5月26日 ヨーロッパの海の民成立過程(5月18日 Cell オンライン掲載論文)
AASJホームページ > 新着情報 > 論文ウォッチ

5月26日 ヨーロッパの海の民成立過程(5月18日 Cell オンライン掲載論文)

2022年5月26日
SNSシェア

以前、金沢大学とダブリン大学から発表された、日本人ゲノム成立過程についての論文で、古墳時代のゲノムから、弥生以降も大陸からのゲノム流入が大きな役割を果たしているという論文を紹介した時、上野さんから、サンプルによって異なっており弥生がそのまま続いて現在に至るケースもある、という指摘をいただいた。すなわち、日本もそれぞれの地域についての研究が必要で、これにより古代の人の移動や交流を調べることが出来る。是非、多くの若者が、この課題に取り組み、新しい日本史を書いて欲しいと期待している。

実際、ヨーロッパについては新石器時代から青銅器時代に書けて、民族の移動と交雑により、大きなゲノムの変化がもたらされたことがわかっているが、各地域のゲノム研究から、移動や交流の道が明らかにされてきている。

今日紹介するデンマーク・コペンハーゲン大学と、アイルランドのダブリントリニティーカレッジからの論文はイタリア半島の沖に位置するマルタ島の新石器時代の遺跡から出土したヒトDNA を解析し、当時の海の道の存在を探った研究で、5月18日 Cell にオンライン掲載された。タイトルは「Ancient Maltese genomes and the genetic geography of Neolithic Europe(古代マルタ島人ゲノムと新石器時代ヨーロッパの遺伝的地理学)」だ。

さてこの研究の対象になっているマルタ島だが、ヨーロッパ本土とは海で隔てられており、人類が居住するようになったのも新しい島で、ヤムナ文化やアナトリアの農耕民の影響が少ないと考えられる。

また、マルタ島も海洋民族になるが、海洋民族としてイギリス、サルディニア、シチリアなど他の海洋民族との交流が古くから盛んだったのか、逆に海は交流を阻む壁の役割をしただけなのかも興味の焦点になっている。

今回マルタ島 Gozo 島の Xaghra 遺跡から出土した9体の骨から、DNA を抽出、2体については、ほぼ全ゲノムをカバーできるデータを得て、ゲノムの成り立ちを調べている。結果だが、

  1. 詳しく調べられた3体は、ROH と呼ばれる、相同ゲノムの長いストレッチを保有しており、これまでヨーロッパで出土したゲノムの ROH の長いトップ10に含まれる。特に1体は、おそらく近親交雑によると考えられる。
  2. ゲノム間の多様性や、先祖の数を調べるテストにより、当時のマルタ住民数は極端に少なく、一時は全員で300人以下という状況に陥っていたことがわかる。これがおそらく ROH が高い原因になっている。
  3. ヨーロッパ人のゲノムは、最初の人類である狩猟採取民ゲノムに、現ウクライナ近くのヤムナ民族移動に伴って流入したステップゲノム、そして現トルコであるアナトリアの農耕民族から流入したアナトリアゲノムから構成されているが、マルタゲノムは後者のゲノムの流入がほとんどなく、大陸から孤立して存在していたことがわかる。
  4. 大陸だけでなく、他の海洋民族ともほぼ完全に分離されていることから、それぞれの島に移住した人類は、海に隔てられ孤立した進化を遂げた。
  5. 全ヨーロッパの海洋民族を調べると、それぞれの間での交流は盛んでなく、海の民で有ることが積極的な役割を果たすことはなく、基本的に海により孤立した発展を遂げた。

以上が結果で、読めばなるほどで終わるのだが、このような論文を読むにつけ、我が国のゲノム構成の歴史を文化と照らし合わせることが何時出来るようになるのか、いつも心が騒いでしまう。

カテゴリ:論文ウォッチ

5月25日 ヒトグリア細胞分化の多様性:ヒト胎児脳スライスでここまで出来る(5月19日 Science オンライン掲載論文)

2022年5月25日
SNSシェア

脳細胞を考える時、私たちは単純に興奮神経、抑制性神経、アストロサイト、オリゴデンドロサイト、そしてミクログリアから出来ていると単純化して考えている。特に、神経を支える側のグリア細胞については、多様性について考えることはほとんどない。しかし、様々な疾患でのアストロサイトの役割が明らかになるにつれ、その機能の多様性に注目が集まっている。

今日紹介するカリフォルニア大学サンフランシスコ校からの論文は人間の胎児皮質スライス培養を用いてグリア細胞の多様性を発生学的に明らかにした研究で、ヒトでもここまで出来るのかと驚いて読んだ。タイトルは「Fate mapping of neural stem cell niches reveals distinct origins of human cortical astrocytes(神経幹細胞ニッチの運命マッピングは人間の皮質アストロサイトの異なる起源を明らかにした)」だ。

研究自体は単純で、18−23週目のヒト胎児の皮質を切り出し、2週間程度培養し、その間に標識遺伝子をアデノウイルスで幹細胞に導入、その後のコースを追跡している。切り出した脳スライスをどこまで正常発生と同じと考えるかは問題になるにせよ、新鮮な脳を集めるだけでも大変なはずで、ともかくやり遂げたことに感心する。

神経細胞が subventricular zone(脳室下帯)と呼ばれる場所に存在する幹細胞が分化しながら radial glia(放線状グリア細胞)をたどって移動することで、美しい層構造が形成されることは、教科書的事実として認められている。一方、radial glia も含めアストロサイトやオリゴデンドロサイトなどのグリア細胞が、神経幹細胞から由来することは描かれていても、その後の分化についてはあまり知られていないように思う。

この研究では、まず、ヒト胎児皮質の ventricular zone (VZ) とその上の subventricular zone (SVZ) に分けて、幹細胞をラベルし、その後の運命を調べている。そして、少なくともヒトのこの時期では、SVZだけでなく、VZ 細胞を標識しても、神経やグリア細胞をラベルで着ることを確認している。

ヒト胎児では VZ にも幹細胞が存在することは重要な結果だが、VZ 標識と SVZ 標識でラベルされる細胞の性質が大きく異なっていることが初めて発見された。

まず、radial glia 細胞には長い突起を一方向に伸ばしたタイプと、双方向に突起を伸ばしたタイプの2種類が存在するが、VZ からは後者のみ、SVZ からは前者のみが発生することがわかった。

さらに驚くことに、標識された神経細胞は脳の全ての層に分布するのだが、アストロサイトを調べると、もともと幹細胞起源と言われていた SVZ 起源のものは、AVZ とその上の subplate にだけ分布し、一方 VZ 起源のアストロサイトは脳の全ての層に分布することが明らかになった。

そして、これらの起源の異なるアストロサイトは、形態的にも、分子発現的にも区別が可能で、例えばグリオーマで発現が高いインテグリン β4 などは、VZ 由来のグリア細胞だけで発現していることを示している。

結果は以上で、この差が脳の発生や機能とどう関わるかはわからない。しかし、人間を用いた研究から、マウスでは指摘されないことがここまでわかるというのは驚きで、胎児脳を用いた研究に対して反対もあると思うが、その意義は大きいと思った。

カテゴリ:論文ウォッチ

5月24日 皮膚移植の瘢痕形成を抑制する(5月18日 Science Translational Medicine 掲載論文)

2022年5月24日
SNSシェア

やけどを始め様々な状況に皮膚移植が使われるようになっているが、損傷が大きい場合は利用できる皮膚片は皮下組織のあまり含まれていない薄い皮膚になるため、修復箇所に瘢痕形成が起こるのが問題で、特に修復箇所が引きつったように縮んでしまう。基本的には、いわゆる線維化の問題で、これまで多くの研究が行われているのだが、形成外科医の立場に立って臨床的な解決を探るといった研究はあまり行われておらず、結局この問題に対するFDAにより認められた治療法はない。

今日紹介するスタンフォード大学からの論文は、豚を使った皮膚移植モデルを用いて、修復後に進行する細胞プロセスをsingle cell RNAseqを用いて調べることで、線維化の引き金になる要因を特定し、それを治療する方法の開発を目指した前臨床研究で、5月18日号 Science Translational Medicine に掲載された。タイトルは「Disrupting mechanotransduction decreases fibrosis and contracture in split-thickness skin grafting(メカノシグナルを抑制することでsplitthickness皮膚移植での線維化と組織の収縮を抑えることが出来る)」だ。

研究自体は特に目新しさはない。しかし、豚の皮膚を大きく切除して、そこに自己の皮膚を移植するというまさに実際に行われている臨床に即した実験系を用いて修復過程を追跡していることが、最大の特徴だ。特に純系の実験動物でなくても、single cell RNAseq(scRNAseq) を用いることで、そこで起こっている分子過程を追跡できるようになったおかげで、このような実験が容易になっている。

タイトルで splitthickness 途あるのは分層植皮と呼ばれる方法のことで、皮膚の上層のみを採取して移植する方法を意味している。

さて、移植後の経過を追うと、白血球、線維芽細胞で大きな遺伝子発現の変化が見られ、特にメカノシグナルと呼ばれる機械的な刺激による遺伝子発現が高まっていることがわかった。そこで、メカノセンサーに関わる FAK 阻害剤が徐放されるように設計したジェルとともに皮膚移植を行うと、外見的にも、組織学的にも瘢痕の少ない皮膚が再生される。

臨床応用へ向けた前臨床研究とすれば、これで終わりなのだが、このグループはさらにメカニズムを追求するために、阻害剤を加えた皮膚移植による修復と、加えない場合の修復を比較し、メカノセンサー阻害がどのように作用しているのか詳しく調べている。

結果、意外なことに、この効果はまず白血球に現れ、炎症を抑える方向で働くことを示している。その後、線維芽細胞でもメカノシグナルが発生し線維化や形質転換が起こるが、阻害剤はここでも効果を現し、線維芽細胞の暴走を抑えていることを明らかにしている。

最後に、試験管内培養システムで、人間の線維芽細胞のメカノシグナルを、FAK 阻害剤で抑えられることも確認し、最終的な応用への布石を打っている。

以上が結果で、実際の臨床セッティングに併せて実験が行われた結果、メカノシグナルが2段階にわたって、まず白血球、そして線維芽細胞に働いていることを明らかにしている。繰り返すが、このような臨床に即した研究が可能になったのはなんといっても scRNAseq のおかげだと思う。この方法を知ったときに予想したように scRNAseq の臨床応用は大きく広がり続けている。

カテゴリ:論文ウォッチ

5月23日 妊娠中の高血糖が子供の糖尿病を誘発するメカニズム(5月18日号 Nature オンライン掲載論文)

2022年5月23日
SNSシェア

戦争は否応なく全ての住民の日常性を奪う。これは精神だけでなく、代謝においても同じだ。最も有名な例が、オランダ飢餓研究で、1944年の冬、ドイツ軍の封鎖により飢餓に襲われたアムステルダムの妊婦さんから生まれた子供が、中年に達してインシュリン分泌能が低下し、糖尿病リスクが高まることがわかった。同じように、妊娠中の代謝異常が子供のエピジェネティック変化を誘導する例は、逆の高脂血症や、高血糖でも報告されている。

今日紹介する中国浙江大学委学院からの論文はマウスを用いて妊娠中の高血糖から子供のインシュリン分泌不全までの分子過程を明らかにした研究で5月18日 Nature にオンライン掲載された。タイトルは「Maternal inheritance of glucose intolerance via oocyte TET3 insufficiency(母親から受け取ったグルコース不寛容は卵子の TET3 不足に起因する)」だ。

基本的にはマウスを用いた研究で、膵島を傷害して高血糖を発生させた母親の卵子を人工授精し、正常の母親に移植して、生まれてきた子供のグルコース代謝を調べている。従って、妊娠前の卵子に起こるエピジェネティックな変化を調べる実験と言える。結果は期待通りで、高血糖を経験した卵子から生まれた子供は、インシュリン分泌の低下による高血糖になる。

このように高血糖の卵子への影響に絞ることで、エピジェネティック調節因子の特定が容易になり、最終的にメチル化 DNA をハイドロオキシ化して脱メチル化に働く Tet3 の発現量が、高血糖により低下することを発見する。

高グルコースによる Tet3 の低下は試験管内でも再現できるし、また生殖補助医療で採取した卵子のドナーが糖尿病に罹患している場合も、Tet3 の低下が見られることから、ヒトでも同じエピジェネティック変化が起こることを示唆している。そして、おそらくこの効果として、インシュリン分泌経路に関わる多くの遺伝子で DNA メチル化が高まっていることを示している。

このメチル化変化が実際に Tet3 低下によるエピジェネティックな変化稼働か確かめるため、Tet3 遺伝子を卵子からノックアウトする実験により調べ、インシュリン分泌経路にある多くの遺伝子のプロモーターのメチル化が高まっていること、またその中でも膵臓のグルコースセンサーとして重要なグルコキナーゼ遺伝子プロモーターが、Tet3 の低下量に応じてメチル化が高まることを示している。

また、高グルコースを経験した卵子に Tet3 mRNA を注入すると、メチル化は正常化し、生まれた子供のインシュリン分泌能も上昇することから、Tet3 が卵子で起こるエピジェネティック変化の主要因であると結論している。

これまで、卵子のエピジェネティック変化についての論文は多く発表されているが、私が読んだ中ではメカニズムをここまではっきりさせたのは、この研究が最初だ。しかし、まだまだわからないことは多い。幸いこの系は、受精前の卵子に焦点を当てた研究なので、おそらく他の要因の影響も同じようにして調べることが出来るはずだ。研究の進展を期待する。

カテゴリ:論文ウォッチ

5月22日 網膜移植は可能か?(5月11日 Nature オンライン掲載論文)

2022年5月22日
SNSシェア

様々な臓器や細胞移植が可能になっているが、これまで死体からの神経組織の移植はほとんど試みられていない。これは、脳卒中でもわかるように、虚血になると神経細胞は急速に死んでしまうからで、その意味で ES、iPS など幹細胞技術への期待は大きい。

ところが、今日紹介ユタ大学からの論文からわかるように、神経細胞の塊ともいえる網膜組織を移植や実験に使うための方法を探っているグループがいることを知って驚いた。タイトルは「Revival of light signalling in the postmortem mouse and human retina(マウスおよび人間の死後に光シグナルをよみがえらせる)」だ。

これまでの研究や卒中での経験は、心停止後の神経細胞は急速に機能を失うことを示している。確かに、脳のスライス培養を行うことは出来るが、これもフレッシュな組織の話で、死後一定の時間が経つことが避けられない移植セッティングで、この可能性を追求するとは無謀だというのがタイトルを見たときの印象だった。

おそらくよほどの秘密を発見したのだろうと本文を読むと、最初から腰を折るようで申し訳ないが、何か新しい神経臓器の再生法を発見したわけではない。ただ、条件さえそろえば、使用を諦めることはないというのが結論になっている。正直、よく Nature に掲載できたなというのが率直な印象だが、諦めないことが評価されたのかもしれない。

実験は簡単で、マウスと人間で、死後の網膜視細胞の光に対する反応を、生体内、試験管内と様々な方法で検出し、機能が残っているのかどうか調べている。

実際マウスを頸椎脱臼で屠殺した後、光に対する反応を見ると、生体内でも、眼球摘出でも数分後に反応はほとんど消失する。ただ、取り出した眼球での視細胞の反応がほんの少し残っていることを確認して、このグループは諦める必要がないと確信した。

そしてこのとき神経機能が失われる原因が細胞死ではないこと、グルタミンの喪失など様々な機能ロスによることを確認した後、低酸素とアシドーシスを抑えることで、神経機能を時間単位まで伸ばせることを示している。

これはマウスで行った結果で、これをトランスレートするため、心臓死後の眼球提供の機会を用いて、眼球を保存するためのシステムを開発し、人間の網膜について調べている。実際には、黄斑と網膜周辺から組織を取り出し、錐体細胞と桿体細胞の光に対する反応を別々に調べている。特に視神経が集まる黄斑部については、桿体細胞の方が保存がよいということはあるが、周辺部では両方とも、十分実用レベルに保存が出来ることを示している。

以上が結果で、角膜移植のセッティングで得られる眼球の、網膜疾患への細胞治療に使うことは諦めることはないという結論だ。

先に述べたように、諦めずに再検討したら道が開けるという結論は、最も Nature らしくない論文だが、死体眼球からの角膜移植の普及した国では、大きなインパクトがあるのかもしれない。またひょっとしたら、脊髄や脳までこの方向性が広がるかもしれない。

そこで最後に想像を膨らませてみた。神経興奮により起こる早い転写反応を調べることが出来るので、死後網膜の反応地図を調べることが出来れば、SF でよくある死の瞬間に網膜に焼き付いた像を再現できるかもしれない。そんなことを考えながら、「諦めない」論文を読んだ。

カテゴリ:論文ウォッチ

5月21日 MIF 阻害剤は神経変性性疾患治療のゲームチェンジャーになるかもしれない(5月26日号 Cell 掲載論文)

2022年5月21日
SNSシェア

神経変性疾患を誘導する引き金は、それぞれの病気で様々で、パーキンソン病ではシヌクレイン、アルツハイマー病ではアミロイドβ だが、その後の細胞死が起こる過程では、共通の過程の存在が最近明らかになってきた。中でも注目されているのが、ミトコンドリアからの活性酸素により起こるDNAダメージを引き金に遊離される Poly-ADP リボース (PAR) による細胞死で、他の細胞死と区別して Parthanatos と呼ばれている。

この発見が重要なのは、Parthanatos が関わる神経疾患での細胞死を抑制して、病気の進行を遅らせる方法が開発できる可能性がある点だ。例えば、PAR を合成する PAR ポリメラーゼの活性化を阻害すると、神経変性は抑制できることがわかっている。しかし、PAR ポリメラーゼは生命必須の分子で、治療標的には適さない。

今日紹介するジョンズホプキンス医科大学からの論文は PAR が核内から遊離した後の過程をパーキンソン病 (PD) モデルで再検討して、神経変性疾患を抑える新しい薬剤開発が可能であることを示した重要な研究で5月26日号 Cell に掲載された。タイトルは「PAAN/MIF nuclease inhibition prevents neurodegeneration in Parkinson’s disease( PAAN/MIF ヌクレアーゼの阻害はパーキンソン病での神経変性を抑制する)」だ。

この分野の進展は極めてホットで一度 PD の患者さんとジャーナルクラブでまとめてみたいと考えているが、この結果 PAR による Parthanatos のメカニズムが明らかになってきた。論文紹介前にこのメカニズムを解説すると、DNA ダメージなどで PAR が合成され、核から遊離されると、ミトコンドリア膜上の apoptosis inducing factor (AIF) と結合、これが細胞質内の MIF と結合すると、PAR は遊離して核内へ移行、そこで DNA を切断し、Panatosis を誘導する。

この研究の目的は、AIF と MIF が結合して生まれる DNA 切断活性を標的に薬剤開発の可能性を探っている。免疫学者には、MIF はマクロファージ遊走を阻害する因子で、炎症にとって重要な分子として知られているが、実際には細胞質内に存在して、ヌクレアーゼ活性を持っていることが知られている。研究では、1) MIF ノックアウト動物や細胞を用いて、シヌクレインにより誘導される神経変性が MIF に依存していること。

2)この過程には、MIF の AIF 結合活性とMIF のヌクレアーゼ活性が必須で、マクロファージ遊走阻害活性は必要ないこと。

を明らかにした後、MIF のヌクレアーゼ活性を検出する試験管内のアッセイ法を用いて、阻害剤をスクリーニングし、C8 と呼ばれる阻害剤をまず同定している。

C8 は試験管内の Parthanatos を阻害することが出来るが、残念ながら脳血管関門を通り抜けられない。そこで、C8 アナログの中から脳血管関門を通過できる化合物、C8-31(PAANIB-1と名付けている)を開発した。

この分子は、例えば FK506 などとも良く似ているが、標的の重なりはなく、現在のところ MIF のヌクレアーゼ活性特異的で、しかもシヌクレインを注射して誘導されるドーパミン神経の変性を抑制することが出来る(8ヶ月にわたる長期実験)。また、5mg/Kgの経口投与で効果が得られることを示している。

以上が結果で、個人的な印象だが、神経変性を直接狙った画期的な薬剤開発の可能性が示された重要な論文だと思う。勿論、この薬剤はさらに至適化される必要があるだろう。これが可能になると、パーキンソン病だけでなく、アルツハイマー病や ALS 治療まで拡大できる可能性もある。期待が大きいので、一度患者さんとジャーナルクラブで取り上げることにする。

カテゴリ:論文ウォッチ

5月20日 ビオンテックとモデルナワクチンの差を詳細に調べてみる(5月18日号 Science Translational Medicine 掲載論文)

2022年5月20日
SNSシェア

今回のパンデミックでワクチンモダリティーとしての mRNA ワクチンの評価は定まった。またこれに集中してきたビオンテック、モデルナに何兆円ものキャッシュが流れたことで、感染症だけでなく、ガンワクチンなどの開発が急速に進むと期待できる。すなわち、今回のワクチン競争の結果、将来投資に大きな差がついたことは間違いない。さらに、ワクチンのフォーミュレーションは、配列を除くとほぼ同じなので、認可の仕組みもかなり変化する予感がする。実際、個人用ガンワクチンを考えると、製造過程に対して認可が行われ、それに従っておればプロダクト自体はそのまま認可するということが重要になる。

このように、医療の世界を大きく変化させた両社のワクチンだが、使われている遺伝子配列は、導入した変異も含めて同じだが、lipid nanoparticle のフォーミュレーション、注射量、そして注射間隔で異なっている。これまで、副反応の差については示されてきたが、効果についてはほぼ同じ有効性を持つというのが公式見解だった。

今日紹介するハーバード大学からの論文は、両者の差をもう一度詳しく調べ直した研究で、感染防御に関する差になったかどうかは別として、誘導される抗体には明確な差が存在することを明らかにした。タイトルは「mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions(mRNA-1273とBNT162b2ワクチンはFcを介するエフェクター機能の異なる抗体を誘導する)」だ。

タイトルの mRNA-1273 はモデルナ、BNT162b2 はビオンテックワクチンを指している。研究は特に変わったことを行っているわけではなく、私たちと同じプロトコルで2回ワクチン接種を受けた人の血清を採取し、抗体の特異性や、性質を調べているだけの研究だ。

また基本的にはこれまでのコンセンサスを覆すものではなく、感染者と比べても、mRNAワクチンはウイルスがホストに感染するときに必要な部位に対する抗体を誘導することが出来ている。ワクチン自体は武漢型配列を基盤にしており、両社で配列に差はないので、様々な変異株に対する反応も特に変わりはない。

ただ、クラススイッチの起こり方が異なる IgA および IgG2 の反応は、間違いなくモデルナワクチンが高い。また、抗体の Fc 部分の機能を反映する、白血球の貪食能誘導やNK細胞活性化で見ると、やはりモデルナワクチンが強く誘導される。感染防御には IgA が有効という話もあるので、この点ではモデルナが優れていると言えるかもしれない。

そして最も驚いたのが、誘導された抗体から、スパイクを介する感染に必要な受容体結合抗体を除いた後、抗体依存性細胞障害性、NK活性化、白血球貪食誘導などを調べてみると、ビオンテックの場合活性が低下するのに、モデルナの場合は活性がそのまま残る、あるいは上昇するケースも観察できる。結果自体はバラツキが大きく解釈に注意は必要だが、モデルナワクチンは、中和抗体以外にも、他の抗ウイルス活性を持った抗体が誘導されている可能性もある。

以上が結果で、私のように3回ともビオンテックという人間にはちょっとがっかりの結果だが、このような詳細な違いを調べることが、最終的なワクチンのフォーミュレーションにつながる。特に差はないと済ましてしまわない好奇心がこの研究の全てだと思う。

カテゴリ:論文ウォッチ

5月19日 大興奮:RNAワールドにペプチド合成が導入される過程を試験管内で再現する(5月12日号 Nature 掲載論文)

2022年5月19日
SNSシェア

地球上の生物は全てセントラルドグマの上に存在しているが、できあがった生命システムをみると、最も単純なものでも、それが無生物からどう発生してきたのか頭の中に描くことは難しい。幸いRNAワールドに必要な化学過程の研究により、有機化合物の合成からシステム化された有機体が形成されるところまでは想像がつくようになってきたが、その後に控える最も大きな壁、すなわちアミノ酸から出来たペプチド合成過程がRNAワールドに導入される過程を説明する課題が立ちはだかる。これを説明するためには、現在ペプチド合成が起こっているリボゾームの成り立ちと、アミノ酸とコドンとがどのようにtRNAで合体したのかを説明する必要がある。

今日紹介するミュンヘン大学からの論文はリボゾーム RNA がなくても、現存の tRNA に残っている構造をベースにペプチド合成は化学的に可能であることを示した研究で、無生物から生命が誕生する過程の研究領域では、大きなブレークスルーではないかと思える、大興奮の研究だ。タイトルは「A prebiotically plausible scenario of an RNA–peptide world(十分な可能性がある、生物存在以前のRNA-ペプチドワールド)」だ。

この研究では、現存の tRNA が安定化のために受けている様々な修飾に注目し、特に mRNA と結合するアンチコドンが存在するステムループの34番目、37番目の RNA の修飾が、アミノ酸重合を可能するのではと着想した。すなわち、37番目には既にアミノ酸が修飾として結合しているし、34番目のウリジンにはアミノ酸が結合できるように修飾されている。そして、2つの tRNA が接近することで、アミノ酸結合が起こるのではと考えた。

凡人は、元々アミノ酸が結合するように出来ている3’ サイトに注目してペプチド合成を構想しようとするが、アンチコドンのステムループの修飾に注目したこと自体に、RNA を知り尽くした専門家の目を感じる。調べてみると、この部位に見られるような修飾やアミノ酸の結合が、RNA ワールドで起こることを、このグループは以前に証明している。

おそらくこの着想が研究の全てで、後は実際にこのような反応でアミノ酸重合が試験管内で起こるのか、プロの有機化学者にとっては実験を計画することはそう難しくないのだろう。

34番目のメチルアミノメチルウリジン及び37番目のアミノ酸で修飾されたアデノシンをそれぞれ5’ 端末、3’ 端末に結合させた短い RNA を、それぞれアミノ酸を受ける側、アミノ酸を供与する側として合成し、両者が相補的 RNA でハイブリダイズするようにすると、アミノ酸は受け側の34番目のウリジン側に移転できる。そして、同じ反応を利用して受け側のアミノ酸を、供与側を順番に供給することで、ペプチド鎖を伸ばしていけることを実際の反応として示している。専門でない人には想像しにくいと思うが、要するに tRNA のほんの一部を用いるだけで、RNA の相補性を化学反応の一部として利用して、アミノ酸の伸長が可能になる。

こうしてできた短いペプチド鎖同士も、同じ反応を利用して重合させることが出来るし、RNA の断端以外に存在するアミノ酸とも重合反応が現実に起こせることを見事に示している。要するに、RNA だけで、アミノ酸重合結合が酵素なしに起こること、また酵素の役割を、RNAの相補性が担っていることを見事に証明し、RNA ワールドとペプチド世界を導入することに成功している。

この研究では議論されていないが、この論文を読んでいて1983年、Blochらが大腸菌のリボゾーム RNA には tRNA の配列が散在していることを発表している論文を思い出した。

すなわち、tRNA もリボゾーム RNA も、この論文で提案されたメカニズムを効率化し、さらにはコドンとアミノ酸というシンボル関係を発生させるために進化してきたと考えても良さそうだ。この分野の研究者でなくても、是非多くの人に読んでもらいたい論文だ。

今年も大学院生に対して無生物から生命誕生の講義を行う予定だが、この大きなジャンプのおかげで、今年は面白くなるぞと意気込んでいる。

カテゴリ:論文ウォッチ

5月18日 光を当てて超音波を発生させ皮膚深部を診断する(5月11日号 Science Translational Medicine 掲載論文)

2022年5月18日
SNSシェア

皮膚の病変診断のために様々な方法が開発されている。皮膚の極めて浅い部分であれば反射光を拾う共焦点顕微鏡、もう少し深いところでは眼科で用いられるのと同じ optical coherence tomography が開発されている。ただ、網膜が、像と比べると、皮膚での解像度は低い印象がある。実際には皮膚科や形成の先生に聞いてみないとわからないが、普及していないのではないだろうか。

これに対し、今日紹介するミュンヘン工科大学からの論文は、光を当てて組織内に超音波を発生させるという神業で、皮膚の深部画像を撮影できる optoaxoustic mesoscopy を開発し、乾癬治療効果判定に用いた研究で、5月11日号の Science Translational Medicine に掲載された。タイトルは、「Enabling precision monitoring of psoriasis treatment by optoacoustic mesoscopy (optoacoustic mesoscopyを用いると乾癬の治療効果を正確に診断できる)」だ。

タイトルにある mesoscopy は巨視的と微視的の中間という意味で、共焦点顕微鏡のように微視的な解像度と、超音波診断のような巨視的画像の中間になると考えてもらえばいい。基本的に対象は表皮から真皮までの皮膚の構造の画像化だ。

我々素人から見ると、こんなことが可能なのかと驚く。すなわち、当てた光が吸収されると熱を発生し、この結果組織が拡大する。この時発生する超音波を拾って、組織構造を推定する方法だ。実際には、発生する超音波の波長の異なる組織を画像化することが出来る。皮膚の場合、メラニン色素、酸化ヘモグロビン、そして脱酸素ヘモグロビンを検出できる。従って、画像化されるのは短い波長をだす皮膚表層の毛細血管と、長い波長を発生する皮膚深層の少し大きめの血管網になり、それぞれの波長に応じて緑と赤で色分けして表示できる。

この研究では、皮膚科で患者さんの多い乾癬の治療効果をこの器械で正確に診断できるか調べている。画像だが、ケラチノサイトの肥厚部は真っ暗に、表層の毛細血管は緑に、そして深部の大きめの血管は赤に染め分け、上部と下部をつなぐ血管も画像化できている。この結果、毛細血管のループの長さ、太さ、厚さなどを数値化することが出来て、画像の印象だけでなく、治療効果を数値で表すことが出来るという結論だ。

おそらく、経験豊富な皮膚科医なら、視診と触診などで十分診断できるレベルかもしれないが、光と超音波を組みあわせた面白い診断機器が完成したことは間違いない。乾癬だけでなく、例えば糖尿病などの微小血管の変化を伴う病気や、あるいは歯肉などにも応用可能だろうと思う。さらに発展することを期待したい。

カテゴリ:論文ウォッチ

5月17日 リンパ節転移と遠隔転移の関係(5月26日 Cell 掲載論文)

2022年5月17日
SNSシェア

ガンのステージングは、ガンの大きさ、浸潤とともに、リンパ節転移の有無と広がり、そして他の臓器への遠隔転移の有無を元に決められる。リンパ節への転移と、遠隔臓器への転移は、通常リンパ管、血管とそれぞれ異なるルートを通って起こるため、独立して進んでいいのだが、医者の頭の中ではどうしてもガンが拡がる一つの過程として捉えがちだ。すなわち、リンパ節転移が先にあって、そこでより転移しやすいガンに変化するのではと思ってしまう。

今日紹介するスタンフォード大学からの論文は、リンパ節転移しやすいガン細胞を分離して、リンパ節転移と遠隔転移の関係について、かなり古典的な方法を用いてアプローチした研究で、5月26日号の Cell に掲載された。タイトルは「Lymph node colonization induces tumor-immune tolerance to promote distant metastasis(ガン細胞のリンパ節への転移はガンの免疫トレランスを誘導し遠隔転移を促進する)」だ。

これまで遠隔転移しやすいガン細胞を分離して、転移に必要な条件を調べた論文は数多く読んできたが、リンパ節転移しやすいガン細胞を人為的に分離するという論文は読んだ記憶はほとんどない。この研究のハイライトは、ガン細胞株を移植後、リンパ節を採取して、そこに含まれるガン細胞をまた移植するサイクルを何度か繰り返して、リンパ節へ行きやすくなったガン細胞を分離したことだ。

こうして分離したリンパ節転移の起こりやすいガン細胞株と親株を、それぞれ異なる蛍光色素で標識し、皮下に注射する実験を行い、

  1. リンパ節転移能力で分離したガン細胞株の方が、親株と比べ、圧倒的にリンパ節転移を起こしやすい。
  2. しかし、肺転移で見ると、起こりやすさに両者の差はない。
  3. しかし、リンパ節転移を起こしやすいガン細胞と同時に移植すると、親株だけの場合より遠隔転移が促進される。

ことを発見している。すなわち、遠隔転移とリンパ節転移は全く別の過程ではあるが、リンパ節転移が起こると、遠隔転移が起こりやすくなることを明らかにしている。

この二つの現象の発見が研究の全てで、後はそれぞれの過程を支えるメカニズムを探求している。

まずリンパ節転移だが、転移しやすくなるとともにインターフェロン反応性の遺伝子の発現が上昇していること、またこの上昇がエピジェネティックなリプログラミングによるという結果から、リンパ節で免疫システムからのインターフェロンにより、リプログラムされた結果転移が起こりやすくなること、そしてインターフェロン反応性遺伝子の中でも、クラス1組織適合性抗原と PD-L1 の発現が、NK細胞からガン細胞を守ることでリンパ節転移能を高めることを明らかにしている。

一方、リンパ節転移により、他の遠隔転移が起こりやすくなる点については、ガンの転移によりリンパ節内の免疫システムの大きな変化が起こり、特にガン特異的な抑制性T細胞が誘導されることで、ガンに対する免疫が低下し、遠隔転移が促進されることを示している。

結果は以上で、古典的な病理研究といった感じで読んでいてほっとする研究だが、今後この発想の元、例えば乳ガンのケースで検証する必要があるだろう。

カテゴリ:論文ウォッチ
2024年5月
« 4月  
 12345
6789101112
13141516171819
20212223242526
2728293031