塩基の並んだコドン情報をそれに対応するアミノ酸へと解読する過程は、言語と脳活動と同じで、アレキサンダーパースの記号分析で言えば「シンボル」にあたる。この物理世界をシンボル化する過程が生命38億年、そして人類が言語を獲得した後の5万年の地球上での人類繁栄の原動力となった。
コドンとアミノ酸の解読過程は mRNA、リボゾーム、そして tRNAと3種類のRNAによりになわれており、生命誕生前のRNAワールドの名残だが、38億年の歴史の中で、この解読システムも多様化を遂げている。こうした多様化の詳細については完全に理解できているわけではなく、その結果以前紹介したようにシュードウリジンを使った Covid-19ワクチンが、tRNAの相性を変化沙汰結果、フレームがずれた新しいペプチドを作ってしまい、この接種を受けた何億人ものヒトのかなりの割合でペプチドに対するT細胞反応が起きることになってしまった。
注:このフレームのずれで抗体が出来るとどこかのメディアが書いているとの指摘を受けたが、それは書いた人が論文を理解していないか、読み間違ったためで、新しい分子に対する抗体は出来ていないし、T 細胞の反応でとどまっているし、出来たペプチドも我々人間には存在しないので、病気が起こる心配はない。
今日紹介するハーバード大学からの論文は、抗体を大量に合成するためB細胞では新たなコドン解読メカニズムを使っていることを示した論文で、1月12日号 Science に掲載された。タイトルは「Antibody production relies on the tRNA inosine wobble modification to meet biased codon demand(抗体の合成はコドン利用のバイアスに対応するため tRNA の Wobble部位のイノシン修飾に依存している)」だ。
一つのアミノ酸に対して複数数のコドンが対応しているが(例えばタカラバイオのサイト参照:https://catalog.takara-bio.co.jp/product/basic_info.php?unitid=U100003628)、これからわかるようにコドンの最後の塩基は2-4種類存在する。同じアミノ酸でもどのコドンを使うのかには、種によっても差があり、さらに蛋白質ごとに異なる。
この研究では、抗体のように大量の蛋白質を合成するにはコドン利用に秘密があるのではと考え、T細胞受容体と、抗体のコドン利用バイアスを調べると、マウスでもヒトでも抗体定常部位遺伝子では強いバイアスが存在することを発見する。例えばスレオニンで見るとACCが他のコドンより圧倒的に多い。
では、このコドンバイアスに対応するよう tRNAのレパートリーが B細胞で変化しているかを調べると、他の細胞と特に変わらない。tRNAの量が変化しないと、ここで合成のボトルネックが生じて、大量合成は難しいはずで、何らかの方法で解決していることが想像できる。
これを解消する手段として知られているのが、tRNAのアンチコドンの3番目の塩基を修飾する方法で、Wobble位修飾と呼ばれている。調べてみると、抗体を合成している細胞ではアデニンのアミノ基を除去してイノシンに変える修飾が起こった tRNAが多く存在し、これにより元々はC以外のコドンに対応していた tRNAもWobble位のCに対して利用できるようになる。
実際にイノシンへ変化させる修飾が蛋白合成に影響しているかについては、蛍光分子の遺伝子のコドン利用に抗体遺伝子と同じようなバイアスをかけて、B細胞ではコドンバイアスがある分子の翻訳効率が上がることを確認している。
この修飾に関わるデアミナーゼAdat2はB細胞分化で発現が上昇することから、B細胞が抗体を大量に分泌するように変化していくときの必須条件であることがわかる。事実 Adat2が欠損するとB細胞はほとんど消失する。
最後にさらに面白い問題も検討している。すなわち、抗体の定常部位に比して、変異が蓄積する可変部位の遺伝子では、コドンバイアスが解消されてしまうはずで、そうすると今度は逆に可変部分の合成効率が tRNA修飾のため低下することになる。実際に可変部分のコドンバイアスを代えたトランスジェニックマウスを用いて調べると、修飾 tRNAの利用しやすい可変部配列を持った抗体が優勢になることを示している。B細胞は、翻訳された抗体分子を分化のチェックポイントに使うので、分化に応じてAdat2を発現し、バイアスのある抗体遺伝子をより高い確率で利用するよう出来ていることがわかる。
以上が結果で、tRNAの修飾の機能がよくわかる目からうろこの論文で、今年最初の頭の洗濯が出来た面白い論文だった。当然抗体薬を大量合成にも重要な発見であること間違いない。脳だけでなく、デコード過程の進化は面白い。
32
1:T細胞受容体と、抗体コドン利用バイアスを調べると、マウスでもヒトでも抗体定常部位遺伝子では強いバイアスが存在することを発見する。
2:例えばスレオニンで見るとACCが他のコドンより圧倒的に多い。
Imp:
アミノ酸とコドン対応の重複の背後にある秘密。
タンパク質合成効率up課題への‘進化`による解答!?