つだ。ただ、ミレニアムプロジェクトで人ゲノム研究の牽引役だった中村さんがAIに進出してきたということで注目度が高い。もちろん私も興味を持って、プロジェクトのポンチ絵を見たが、内容は中村さんの手になるというより、役所が作ったということがよくわかる内容で、これまでの基幹病院から開業医、そして患者さんという階層的目線をそのまま残している。この結果、個人がネットワークされる21世紀社会の構造に逆行している印象がある。勿論これは私のような世捨て人のコメントで、要はこのプロジェクトが新しい医療を実現するきっかけとして飛躍してくれればいいことで、外野の私にできるのは、このプロジェクトがどう我が国を変えるのかしっかり見とどけることだけだ。

とはいえ評価するためには、AIの可能性を正しく把握する必要がある。今回はまずAI全般の可能性について、このブログで今年の初めに紹介したScienceの総説をもう一度読み直すことから始めたい。

さてこの論文に書かれていたAIが最も得意とする領域は、以下のようにまとめられる。

1. はっきり定義できるインプットとアウトプットの間の関係の学習:医学情報がまさにこれにあたる。すなわち、データから病名を診断する過程は、インプットとアウトプットが明確に定義されている。ただ、予測や診断が可能になったからといって、因果関係を理解したことではない。
2. 多くの適切なデータが得られる学習:ニューラルネットによる機械学習(ML)ではデータが飽和して能力の限界に到達することはない。どんなデータも利用できるが、人間の手で対象をよく分析し、データをタグ付けし直すことで、ML の能力を高められる。
3. ゴールが明確で、定量的に評価できる学習:MLから考えると自明の話だが、例としては都市の交通量のコントロールなどがこれにあたる。ただこの時、データが期待しているゴールとの関連でラベルされるようにデータを調整するのが望ましい。
4. 常識や多様な知識が必要な段階的に論理を詰めていく過程の必要でない学習:迅速な反応が求められるタスクを選ぶのが重要。常識や多様な知識に基づいて、段階的に論理を進めるのは苦手。しかし囲碁やチェスは、その後の展開を正確にシミュレーションできるため、段階的論理過程に見えても、MLは得意。逆に、現実世界のシミュレーションは難しい。
5. 背景にある理由を説明する必要がない学習:診断にしても、囲碁にしても、MLは正解を出すことができるが、なぜそれを正解として選んだかの理由付けは出来ない(これこそが将来のAIの一つの条件、しかし人間だから理由が説明できるわけではない)。
6. 失敗が許容でき、実証性が必要のない学習:アルゴリズムの基本は統計学、推計学で、必ず間違いがあることは理解する必要がある。
7. 現象やインプット・アウトプットの関係が安定な学習:現在のアルゴリズムは、対象の振る舞いがある程度安定していることが必要で、状況が早く変化する現象には利用しにくい。
8. 熟練、技が必要ない学習:ロボットに使うとき、まだハードの方が、機械学習についていかないことを理解する(明日この問題は自動運転で取り上げる予定)

さてこの要件に合う医学への応用とは何かと考えてみると、私の頭に真っ先に浮かぶシーンは、一般の人が自分は病気ではないかと気にしはじめたときがそれに当たるように思う。もちろん元医師としては、まずかかりつけ医に診て貰うというべきだが、領域によればスマフォとAIでかなりの絞り込みが終わる可能性がある。その最適の例が、皮膚科領域だ。すなわち、皮膚病変をスマフォで撮影してAIで診断するシステムだ。

これはconvolution neural networkというAIのテクノロジーが一般で使いやすくなり、皮膚の病変を写真からかなり正確に診断できるようになってきたからだ。例えば昨年2月、スタンフォード大学から13万の臨床画像を用いた機械学習で、皮膚科の専門医レベルの診断が可能になることを示した論文がNatureに発表された(Esteva et al, Dermatologist-level classification of skin cancer with deep neural networks(深層ニューラルネットワークで皮膚科医レベルの皮膚ガン診断が可能になる), Nature 542:115, 2017)。

さらには今年3月には韓国仁済大学医学部から、マイクロソフトのconvolution neural networkプラットフォームを用いて皮膚にできる腫瘍を診断するスマフォのアプリを作成、機械学習させた結果、比べた16人の皮膚科医と同じレベルの診断制度が達成できたことがJournal of Investigative Dermatologyに報告された。(Han et al, Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm(良性と悪性の皮膚腫瘍を区別するための深層学習による臨床画像の分類)Journal of Investigative Dermatology 138:1529, 2018)。この韓国の研究は、一般的に手に入る機械学習アプリをそのまま使ってシステムが組めることを示した点で重要だ。

このように、AIが進むということは、これまで階層性に閉じ込められていた医学知識が一般に開放されることを意味することを理解する必要がある(次回に続く)

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

*