ゲノムが変化しないということは、発生過程はもっぱらエピジェネティックな過程であることを示している。このため発生学者は1950年代の終わりにエジンバラの発生学者ウォディントンが描かせたエピジェネティックランドスケープの絵が好きだ。しかし、この絵を見せるのは一種のスタイルになってはいても、エピジェネティックな過程である発生を、エピジェネティックスから見ようとする発生学者はそれほどいなかった。ところがゲノムが解読され、全ゲノムレベルで染色体構造を解読する技術が進んで状況は変わった。
私が現役の時すでに、幹細胞分野やガン研究ではエピジェネティックランドスケープを描くことがもう当たり前になっていた。しかし、本家本元の発生学の出足は遅かったようだ。
今日紹介するスイス・バーゼルにあるミーシャー研究所からの論文は、神経から骨まで、皮膚以外のほとんどの細胞へと分化する頭部神経堤細胞(HNC)発生過程のエピジェネティックランドスケープを調べた研究で3月31日発行のScienceに掲載された。タイトルは「Gene bivalency at polycomb domains regulates cranial neural crest positional identity(頭部神経堤細胞の場所特異性はポリコム領域のバイバレンシー2より調節されている)」だ。
神経細胞や色素細胞へと分化が限定されている体幹部の神経堤細胞と比べHNCは筋肉や骨へと分化する能力があり、この細胞の移動と分化によって我々の複雑な顔が形成されていると言っていい。この研究では、神経堤細胞ができてから移動したあと、その場所に対応して異なる転写因子を発現し、異なる形態の骨や筋肉を作る過程で、どのようなエピジェネティックな変化があるのか、遺伝子発現、ATAC-seqによる染色体のオープン度、修飾ヒストンに対する抗体を用いたChip-seqを用いて、特に場所特異性的形態のプログラムを支持する転写因子遺伝子のエピジェネティックスを網羅的に解析している。
これまでの幹細胞研究から見れば特に新しさはなく、ウォディントンの好きな発生学で、しかも研究者の多いHNCの研究で、ようやくこのような研究が発表されたのかという逆の驚きを感じてしまう。おそらく、それだけエピジェネティックな状態を調べるために十分な数の細胞を胎児から調整することが難しいからだろうと思う。
この研究では、神経堤マーカーと、異なる咽頭弓の分離を組み合わせて、運命の異なるHNCを精製するのに成功している。得られたHNCの遺伝子発現は、場所特異性に関わる遺伝子だけで違うことが確認されており、なぜ異なる形態が発生するのかを研究するために最適の材料が得られていることがわかる。
網羅的解析なので、詳細は省くが、結論をまとめると次のようになるだろう。
1) 場所特異的プログラムが働いているHNCでは、発現のOn/Offに合わせて、エピジェネティックスもOn型、Off型を示しており、安定的なプログラムにエピジェネティックな調節が関わることを示している。
2) HNCが発生し、異なる咽頭弓へ移動するまでは、しかし場所特異的プログラムはRichard Youngらが幹細胞で提唱したBivalentな状態、すなわちOn型とOff型が同じヒストンに共存して、転写はOffだが、いつでもOn型の染色体へスイッチできる状態が維持されている。
3) この領域は将来の運命にかかわらず、染色体はオープン。
4) このbivalent状態はHNC発生時にすでに形成されており、これには場所特異的遺伝子調節に関わる大きな領域がポリコム遺伝子複合体によりH3K27me3型にすることで維持されている。
5) 咽頭弓で場所特異的シグナルが入ると、それにより誘導される転写因子がガイドとなって、H3K27me3マークが消失、染色体構造が完全にOn型に変わる。
ということになる。ほぼ予想通りの結果で、驚きはない。しかし、ようやく発生学でもウォディントンの予言を具体的にすることができるようになってきたと感慨を持って読んだ。
話は変わるが、ウォディントンの薫陶を受け、日本の発生学を牽引したのが岡田節人京都大学名誉教授で、私も医学部の授業をサボって講義を聞いた。この授業の思い出は今でも鮮明に脳裏に浮かぶ。もちろんその後も、CDB設立にあたっては、大きな支援をいただき、今岡田先生が設立されたJT生命誌研究館の顧問をしている。直接の弟子ではないが本当に長い御縁が続いてきた。この論文を読んでいる間じゅう、「西川くん、さいなら」と岡田節が聞こえていた。