トランスジェニックマウス作成の経験がある人から見ると、一回の採卵あたりの体外受精成功率が35歳以下でも40%というのは低く感じられると思う。この原因については、初期分裂の過程で染色体異常が起こりやすく、その結果着床しないと考えられている。しかし、何故マウスとヒトで大きな差があるのか、また染色体異常が起こる詳しいメカニズムはわかっていない。
今日紹介するコロンビア大学からの論文は、受精後の卵子の分裂過程を詳しく調べ、ヒトの初期分裂で何故染色体異常が発生しやすいのかを明らかにした膨大な研究で、7月19日 Cell にオンライン掲載された。タイトルは「Replication stress impairs chromosome segregation and preimplantation development in human embryos(ヒト胚では、複製時のストレスが染色体分離と着床前発生を傷害する)」だ。
昨日紹介したのは、一部だけヒト卵子を使った研究だったが、今日紹介する研究では、ほとんどの実験を、受精あるいは無為性生殖で分裂を誘導したヒト卵子を用いて行っている。これだけのことが出来るのは、その背景に膨大な生殖補助医療があり、そこから実験に使える卵子が供給されていることが覗われる。
最初の分裂時に染色体異常が起こるとすると、分裂時のストレスで DNA 切断が起こり、この修復が進まない前に分裂が始まり、染色体の断裂が起こることが想像される。この研究では、DNA 切断による修復コンプレックス形成を受精卵で観察し、DNA 合成期と分裂期の中間にある G2 期で、DNA 切断部位が増加し、そこに修復コンプレックスが集まることを観察する。すなわち、卵子の初期分裂では DNA 合成自体が強いストレスと鳴って DNA 切断を起こすことを突き止める。
このストレスの原因をさらに探ると、複製が遅れてしまう場所は、遺伝子が少ないメチル化された領域で、この部位の複製は、各鎖での伸長や修復のスピードが異なっており、結果、完全な複製に時間がかかり、G2 期までだらだらと続く。
わかりやすく言うと、遺伝子が少ないメチル化された領域では DNA 合成がスムースでなく、G2 期に入っても合成は続いており、この時ストレスで DNA 切断が起こり、修復が行われる。ただ修復が完全でないまま、G2 のチェックポイントが効かずに分裂期に入ると、そのとき染色体の欠損や増幅が起こることを突き止める。
実際、保持しきれずに染色体から切れてしまった断片は、微小核を形成することを、微小核を取り出し遺伝子配列を調べることで示している。
以上簡単にまとめたが、single cell レベルのゲノム解析を繰り返す大変な実験量だ。この結果、息を潜めて活性化を待ち、排卵、受精とたどり着いた卵子は、最初の分裂で、新しいゲノム体制をとるため、まさに産みの苦しみを経ることがよくわかる。
とはいえ、それならヒトもマウスも同じはずだ。この研究では、マウスの DNA 合成を G2 期で阻害する実験を行い、ヒト卵子と比べることで、マウスでは G2 期の修復能力が高く、政情分裂の確率がヒトの場合より遙かに高いことを確認する(実際ヒト受精卵 G2 期に DNA 合成を阻害すると正常分裂はほぼ0になる)。すなわち、マウスでは初期複製の問題を修復する力が強い。
さらに、ヒトでは G2 チェックポイントに関わる遺伝子発現が弱いため、完全に複製や修復が終わったまま分裂期に入る可能性が高くなっている。
以上、質的と言うより、量的な違いで、ヒトの体外受精卵発生確率が低下していると考えられる。
このように体外受精という面から考えると、確かにマウスは優れているが、人間の場合、このようにわざわざ高いハードルを最初の分裂に課すことで、良い性質を選んでいるのかもしれない。以上、2日ににわたって卵子の研究を紹介したが、プロの世界を感じる。
1:ヒトでは G2 チェックポイントに関わる遺伝子発現が弱く、完全に複製や修復が終わったまま分裂期に入る可能性が高くなる。
2:質的と言うより、量的な違いで、ヒトの体外受精卵発生確率が低下している。
Imp:
マウスとヒトの違い=質的と言うより、量的な違い!