先日AASJ理事会、総会を無事終えることができたが、昨年の新しい展開の一つは、日本網膜色素変性症協会が開催されたゲノムとゲノム医療についてのオンラインセミナーのお手伝いをすることができ、医学情報で患者さんのお手伝いをするというAASJの活動を広げることができたことだろう。このとき議論されたように、網膜色素変性症のおよそ半分で原因になる遺伝子変異が特定されており、CRISPR/Casも含め様々な遺伝子治療が行われている。ただ、これらは視細胞が存在している段階で、視細胞が失われた後は、現在神戸アイセンターで万代さんが取り組んでいる視細胞移植が必要になる。
これと並行して、視細胞回復は諦め、網膜に残っている細胞に視細胞の機能を与える治療法も試みられており、光感受性色素を網膜ガングリオン細胞に投与し視力を回復させる方法について随分前に紹介した(https://aasj.jp/news/watch/12530)。
今日紹介するパリのソルボンヌ大学からの論文は、光を感受するtdTomato分子とそれに反応するチャンネルロドプシンをコードする遺伝子を、網膜色素変性症で40年前に視力を奪われた男性の網膜に導入し、カメラで捉えたモノクロ像を、tdTomatoに適した波長の光に変え、それを網膜に投射する方法についての研究で、まさに光遺伝学を用いた視力回復法の開発と言える。タイトルは「Partial recovery of visual function in a blind patient after optogenetic therapy (視力が失われた患者さんの視機能を光遺伝学治療で部分的に回復する)」だ。
いつかは光遺伝学を用いた神経操作が人間でも始まると思っていたが、光を感知する網膜細胞という最もオーソドックスな細胞で光遺伝学が最初に導入されたことは納得できる。
しかし、網膜のような光に常に晒される場所に、光感受性の色素とチャンネルが常に発現している場合、光毒性の問題が必ず生じる。これを解決するため、この研究では毒性の少ない赤側にシフトした波長に反応するチャンネルロドプシンを用いている。
そして、自然の光を感知するのではなく、いったん画像センサーに取り込んだ映像を、ゴーグルを通して、590nmの波長の強弱に変換して、それを網膜に投影している。この赤側にシフトした波長のおかげで、瞳孔の反応が抑えられ、投射も問題なく行える。
結果の評価だが、白い机の上に黒い物体をおいて、それを感知できるか自己申告で調べると、遺伝子導入後に、ゴーグルで投影した時だけ、比較的大きな物体なら区別できるようになる。一方、自然の光には全く反応しないし、また遺伝子導入前には全く反応は起こらない。
さらに、脳波による脳活動で調べると、遺伝子導入した側の反対側の後頭皮質で、ものを認識した時だけα波の振幅の低下が観察され、他覚的にも光に反応していることがわかった。
他にも訓練することで、戸外に出て活動するとき、横断歩道のストライプの数を数えたり、室内でもお皿やカップ、あるいは携帯電話を認識したり、ドアや老化まで認識できるようになることを示している。
以上が結果で、ついに光遺伝学が利用されたのかという感慨は大きい。今後、レーザーを用いて画像の投影が可能になると、文字も含めてさらに詳細な情報を視覚的に得ることが、理論的には可能になるようだが、おそらく文字を読むというのが次のゴールになるのではと期待している。
個人的に、衝撃的な論文でした。
aasjで、光遺伝学の基礎研究応用については、何度もご教授いただいておりましたが、まさか、こんなに早くヒトへの展開が可能になるとは、、
西川先生
昨年のオンラインセミナーでは大変御世話になりました。
私たちもこの分野の臨床応用に大いに期待しています。
Nature Biotechnology(2月9日号)の記事を読むと、いくつかのグループが競っており、近い将来文字が読めるようになると思われます。
Light-activated genetic therapy to treat blindness enters clinic
https://www.nature.com/articles/s41587-021-00823-9
(日本網膜色素変性症協会・有松靖温)
有松さんからコメントをいただき、紹介したかいがありました。