今日紹介するミュンヘンのルードビッヒ・マクシミリアン大学からの論文はこの条件を試験管内、細胞内を行き来しながら突き止めた研究で4月19日号のCellに掲載された。タイトルは「Phase separation of FUS is suppressed by nuclear import receptor and arginine methylation (FUSタンパク質の相転換は核内移行受容体とアルギニンメチル化により調節されている)」だ。
これまでの地道な生化学的研究の蓄積の上にまとめられた論文であることがよくわかる研究で、FUSタンパク質は電荷を帯びているため沈殿しやすいのを、うまく遺伝操作で調節して安定タンパク質を大量に作った後、保護している人工タンパク質を除いて沈殿させるという実験系を実験の基本として使って、この沈殿を防ぐ条件を探っている。
もともと沈殿しやすいタンパク質は、沈殿を防ぐタンパク質(シャペロンと呼ばれる)と結合していることが普通で、これまでの研究に基づき著者らはTNPO1と呼ばれる核内へFUSを移行させる分子が細胞質のシャペロンとして働いているとあたりをつけ、このことを確認している。すなわち、TNPO1は核内へFUSを汲み出すだけでなく、細胞質内でFUSの沈殿を防いでいる。
細胞内でこの過程を調べると、TNPO1 が存在することで、FUSがストレス顆粒に濃縮することを防いでいることが最も大事で、ストレス顆粒内にいこうすると、そこで相転換が起こって沈殿が起こることを明らかにしている。そして、様々な変異タンパク質を用いて、FUSタンパク質のRGG配列とC末端にあるPY配列にTNPO1が結合し、RGGのアルギニンがメチル化されることが、TNOP1結合の重要な要因であることを示している。
この結果をもとに、ALS誘導性のFUSタンパク質を見直すと、単純に核内移行だけでなく細胞質内でストレス顆粒への移行防止も異常化する、ダブルヒットによりFUSが沈殿することを明らかにしている。
ではこれでFUSの変異が原因のALSの患者さんの治療がすぐ開発されるかというと、話はそう簡単ではないだろう。ただ、沈殿が一つの過程で決まるのではなく、様々な過程が条件として必要であるという認識は重要だ。すなわち、治療法開発のための標的過程が増える。その意味で、こういった地道だがプロの研究がトップジャーナルに取り上げられることは重要だと思う。