AASJホームページ > 新着情報 > 論文ウォッチ > 4月12日 RAGタンパク質の進化(Natureオンライン版掲載論文)

4月12日 RAGタンパク質の進化(Natureオンライン版掲載論文)

2019年4月12日
SNSシェア

研修医の頃、京大に利根川さんが来られて、免疫グロブリン遺伝子再構成についてセミナーをされたのを聞いて、不思議な感動を覚えた。それが臨床を辞めてから、血液幹細胞からB細胞への分化を最初の研究テーマに選んだ理由だと思う。当時、免疫グロブリン遺伝子再構成はよくわかっていたが、それに関わる分子はほとんど分かっていなかった。そんな時、Baltimoreラボの若い研究者だったDavid SchatzがついにRAG1,RAG2の2つのタンパク質で遺伝子再構成が起こることを明らかにした。彼がRAGを見つけるまで、何回かミーティングで一緒になることがあったが、東海岸のエリート研究者を絵に描いたような印象は今でも忘れない。

あれからすでに30年以上経っているが、今日紹介するエール大学論文を読んでSchatzが今もRAGについて研究していることを知り懐かしく紹介することにした。タイトルは「Transposon molecular domestication and the evolution of the RAG recombinase(トランスポゾンの飼いならしによるRAGリコンビナーゼの進化)」だ。

免疫グロブリン遺伝子を正確に編集するRAG1/RAG2分子が、動く遺伝子トランスポゾンから進化しただろうことは当時から想定されたいた。その後、ショウジョウバエのゲノムからin silicoで再構成されたTransibがそのルーツで、その後ナメクジウオのRAG1/2プロトタイプを経て進化したことが明らかになっていたようだ。

この研究ではRAG1/RAG2の最も近い親戚と言えるproto(p)RAG1/proto(p)RAG2の、酵素活性、構造、トランスポゾン活性などを比較し、RAG1/RAG2のような正確な遺伝子編集酵素が進化してきたのかを調べている。

ほとんどの読者はもはや馴染みはないと思うが、RAGはゲノム上の極めて正確なシグナル配列セット(これもトランスポゾン由来と考えられる)を認識して、シグナル配列を切り出し、ゲノム側の断片はヘアピン構造を作らせた後、DNA修復で再結合させる一方、断片の方はシグナル部分で再結合させ新たなトランスポゾンになるのを抑えている。この辺りの研究については、1980年ごろ大変な競争があって懐かしいが、ナメクジウオのpRAGと比べると、まずRAGではシグナル配列の両端を必ずカットする一方、pRAGでは様々なタイプの断片ができてしまうこと、そしてpRAGでは切り出した後ゲノムの他の場所に挿入されるトランスポゾン活性が残っていることがわかった。

そこで、クライオ電顕を用いた構造解析を行い、トランスポゾン活性をどのように抑えている分子変化を特定している。詳細を省いて、この解析からわかった進化の過程をまとめると次のようになる。

これまではシグナル配列断片を環状に閉じることで、トランスポゾン活性が抑えられると説明されていたが、実際にはプロトRAG1,RAG2に起こった2つの変化によってトランスポゾン活性が抑えられたRAGが誕生する。一つは、RAG1の840番目のアミノ酸のアルギニンへの変化と、RAG2の酸性のC末の変化で、これにより再構成がシグナル配列に完全に縛られるようになり(12/23ルールと呼ばれている)、さらに切り出した後の細胞内過程を調節してトランスポゾン活性を抑えているというシナリオだ。

もう抗原受容体遺伝子の再構成に興味を持つ人は減ったと思うが、私にとってはSchatzの名前とともに懐かしく思わず紹介した。しかし、これほどマニアックなプロの研究がしっかりと進んでいることを見て、大変感銘を受けた。

  1. Okazaki Yoshihisa より:

    抗原受容体遺伝子の再構成に興味を持つ人は減った

    RAG1/RAG2、TCRの再構成も関与しているみたいで、そうした観点からは、大いに興味をひかれます。

Okazaki Yoshihisa へ返信する コメントをキャンセル

メールアドレスが公開されることはありません。 が付いている欄は必須項目です

*


The reCAPTCHA verification period has expired. Please reload the page.