今日紹介するニューヨーク大学医学部からの論文は、ドライバー分子としては最も多くのガンで働いている変異型KRASが、増殖中の細胞で増加する翻訳が途中で止まったタンパク質によるストレスを解消するストレス顆粒形成のメカニズムについての研究で12月15日号のCellに掲載された。タイトルは「Mutant KRAS enhances tumor cell fitness by up-regulating stress granules(変異型KRASはストレス顆粒形成を高めて腫瘍の適応性を促進する)」だ。
翻訳が途中で止まってしまったタンパク質とmRNAを速やかに処理するために大きな複合体にするメカニズムだと考えられている。この研究では、ストレス顆粒が高まるガンがないか探索し、KRAS変異を持つガン特異的にストレス顆粒が見られることを発見している。そして、KRASの様々な変異体を使った実験から、ストレス顆粒は活性化されたKRASがRAF経路を介して誘導されることを突き止める。
この発見がこの研究のハイライトで、あとはKRAS下流のシグナルを一つ一つ検討し、KRAS活性化がRAF経路を介してプロスタグランジン合成に関わる分子の転写を上昇させ、これにより細胞内のプロスタグランジンが上昇すると、mRNAをリボゾームにリクルートして翻訳を開始するプロセスを調節している分子の一つelF4Aを不活性化し、ストレス顆粒を誘導するというシナリオを示している。
またプロスタグランジンを加えるとストレス顆粒が上昇し、またプロスタグランジン合成阻害剤でストレス顆粒形成が抑えられることを示してこのシナリオを確かめている。
最後に、ストレス顆粒合成とがんの関係を知るため、プロスタグランジン合成酵素の発現量で膵臓癌を分けて予後を調べ、合成酵素が高い患者さんでは予後が悪いことを示している。
話はこれだけで、正直物足りない。ガンでのストレス顆粒形成のメカニズムを明らかにできたことはわかるが、この経路ががん治療の結びつくかどうかを明らかにできていない。モデル実験でもいいから、プロスタグランジン合成阻害剤により、膵臓癌の治療成績が上がるかどうかを調べて欲しかった。決して難しい実験でない。がん患者さんの生存率とストレス顆粒を調べた結果も、これを標的にすることで治療法が改善するという期待を持たせるほどではない。
憎きKRASの弱点がわかったかと期待を持ったが、最後にがっかりしてしまった。