8月3日 スーパーエンハンサーの形成機構(7月27日号Science掲載論文)
AASJホームページ > 2018年 > 8月 > 3日

8月3日 スーパーエンハンサーの形成機構(7月27日号Science掲載論文)

2018年8月3日
SNSシェア
転写因子が結合するエンハンサーと呼ばれる領域が、それに結合する転写因子や様々なコファクターとともに、転写活性の高い大きな複合体を作っていることを示し、スーパーエンハンサーと呼んだのはRichard Youngだ。概念先行でデータに信頼性がないと厳しく評価する研究者も多いが、しかし彼の提唱する概念はなかなか本質をついていて、理解を深める助けになるので、私はいつも学ぶところが多い。

そのYoungの研究室からスーパーエンハンサーが大きな複合体を形成して広いゲノム領域を1箇所に集めるときの化学的メカニズムを調べた論文が7月23日号のScienceに掲載された。タイトルは「Coactivator condensation at super-enhancers links phase separation and gene control (スーパーエンハンサーでのコアクチベーターの濃縮が相分離と遺伝子調節を結びつける)」だ。

これまでYoungらが示してきたように、確かに多くのエンハンサー部分が結合する転写因子とともに集合して、発生やガンでの形質変化に重要な働きをしていることはわかるが、核の中でこのような構造が形成される化学的基盤については確かによくわからなかった。最近になって、例えばアミロイド沈着など、化学でいう液体の相分離により分子が強く濃縮できることを示す研究が相次いでいるが、Youngたちはエンハンサーに集まる転写因子をはじめとする多くの分子が相分離を起こすことで、分子が濃縮した構造ができ、この相分離の主役がスーパーエンハンサーに多く集まるコアクチベーターBRD4とMED1分子だと考えた。

そこでまず、ES細胞の核内でスーパーエンハンサーを形成しているNanog遺伝子領域にBRD4とMED1が点状に集まっていることを確認し、BRD4とMED1が分子集合形成の核になっていることを示している。そしてこのBRD4とMED1の集合が、液体が濃縮して周りから相分離した化学性質をもっていることを、蛍光たんぱく質と結合させたBRD4がエンハンサー上でダイナミックに動いていることを、蛍光をブリーチしてからのATP依存性回復を調べるプロの方法で示している。また、分子同士の疎水性結合を阻害すると、この集合が壊れることから、確かにダイナミックな濃縮液相が形成されていることを明らかにした。

このように疎水性の結合を基盤に液相分離が起こるのなら、BRD4,MED1分子内にこの相分離をガイドする結合領域が存在するはずで、この2つの分子には長いintrinsically disordered region(IDR:分子の中に構造化されないでフラフラしている領域)が存在し、IDRだけを取り出して蛍光タンパク質に結合させたキメラ分子は試験管内で相分離することを示し,IDRが分子の結合濃縮を媒介していることを明らかにしている。そして最後に、この相分離とともに他の転写因子が複合体の中に巻き込まれることを示して、この2つの分子が液体として相分離して核を作り、エンハンサーと結合した転写因子が巻き込まれてスーパーエンハンサーが形成されるというシナリオを提案している。 これまで分子が静的に集まった構造物がをスーパーエンハンサーとして頭の中に描いていたが、この研究のおかげでこの構造物がダイナミックに動き出した。
カテゴリ:論文ウォッチ