今日紹介するカリフォルニア大学バークレイ校からの論文は、線虫でこの問題を研究する中で、新しいヒストン脱メチル化酵素DPY21を特定し、そのX染色体遺伝子発現量調節機能を明らかにした力作で、9月21日号のCellに掲載された。タイトルは「Dynamic control of X chromosome conformation and repression by a histone H4K20 demethylase(ヒストンH4K20脱メチル化によるX染色体構造と発現のダイナミックな調節)」だ。
線虫ではオスメスではなく、X染色体が2本の両性具有体と一本のオスに分かれており、両性具有体でX染色体の遺伝子発現を半分に低下させる必要がある。このメカニズムは詳しく研究されており、rexと呼ばれる場所を起点に多くの分子から構成されるDCC複合体が結合し、X染色体全体の転写を半分に抑えている。またこの時、X染色体特異的に20番目のリジンが一つだけメチル化されたH4ヒストンが染色体を覆うことがわかっている。ただ、これまでDCC複合体の中にヒストンのメチル化や、脱メチル化に関わる酵素は見つかっていなかった。
この研究では、DCC構成タンパク質の配列や構造を詳しく検討し、DPY-21がヒストン脱メチル化活性を持っているのではと着想し、期待どおりこの分子がH4K20にメチル基が2/3個付いたH4K20me2/3のメチル基を外してH4K20me1に変化させる活性があることを突き止める。
はっきり言って、この発見がこの研究の全てと言っていいだろう。あとはPY-21が実際に脱メチル化活性がX染色体の遺伝子発現調節に関わっていることを、酵素活性部位を失った遺伝子を導入した線虫を用いて調べている。結果を箇条書きにまとめると、
1) H4ヒストンのうちH4K20me1はX染色体上で、常染色体の2倍多く存在している。
2) このX染色体特異的変化は、すべてDPY-21の脱メチル化活性によっている。
3) このメカニズムは、200細胞期を超えた後、体細胞のみで働き、特に細胞周期の間期に働いている。
4) 脱メチル化活性がなくなると、X染色体上の遺伝子発現のみ上昇し、さらに普通はこの機構が働かないXが一本のオスで働くようにすると、遺伝子の発現が低下してオスは死んでしまう。
5) H4K20me1は染色体の3次元構造を調節して、エンハンサーとプロモーターの相互作用を変化させ、微妙な遺伝子発現調節を行っている。
6) 生殖細胞での遺伝子発現にも同じメカニズムがDCC非依存的に利用されている。
になるが、全てDPY-21がH4K20特異てき脱メチル化酵素であることの発見あっての結果だ。
この論文では、哺乳動物に存在する同じ活性を持った酵素も特定しており、哺乳動物でのH4K20me1の機能も明らかになると思うが、染色体の3次元構造を変化させて、インシュレーターの作用を調節するという魅力的活性があることから、急速に研究が進む予感がある。