今日は、原因となる遺伝子が特定されている自閉症スペクトラム(ASD)の一つ、FragileX症候群の発症メカニズムと治療可能性を示したマサチューセッツ工科大学からの論文を核に、遺伝子が特定されているASDと遺伝子治療の可能性についてまとめてみた。少し難解とは思うが、我慢して読んでいただきたい。
遺伝子が特定されている自閉症
自閉症は、一卵性双生児での発症の一致率が高く、遺伝性があることは間違いがない。しかしこれまで強くASDと関係があることが示された遺伝子は100種類近くに上り、また弱い相関は倍以上の遺伝子で見つかっている。個々の例は、これら何十もの遺伝子の小さな違いが組み合わさって発症に関わっていると考えられる。
私たちの脳の回路の複雑さを考えるとこれは当然のことで、ASDは様々な遺伝子の小さな変化の組み合わせで起こってくると考えて貰えばいい。
それでも、特定の遺伝子の突然変異で、発生過程の大きな変化が起こってしまい、その結果としてASDが起こる場合がある。このうち最も研究が進んでいるのが、Fragile X、Rett症候群、MECP2重複症で、ASD発症までのメカニズムの理解も進んでいる。
これらの病気については今後おいおい紹介するとして、今日焦点を当てるのはFragile X症候群だ。
Fragile X症候群
X染色体上にあるFMR1遺伝子の変異により起こるのがFragile X症候群(FXS)で、男児のみ知的障害など、精神・身体的多様な症状を示す遺伝病だ。全員にASDが見られるわけではなく、おおよそ1/3の子供にASD症状がみられる。FXSは決してまれな疾患ではなく、約3000人の男児に一人の頻度で起こる病気だ。
FXSの遺伝的変異は、FMR1遺伝子のRNAが読み始められるポイントの少し上流にある通常5-40個のCGG繰り返し配列の数が増え、55-200個になるという不思議な変異だ。そしてCGGの繰り返し配列が増えることで、正常なFMR1遺伝子は存在しているのに機能を失い、結局遺伝子がなくなったのと同じことになる。
FMR1遺伝子がないと、神経間の伝達がうまく調整できず、発生から発達時期の脳回路の形成がうまくいかないため、知能障害やASD症状が生まれる。
iPSとクリスパー技術を使ったFXSの発症メカニズムの解明についての新しい論文
なぜCGGの長い繰り返し配列ができてしまうと、遺伝子からRNAができなくなるのかを明らかにすることが、発症メカニズムの解明と治療法の開発に必要になる。今日紹介するマサチューセッツ工科大学(MIT)からの論文はこの問題を患者さんのiPSと現在最も注目を集めているクリスパー遺伝子編集技術を用いて解明することに成功した(Liu et al Cell in press, 2018:https://doi.org/10.1016/j.cell.2018.01.012)。
遺伝子の機能を抑えるDNAメチル化
この論文を理解するには、まずDNAメチル化について勉強しておく必要がある。染色体上には多くのCG(シトシン、グアニン)塩基が繰り返す場所があり、しばしばこの中のシトシンにメチル基が添加されている。特にCG配列が繰り返す領域は強くメチル化されていることが多い。そしてメチル化された塩基の密度が高まっている領域では、遺伝子の機能が抑えられることが多い。
FXS患者さんではFMR1遺伝子のCGGの繰り返しが200にも及ぶため、これがメチル化されると、FMR1遺伝子の機能を抑えてしまうことになる。
クリスパー技術を用いてFMR1遺伝子からメチル基を除去する
患者さんのFMR1遺伝子のCGG繰り返し領域は強くメチル化されている。しかし、このせいで遺伝子の機能が抑えられていると結論するためにはこの領域のメチル基を除去して、遺伝子の機能が回復できるか調べる必要がある。
この課題をクリスパー技術を用いて解決したのが今回の論文だ。しかし、クリスパーは遺伝子編集の方法ではなかったか?
クリスパーが遺伝子編集と言われるのは、特定の配列に結合したガイドRNAを指標にリクルートされてきたCas9が、遺伝子を切断してくれるからだ。これにより遺伝子をノックアウトしたり、あるいは他の遺伝子断片を切断した場所に挿入することができる。
しかしこのシステムの素晴らしいのは、ガイドRNAを認識するCas9かそれに相当する分子さえあれば、どんな酵素も染色体の思った場所に連れてくることができる点だ。例えば、Cas9のDNA切断能力を除去して、代わりに蛍光タンパク質をつなげた分子を用いると、生きた細胞の染色体上の特定の遺伝子を光らせて追いかけることができる。
この原理で、DNA切断能力を除去したCas9にメチル化を除去するTet1と呼ばれるタンパク質を結合させると、TMR1遺伝子のCGG繰り返し配列に添加されたメチル基を外すことができる。
この研究では、FXS患者さんからiPSを作成し、この細胞に目的の場所を標識するガイドRNAとCas9-Tet1を導入することで、見事に遺伝子自体を全く変化させることなく、FMR1のCGG繰り返し配列のメチル基を外し、遺伝子の機能を復元することに成功している。この結果、FMR1遺伝子は活動を始め、正常な神経細胞に分化することができる。
以上の結果から、FXSの変異でなぜFMR1遺伝子の機能がなくなるのか、またそれを治療するにはどうすればいいのかの方法が確立された。
ASDの遺伝子治療
この研究については、専門的になるのでこれ以上説明は控える。
ただ、この研究もそうだが、単一の遺伝子変異によるASDや知能障害の研究が進むことで、発達時期の遺伝子治療により、様々な障害を改善できることが示されている。今回の研究で、FXSの根本的遺伝子治療法の可能性が示されたが、クリスパーを使わなくとも、FMR1遺伝子を脳内に注射するより簡単な方法でも治療できる可能性は高い。
同じようにMECP2遺伝子が欠損しているRett症候群や、逆に多すぎるMECP2重複症でも、動物モデルを用いた遺伝子治療の前臨床研究は成功しており、患者さんや家族から大きな期待が集まっている。
しかし、このような治療は患者さんの数が少ないことから、可能性がわかっても企業が手を出しにくい分野だ。従って、公的なベクター(遺伝子の運び屋)施設などを整備し、少数の患者さんに対応する体制をとることは、少子化が進むわが国の成育医療の重要な課題になると思っている。実際、このような計画を政府は準備しているという話を耳にする。一刻も早く実現することを期待するとともに、患者さんたちとともに、全面的に支援して行こうと思っている。