今日紹介するNIHを始めとする遺伝子治療を進めてきたグループ(我が国では東大の小澤さんが共著者になっている)による現状報告は、ここ数年論文を読みながら私が持った印象に極めて近く、紹介することにした。タイトルは 「Gene therapy comes of age(遺伝子治療の時期が到来した)」で、今週発行のScienceに掲載された。以下にその内容を紹介する。
歴史
私自身は血液発生を研究していたこともあり、1980年後半にはレトロウイルスによる遺伝子導入は当たり前のように利用しており、この技術が臨床応用されるのも時間の問題と考えていた。実際、1990年代にNIHを中心に様々な遺伝子治療が試みられ、効果がほとんど見られなかったどころか、死亡例まで出る惨憺たる結果に終わった。
ただ、コンセプトが明確な可能性は決して廃れることはない。その後もう一度実験室に問題が持ち帰られ、新しいベクターや、遺伝子編集などの技術が開発されることで、この10年に目をみはる成果を上げ始めている。
技術
現在遺伝子治療に用いられる代表的ベクターは、レトロウイルスと、アデノ随伴ウイルス(AAV)の2種類と言える。前者はホストゲノムに組み込まれ、後者は組み込まれることがないベクターとして開発されている。
レトロウイルスベクター
最初の世代のγレトロウイルスベクターは遺伝子調節領域に組み込まれやすく、治療後の白血病の発生など問題が多かった。その後、レンティウイルスベクター、やスピューマウイルスベクターなどが開発され、特にレンティウイルスは遺伝子のコーディング領域に導入される確率が高く、導入効率も高いことで最もよく利用されるようになった。例えば初期のiPSはこの技術で樹立された。さらに、ウイルスのエンハンサー活性を自滅させるデザインが用いられるようになり、臨床治験に利用されている。レンチウイルスでの遺伝子治療が最も注目されているのは、T細胞にガンを殺すキメラ受容体を導入するCAR-T治療だが、タラセミアの治療などにも応用が始まっている。
アデノ随伴ウイルス(AAV)
1990年代にAAVを用いた遺伝子導入で、遺伝子発現が長期に続くことがわかり、急速に開発が進んだ。特に血友病の遺伝子治療では、静脈注射により肝臓に感染する率が高いことがわかり、凝固因子を10%近くにまで回復させ、その状態を長期間維持できることが明らかになっている。問題は、ウイルスに対する抗体やT細胞による不活化で、まだ決め手はない。
遺伝子編集
我が国ではもっぱらクリスパーだけが問題になっているが、他の方法(ZFNやTALE)を使う方法が着実に進展しており、エイズ患者さんのT細胞にウイルス感染に抵抗性を付与する(CCR5 不活化)やCAR-Tをなど臨床治験が進んでいるものも多い。ただ、将来はクリスパーが中心になることは間違いない。オフターゲットの切断など様々な問題が指摘されるが、iPSと同じで、重要な技術の問題は必ず解決される。体細胞遺伝子治療が始まる可能性は高く、中国ではすでに9治験が登録されているらしい。
もちろん胚操作に進み、倫理的問題が生まれる可能性があるが、ここでは体細胞への遺伝子治療に限って紹介する。
ウイルスベクターを注射する遺伝子治療
ウイルスを注射して遺伝子が導入できれば一番簡単だが、目的以外の臓器にトラップされるなど様々な問題がある。ただ、肝臓、眼、神経系では様々な問題が克服され、前進しつつある。
肝臓を標的にする遺伝子治療
最も成功しているのが、第9凝固因子遺伝子を導入する血友病の治療で、大量の分子を長期に生産し続けるためには肝臓が最適な臓器であることはまちがいなく、他の凝固因子も含め着実な前進がみられる。しかしすべての治験で、ウイルスに対する免疫反応が問題として記載され、この解決が今後最大の課題といえる。
眼
視力低下につながる様々な遺伝子異常が知られており、遺伝子治療の可能性がある。これまで最も研究が進んでいるのがRPE65遺伝子欠損の患者さんで、アデノ随伴ウイルスベクターを用いて遺伝子を直接注入する方法を用いた最近の無作為化研究で、効果が確認された。この結果に励まされて、現在レーバー病など様々な遺伝子疾患の治験が進められている。
神経・筋肉
治験が進んでいるのは、パーキンソン病と脊髄性筋萎縮症と言える。すでにこのブログでも紹介したように、ドーパミン合成に必要な遺伝子を再構成する遺伝子治療のi/II相治験が行われ、期待が持てる結果が出ている。しかし、最も成功したのが、スプライシングをアンチセンスRNAで制御する脊髄性筋萎縮症の治療で、昨年の最大の医学トピックとして選ばれている。
試験管内での遺伝子改変
レトロウイルスを用いた免疫不全症の治療が最も進んでおり、γレトロウイルスを用いる最初のバージョンで白血病が多発した反省を受け、現在ではレンチウイルスを用いる新しい方法が用いられ、成果を収めている。血液幹細胞を標的にする遺伝子治療は、他にも様々な疾患に適用可能で、現在タラセミアの遺伝子治療国際治験が進行している。タラセミアについては、今後遺伝子編集の標的として研究が進むと予想できる。
CAR-T
レンチウイルスベクターを用いてキメラ遺伝子を患者さんのリンパ球に導入する方法はFDAに認可された治療として昨年から利用が始まったが、このCAR-Tには他にも様々な技術が試されている。一つの方向は、現在標的として用いられているCD19に加えて、他のマーカーに対する抗体を用いて骨髄性白血病や、固形癌を治療する方向性の研究で、もう一つの方向は患者さん本人のT細胞を用いるのではなく、ホストに対する反応は起こらないが、ガンに対しては反応できる、すべての患者さんに対応できるT細胞の開発だ。どちらも臨床応用はかなり近いところにあると言える。
以上が総説の内容だが、遺伝子治療実用化が現実になりつつあるのがよくわかってもらえたと思う。しかし問題もある。もともと遺伝子治療は、原理的にも個人用の治療が設計できる方法として期待され、またその方向で助成も行われてきた。しかし最近実用化された遺伝子治療は、あまりに高価で、実際の患者さんには手が出ないと言う問題がある。この問題を解決しない限り、おそらく遺伝子治療の普及はないだろう。規制をどうするのかも含め、早期の議論が必要だと思う。
Key WORD:遺伝子治療で検索し、現在バックナンバー拝読中です。一般解説書より、生論文中心で、世界的科学者西川先生の感想、ツブヤキも知ることができ、大変参考になります。1990年代、ブルーバックス、雑誌日経サイエンス等でも、夢の治療として取り上げられてましたが、事故で下火になりました。当時の自分の感想は、本当に夢物語だったんだな。。。です。大学院の研究テーマも、全然違うものにしました。ゲノム、遺伝子etcをなんか信じられなくなってました。あの当時。その後、Gene Therapy、全く頭から抜けてました。しかし、復活したんですね。
コンセプトが明確な可能性は決して廃れることはない
重要な技術の問題は必ず解決される
貴重な教訓です。
しかし、あの冬の時代をよくしのいだなと感嘆いたします。
自分には、あんな四面楚歌の状態で研究継続なんて無理そうです。