麻酔のメカニズムについては多くの研究が行われており、またこのブログでもいくつか紹介してきた。しかし、麻酔から覚める過程については、薬剤が脳内から消失する、すなわち薬が切れることで起こるものだと考えてきた。
今日紹介する中国深圳にある南方科学工学大学からの論文は、全身麻酔によって視床後内側核特異的にクロライドイオン(Cl-)チャンネルが抑えられることで麻酔の効きが抑制され、ここから刺激が出ることで、覚醒を早めることを示した研究で、3月27日号 Nature Neuroscience にオンライン掲載された。タイトルは「Emergence of consciousness from anesthesia through ubiquitin degradation of KCC2 in the ventral posteromedial nucleus of the thalamus(麻酔からの意識の覚醒は視床腹側後内側核でのKCC2チャンネル分子のユビキチン化と分解により起こる)」だ。
この論文を理解するためには、麻酔に関わるGABA受容体とKCC2チャンネルについての予備知識が必要だ。異論もあるが、全身麻酔にGABA受容体が重要な働きをしていることは広く認められている。GABA受容体はGABAに反応してイオンチャンネルを開けて、細胞内を過分極させることで神経興奮を抑える。これに対し、KCC2は神経特異的に存在するCl- のトランスポーターで、細胞内GABA受容体の効果を持続させる。すなわち、KCC2の発現が低下すると、GABAの効果が低下することが分かっている。たとえば、このブログでよく取り上げるRett症候群ではKCC2の発現が低下することでてんかんが起こるが、これはGABAによる抑制がうまくいかないからと言える。
この研究では全身麻酔とKCC2発現レベルに注目し、麻酔剤を問わず全身麻酔で意識が低下すると、視床腹側後内側核(VPM)特異的にKCC2の発現が低下することを発見する。そして、KCC2をVPM特異的にノックダウンすることで、麻酔の効きが低下することを確認する。この発見が研究のハイライトで、全身麻酔で意識がなくなると、VPMでは逆に麻酔の効きを抑えて神経活動を保つ方向の動きが起こっていることになる。
次に、なぜKCC2タンパク質の発現が低下するかを探索し、KCC2のスレオニンがリン酸化されることで、ユビキチン化され、この結果KCC2の分解が進むことを明らかにしている。すなわち、メカニズムはわからないが、麻酔剤に拘らず神経活動が低下すると、VPM特異的にKCC2のリン酸化、それに続くユビキチン化、分解がおこり、Cl- 輸送が抑えられることで、GABAの効果を抑える方向に働くことがわかった。
以上をまとめると、もちろん麻酔薬の濃度が低下することが麻酔から覚める要因だが、麻酔後30分ぐらいからVPMでおこるKCC2発現低下により、VPMでは麻酔剤の効果を抑えることで、脳全体にシグナルを送り、麻酔からの覚醒を積極的に助けているというシナリオだ。実際、麻酔中にてんかん発作が起こることはよく知られており、ひょっとしたらVPMでの KCC 2の低下によるのかもしれない。いずれにせよ、このメカニズムは麻酔剤の種類に関わらず起こるので、今後意識の回復しない患者さんの覚醒方法開発にも発展する可能性はある。
麻酔後30分ぐらいからVPMでおこるKCC2発現低下により、VPMでの麻酔剤の効果を抑えることで、脳全体にシグナルを送り、麻酔からの覚醒を積極的に助けている可能性。
Imp;
意識の謎にも関係した回路かもしれません。
意識の物質的基盤!?