ミトコンドリアは元々独立した細胞内寄生細菌由来なので、当然独自のゲノムとともに、翻訳システムを備え、独自にタンパク質合成を行っている。このミトコンドリア内での翻訳に関わる様々な遺伝子変異も知られており、脳、心臓、筋肉などミトコンドリア依存性の高い臓器に症状が出る。ただ、基本的にはミトコンドリアに必要なタンパク質の翻訳に限られると個人的には理解していた。
今日紹介するケンブリッジ大学からの論文は、ミトコンドリアがホスト細胞の事情に合わせて、必要ならミトコンドリアとは無関係のタンパク質の翻訳に手を貸してくれるという面白い研究で、10月15日号Scienceに掲載された。タイトルは「Mitochondrial translation is required for sustained killing by cytotoxic T cells(ミトコンドリア内の翻訳は細胞障害性T細胞が持続的に機能するのに必要)」だ。
マウスに網羅的に突然変異を導入して免疫機能を調べるプロジェクトが進んでいるが、その中で発見された遺伝子がUsp30で、これが欠損するとキラー活性が低下することが知られていた。
Usp30はミトコンドリアの膜上で、ミトコンドリアのオートファジーが起こりすぎない様に調節しているタンパク質で、これが欠損するとミトコンドリアの分解が上昇する。ただノックアウトされたマウスも正常に発生し、見た目正常に成長するので、この変異はキラー活性特異的なミトコンドリア依存性が存在することを示している。
この研究ではこの謎解きを、まずキラー活性を誘導したときのCD8T細胞のミトコンドリアについて、ノックアウトマウスを正常マウスと比べている。すると、キラー活性を誘導して5日目で、Usp30欠損細胞では、ミトコンドリアの多くが失われ、なんと60%で正常ミトコンドリアが消失してしまっている。
驚くことに、これほどミトコンドリアが減少しても、T細胞はグリコリシス経路を用いてエネルギーを調達して、しっかり生存している。しかし、キラー活性を調べると、全く消失はしていないが、活性自体が強く抑制され、細胞障害に時間と多くの細胞が必要になる。
ところがこの機能異常が、ミトコンドリアのエネルギー産生機能にあるのではと考えて調べてみても、ATP合成は変化しておらず、おそらくグリコリシスでまかなえていることがわかる。すなわち、単純なエネルギーバランスだけでは説明がつかない。
一方、細胞障害機能に必要な、細胞障害顆粒の大きさが小さくなっており、おそらく障害に必要な分子の合成がうまくいっていないことが想像された。そこで、細胞内で合成されているタンパク質を網羅的に調べると、ミトコンドリア機能に関わるタンパク質とともに、細胞障害性に関わる様々なタンパク質、例えばグラインザイムやパーフォリン、あるいは炎症性サイトカインなどを含む、500種類ほどのタンパク質の合成が低下していることがわかった。
結果は以上で、キラー細胞の様に急速に機能分子の合成が必要な状況では、ミトコンドリアの翻訳系が、場所を貸すことでエネルギー効率の高いタンパク質合成を可能にし、キラー活性に必要な分子合成に手を貸していることがわかった。望ましい共生関係がこんなところにも見られるという例だと思う。ただ、これを可能にするメカニズムについては、さらに研究が必要だろう。また、ミトコンドリア病についても、単純にエネルギー代謝だけでなく、翻訳の手助けまで考えて理解する必要があることがわかった。新しいことが学べた面白い論文だった。
キラー細胞の様に急速に機能分子の合成が必要な状況では、
ミトコンドリアの翻訳系がエネルギー効率の高いタンパク質合成を可能にし
キラー活性に必要な分子合成に手を貸している。
Imp:
キラー活性が必要な状況下ではエネルギー産生工場ミトコンドリアがサポートする