解読されたヒトゲノムの数は指数関数的に高まっており、最近では10万人以上を対象としたゲノム研究も珍しくなくなった。この背景には、long-read のようなハードウエアの発展だけでなく、大規模データ処理の様々な方法が次々と開発されてきたことが大きい。データ処理法の詳細をほとんど理解しない私にとって、この分野を理解するハードルは高くなったが、しかし詳細を飛ばして読んでいくと、ともかく面白い分野だと実感する。
今日紹介するスタンフォード大学からの論文は、データ処理の中でも最難関の short-read データからゲノム上の複雑な構造変化を特定する方法を開発し、複雑な構造変化を大きな集団で調べることで、人間進化から病気に至るまで様々なことを理解できることを示した研究で、9月30日 Cell にオンライン掲載された。タイトルは「Detection and analysis of complex structural variation in human genomes across populations and in brains of donors with psychiatric disorders(複雑なゲノム構造多様性を多くの人間集団と、精神疾患の脳で検出し解析する)」だ。
ゲノム上の重複、転座、欠失、挿入などは構造変異として、点突然変異から区別されるが、大きな領域に及ぶので、染色体を完全再構成する必要があり、困難な課題だったが、情報科学の進展により様々なタイプの構造変異が特定できるようになっている。この研究では構造変異の中でも、一つのストレッチの中のゲノム部分が切れて入れ替わったり、さらに重複や欠損が繰り返されたりした複雑な構造変異 (cxSV) を特定するための、生成AIモデル ARC-SV を開発している。
この方法のパーフォーマンスを検証したあと、4363人の世界中のゲノムを解析し、8493種類の cxSV を特定し、それぞれを分類、解析している。
cxSV は頻度が高い common cxSV とまれにしか存在しない rare cxSV に分けられ、rare cxSV の8割以上が一人の個人だけに存在する。このうち common cxSV はその集団の体脂肪や血液浸透圧に関わる集団の特異性を決める遺伝子と連関している。
一方、rare cvSV は重なる遺伝子に強い影響があるため、選択されてしまい集団内でほとんど維持できない。
cxSV が起こりやすいゲノム領域を調べると、これまで DNA 切断が起こりやすいホットスポットと強く連関している。これほど複雑な構造変異には何回も DNA 切断が必要なことを考えると当然だと思う。
これまでゲノム構造変異は進化への貢献度が大きいことが知られている。そこで、ボノボと人間で大きく変化した領域と、cxSV が起こる領域を比べると、特に rare cxSV が人間独自の進化を遂げた領域と重なる。cxSV 自身は生存可能性を低下させる変異が多いが、しかしこのような変化が人間独自の進化を促進してきた。
最後に、双極性障害や統合失調症の脳のゲノムから cxSV を抽出すると、特に rare cxSV はシナプス接合や神経投射に関わる遺伝子と重なる。一方、common cxSV ではこのような神経特異的な相関は見られない。そして、保存されている精神疾患の患者さんの脳から単一核を取り出し、single cell RNA sequencing や ATAC-seq を行って、cxSV の影響を調べると、精神疾患特異的 rare cxSV の多くが様々な形で、重なる遺伝子発現を低下させることを明らかにしている。
以上が結果で、最も進化の推進役となる、変異が起こりやすい場所で起こる複雑な変異が、人間への進化を推進するだけでなく、人間の精神の変化に大きく関わることがよくわかる面白い論文だ。おそらく、このような精神の多様性が、人間の進化を推進してきたのだろう。
1:ボノボと人間で大きく変化した領域と、cxSV が起こる領域を比べると、
2: rare cxSV が人間独自の進化を遂げた領域と重なる。
Imp:
マイクロRNAが転写される領域は、ジャンクDNAと呼ばれていた領域にもあるとか。
RNAを介した進化も興味深いです。