AASJホームページ > 新着情報 > 論文ウォッチ > 9月11日:AIと医療をについて考える III 放射線科領域の画像診断とAI(Nature Review Cancer掲載総説)

9月11日:AIと医療をについて考える III 放射線科領域の画像診断とAI(Nature Review Cancer掲載総説)

2018年9月11日
第一回で紹介した皮膚の腫瘍を診断するためのAIも画像診断だが、医師にとって(少なくとも私のような年寄りの)画像診断というと、レントゲン写真の読影が頭に浮かぶだろう。我が国では現在もなお、健康診断に単純X線検査が入っており、膨大な数の写真が毎日読影されている。今も全て医師の目を通して行われており膨大な労力になる。疲れで診断ミスも当然考えられる。もしこれがAIに変われば、疲れることのない機械は何枚でも写真を判断し、なおかつ能力は進歩する。

X線写真の画像診断は、コンピュータが利用できるようになった頃からすぐに挑戦が始まり、私も様々な方法が試されてきたことを知っている。特に写真がデジタル化されてからはこの研究が加速している。診断とは画像の中から、平均値と異なる場所を割り出し、その違いの意味を判断することだが、このような画像解析法が急速に進歩しているのは、皆さんのデジタルカメラの進歩を見ればすぐわかる。顔を抜き出して笑っている場合に写真を撮るのは自動診断と同じだ。この判断については従来、形や、画像上の特徴を研究者側が指定し、この条件に合ったものを自動で選ばせる手法が取られているが、これがAI、すなわち機械学習、深層学習の登場で大きく変わった。この点についてよくまとまった総説が8月ダナファーバー腫瘍放射線科からNature Review Cancerに発表されたので、これを参考にしながらAIと画像診断について見てみよう。総説のタイトルは「Artificial intelligence in radiology(放射線科とAI)」で、基本的には様々なガンの画像診断についての総説だ。
<br class="none
” /> とはいえ、アルゴリズムなどの情報科学については私も門外漢で完全に理解できているわけではなく、広い範囲にわたって議論がされているので全部を紹介するのはやめて、私が理解できて特に興味を持った内容だけ箇条書きで紹介するので、興味を持たれたら原著を当たって欲しい。

1)専門家には当たり前のことだと思うが、従来の画像診断では対象となる画像を論理数式で記述する必要があったが、基本的にAIでは、それが必要でなく、学習した多くの画像の平均から対象の画像の違いを抜き出すことができる。ただ何故そうか?という点については今の所説明できない。ただ、これまでの論理的研究も、AIにインプットする指標として使うことはでき、今後様々な手法が集まって、AIでも新しい病気を判断する理由がわかる時代は来ると期待できる。
2)ガンの存在をを画像から検出するAIは進展が遅い。ただ、マンモグラフィー画像にconvolution neural networkという手法を使ったAIでは成果が出始めており、これまでの課題は解決されていく。
3)腫瘤が良性か悪性かなどの性質の判断もまだまだ簡単ではないが、正常と異常の部位をトポロジカルに処理する方法(Water shed algorithm) の利用など、様々なアルゴリズムの実験場になっている。私たちは画像だけでガンの性質を判断するのをやめて、結局組織学的検査へと進むが、将来は画像だけで大概の診断ができるようになるかもしれない。
4)何度も繰り返すが、convolution neural networkは現在画像に関するAIの切り札で、素晴らしいことにオープンソースで誰もが利用できるアプリケーションが数多く提供されている。基本的には、画像データを任意の項に分けて学習させ、あとで全体を畳み込んで判断させる方法。例えば、ガンを検出し性質を調べる能力と、臓器の形を理解する能力が別々に学習により同時に進化する。若い人に期待できる分野だ。
5)ガンの経過を画像上だけで追跡する場合は、AIによる個々の画像の診断だけでなく、画像の時間経過を自動的に追跡して違いを知らせるテクノロジーの開発が必要になる。AIの判断に時間経過を組み合わせるのは、新しい分野で、例えば自然言語処理に用いられるrecurrent neural networkを利用するなど、多くの研究が行われている。また、実際の経過観察では、ほかの検査データを統合して判断が行われるが、画像にほかのデータをかぶせることも新しい挑戦の必要なAI開発分野になっている。
6)CT, MRIはもともとコンピュータで多くのパラメータを統合する処理が行われており、それ自体で多くのコンピュータ容量を必要とする。このデータ処理過程を機械学習と統合する(例えばMRIの画像処理過程を元にAIにアドバイスするなど)ことも新しい課題として研究が続いている。
7)他にも多くの課題が山積しており、一つ一つに新しいチャレンジが行われている。創設ではその例を数多くあげているが、これ以上は省略する。ただ重要なのは、一つ一つの課題の先に、画像診断だけでなく、AI自体の進化が促されることで、だからこそ多くの挑戦者が生まれている。
8)最後に、誰がAIのオーナーになるのか、どのような規制が必要なのか、このような社会的問題についても、単純にビジネスチャンスの問題にせず、方向性を明確にしておくことが必要になる。
総説を紹介するのはもともと難しく、今回もかなり単純化して、この論文を読んだ私の理解を列挙して来た。要するに、画像診断のAIにはまだまだ解決しなければならない多くの問題が山積みだが、それぞれはAI自体の将来にとっても重要な課題で、多くの挑戦者を惹きつけている。そして様々な課題が解決された暁には、画像を含む検査結果をAIが自動的に解析し、その結果を医師にもわかりやすい新しい言葉でレポートし、高いレベルの総合診断システムとして医療を助けることが可能になる。また、病気の経過を自動的に追跡し、人間なら見落とす小さなピクセルの差を発見し、経過の判断を支援する。こんな未来が十分実現可能な範囲に入ってきたことが実感された。

そして、現在進みつつある、患者さんや一般市民のpeer to peerウェブがいつかAIと統合されて、人間を一生涯追跡し、学んでいくAIを目指すべきだと締めくくっている。この視点は重要で、先にinternet of humanが形成され、そこにAIがアクセスできるようになるinternet of human to which things are connected(IoHtoT:私の勝手な造語)社会で、多くの医学知識が階層性から解放されることが目指されていることがよくわかった。 次回は最後で、遠隔医療とAIについて考える。

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です

*