自閉症の科学2 遺伝的自閉症の治療可能性
AASJホームページ > 新着情報 > 自閉症の科学(連載)

自閉症の科学2 遺伝的自閉症の治療可能性

2019年8月15日

今日は、原因となる遺伝子が特定されている自閉症スペクトラム(ASD)の一つ、FragileX症候群の発症メカニズムと治療可能性を示したマサチューセッツ工科大学からの論文を核に、遺伝子が特定されているASDと遺伝子治療の可能性についてまとめてみた。少し難解とは思うが、我慢して読んでいただきたい。

遺伝子が特定されている自閉症

自閉症は、一卵性双生児での発症の一致率が高く、遺伝性があることは間違いがない。しかしこれまで強くASDと関係があることが示された遺伝子は100種類近くに上り、また弱い相関は倍以上の遺伝子で見つかっている。個々の例は、これら何十もの遺伝子の小さな違いが組み合わさって発症に関わっていると考えられる。

私たちの脳の回路の複雑さを考えるとこれは当然のことで、ASDは様々な遺伝子の小さな変化の組み合わせで起こってくると考えて貰えばいい。

それでも、特定の遺伝子の突然変異で、発生過程の大きな変化が起こってしまい、その結果としてASDが起こる場合がある。このうち最も研究が進んでいるのが、Fragile X、Rett症候群、MECP2重複症で、ASD発症までのメカニズムの理解も進んでいる。

これらの病気については今後おいおい紹介するとして、今日焦点を当てるのはFragile X症候群だ。

Fragile X症候群

X染色体上にあるFMR1遺伝子の変異により起こるのがFragile X症候群(FXS)で、男児のみ知的障害など、精神・身体的多様な症状を示す遺伝病だ。全員にASDが見られるわけではなく、おおよそ1/3の子供にASD症状がみられる。FXSは決してまれな疾患ではなく、約3000人の男児に一人の頻度で起こる病気だ。

FXSの遺伝的変異は、FMR1遺伝子のRNAが読み始められるポイントの少し上流にある通常5-40個のCGG繰り返し配列の数が増え、55-200個になるという不思議な変異だ。そしてCGGの繰り返し配列が増えることで、正常なFMR1遺伝子は存在しているのに機能を失い、結局遺伝子がなくなったのと同じことになる。

FMR1遺伝子がないと、神経間の伝達がうまく調整できず、発生から発達時期の脳回路の形成がうまくいかないため、知能障害やASD症状が生まれる。

iPSとクリスパー技術を使ったFXSの発症メカニズムの解明についての新しい論文

なぜCGGの長い繰り返し配列ができてしまうと、遺伝子からRNAができなくなるのかを明らかにすることが、発症メカニズムの解明と治療法の開発に必要になる。今日紹介するマサチューセッツ工科大学(MIT)からの論文はこの問題を患者さんのiPSと現在最も注目を集めているクリスパー遺伝子編集技術を用いて解明することに成功した(Liu et al Cell in press, 2018:https://doi.org/10.1016/j.cell.2018.01.012)。

遺伝子の機能を抑えるDNAメチル化

この論文を理解するには、まずDNAメチル化について勉強しておく必要がある。染色体上には多くのCG(シトシン、グアニン)塩基が繰り返す場所があり、しばしばこの中のシトシンにメチル基が添加されている。特にCG配列が繰り返す領域は強くメチル化されていることが多い。そしてメチル化された塩基の密度が高まっている領域では、遺伝子の機能が抑えられることが多い。

FXS患者さんではFMR1遺伝子のCGGの繰り返しが200にも及ぶため、これがメチル化されると、FMR1遺伝子の機能を抑えてしまうことになる。

クリスパー技術を用いてFMR1遺伝子からメチル基を除去する

患者さんのFMR1遺伝子のCGG繰り返し領域は強くメチル化されている。しかし、このせいで遺伝子の機能が抑えられていると結論するためにはこの領域のメチル基を除去して、遺伝子の機能が回復できるか調べる必要がある。

この課題をクリスパー技術を用いて解決したのが今回の論文だ。しかし、クリスパーは遺伝子編集の方法ではなかったか?

クリスパーが遺伝子編集と言われるのは、特定の配列に結合したガイドRNAを指標にリクルートされてきたCas9が、遺伝子を切断してくれるからだ。これにより遺伝子をノックアウトしたり、あるいは他の遺伝子断片を切断した場所に挿入することができる。

しかしこのシステムの素晴らしいのは、ガイドRNAを認識するCas9かそれに相当する分子さえあれば、どんな酵素も染色体の思った場所に連れてくることができる点だ。例えば、Cas9のDNA切断能力を除去して、代わりに蛍光タンパク質をつなげた分子を用いると、生きた細胞の染色体上の特定の遺伝子を光らせて追いかけることができる。

この原理で、DNA切断能力を除去したCas9にメチル化を除去するTet1と呼ばれるタンパク質を結合させると、TMR1遺伝子のCGG繰り返し配列に添加されたメチル基を外すことができる。

この研究では、FXS患者さんからiPSを作成し、この細胞に目的の場所を標識するガイドRNAとCas9-Tet1を導入することで、見事に遺伝子自体を全く変化させることなく、FMR1のCGG繰り返し配列のメチル基を外し、遺伝子の機能を復元することに成功している。この結果、FMR1遺伝子は活動を始め、正常な神経細胞に分化することができる。

以上の結果から、FXSの変異でなぜFMR1遺伝子の機能がなくなるのか、またそれを治療するにはどうすればいいのかの方法が確立された。

ASDの遺伝子治療

この研究については、専門的になるのでこれ以上説明は控える。

ただ、この研究もそうだが、単一の遺伝子変異によるASDや知能障害の研究が進むことで、発達時期の遺伝子治療により、様々な障害を改善できることが示されている。今回の研究で、FXSの根本的遺伝子治療法の可能性が示されたが、クリスパーを使わなくとも、FMR1遺伝子を脳内に注射するより簡単な方法でも治療できる可能性は高い。

同じようにMECP2遺伝子が欠損しているRett症候群や、逆に多すぎるMECP2重複症でも、動物モデルを用いた遺伝子治療の前臨床研究は成功しており、患者さんや家族から大きな期待が集まっている。

しかし、このような治療は患者さんの数が少ないことから、可能性がわかっても企業が手を出しにくい分野だ。従って、公的なベクター(遺伝子の運び屋)施設などを整備し、少数の患者さんに対応する体制をとることは、少子化が進むわが国の成育医療の重要な課題になると思っている。実際、このような計画を政府は準備しているという話を耳にする。一刻も早く実現することを期待するとともに、患者さんたちとともに、全面的に支援して行こうと思っている。

自閉症の科学1:自閉症と小脳

2019年8月14日

多くの自閉症で小脳と大脳皮質の回路に変化が見られる

小脳と聞くと、運動の制御や学習にかかわる中枢だと思い込んでいることが多い、しかし小脳が障害された方の中に、言語や性格障害を示すケースが発見され、大脳皮質とネットワークを形成して運動以外の大脳の高次認識機構を支える重要な領域だと考えられるようになった。

その後MRIを用いた検査が普及すると、小脳の体積の増加、灰白質の減少などの小脳の変化が自閉症の人に高い頻度で見られることがわかり、自閉症諸症状に対する小脳、特に小脳皮質の関与が注目され始めた。これを裏付けるように、2012年Tsaiらが、小脳のプルキンエ細胞でTsc1遺伝子がノックアウトされたマウスでは(分子メカニズムの説明は省く)、プルキンエ細胞の代謝活性が上昇し、行動学的には社会性の低下や反復行動などの自閉症様症状が現れるという驚くべき論文を発表したことで、小脳は一躍自閉症研究の主役に躍り出た。

自閉症様症状への小脳皮質の関与を直接調べた研究が発表された

もちろんモデルマウスの結果がそのまま人間に当てはまるわけではない。これを示すためには、人間とマウスで同じ回路を操作して効果を比べる必要がある。もちろん、人間の脳に電極を刺すなどもってのほかで、切ったり刺したりすることなく、小脳皮質の操作や記録が必要だ。

Tsc1ノックアウトマウスの論文を出版してから5年、Tsaiのグループはこの課題にチャレンジし、ついに自閉症スペクトラムに対する小脳の関わりを、マウスと人で比べる実験を12月号のNature Neuroscienceに発表した(Stoodley et al, Altered cerebellar connectivity in autism and cerebellar medicated rescue of autism-related behaviors in mice(自閉症で見られる小脳の神経結合性の変化と、小脳を介するマウスの自閉症様治療)、Nature Neuroscience, 20:1744,2017)。

実験の概要

研究ではまず、正常人34人について右側の小脳皮質(CrusIと呼ばれる部位)と機能的に結合している脳領域を調べ、これまでの研究で自閉症との関わりが指摘されている神経ネットワークとの結合があることを確認している。この研究では、何もせずにボーとしている時に活動している大脳の領域、IPLに存在するdefault-mode-networkと呼ばれる回路との結合に特に焦点を当てている。

結合が確認されると、この結合性を操作できるかが次の問題だ。この研究では右側の小脳皮質を頭蓋の外に直接電流を流す方法(anodal tDCSと呼ばれている)で刺激し、小脳皮質とIPLの結合性が低下することを見出している。しかし、人間でできる実験はここまでだ。マウスを用いて、小脳皮質のニューロン(プルキンエ細胞:PN)を抑制してIPLの反応を調べ、マウスでも人間と同じように小脳とIPL回路に結合があることを確認している。そしてこの回路を遺伝子操作を用いて刺激・抑制する実験を行い、プルキンエ細胞がIPLを抑制的に支配していることを実験的に明らかにしている。

この結果に基づきプルキンエ細胞でTsc1をノックアウトした自閉症モデルマウスを調べなおすと、予想どおりプルキンエ細胞の活動が上がり小脳皮質とIPLの結合が上昇している。さらに、自閉症の患者さんのMRI検査でも小脳皮質とIPLの結合が上昇していることを確認し、この回路に関する限り、人間とマウスの自閉症がほとんど同じことを示している。

最後にもう一度マウスモデルに戻り、正常マウスのプルキンエ細胞を操作してIPLとの結合を高めると、自閉症症状が現れること、逆に自閉症モデルマウスでこの回路の結合性を低下させると、反復行動は正常化しないが、社会性は正常に戻ることを示している。

感想

結果をまとめると、右小脳皮質とIPLの結合性が高まり、IPLの活動が抑制されることが、少なくとも自閉症で見られる社会性の低下などの症状の原因であることが明らかになったと思う。個人的理解だが、社会的な行動に重要なIPLを抑える小脳からの抑制回路がなぜか発達してしまったのが自閉症の一つの原因で、この回路を抑えることで、IPLの活動を回復させられると解釈している。実際マウスを用いた実験で、この結合性を低下させることで自閉症症状を改善できることを示しているし、人間でもこの回路は、頭蓋の外側から電流を流すことで操作できることも示している。もちろん先は長いと思うが、将来右小脳皮質への電磁場照射による自閉症の治療が可能かもしれないと期待する。もちろん頭蓋の外からとはいえ、脳操作が必要になる。その時は、焦らず注意深い治験を計画してほしい。

Yahooニュースに書いていた「自閉症の科学」はAASJのホームページに引っ越してきます。

2019年8月13日

唐突ですが、8月より、Yahoo ニュース個人への執筆をやめることにしました、そこでこのサイトに連載していた自閉症の科学は、AASJのホームページに書いていきます。と同時に、これまで書きためてきた記事も、こちらに移して、皆さんがまとめて読める様にしますので、よろしく。