2024年6月14日
考古学での時代計測には科学の粋が集められているように感じる。最も有名なのは有機物の炭素アイソトープの減少を用いた方法で、カバーする範囲から人類の歴史を調べるのに適している。一方考古学で重要になる人間の活動が残った痕跡を調べる方法として、加熱による放射線エネルギーの変化を利用して、最後に加熱された時期を探るルミネッセント法などが知られている。ただ、これらの方法を1万年以上前の旧石器時代に利用しようとしても、区別できる時間解像度が500年単位になってしまい、例えば繰り返し使われた洞窟内での活動の時代測定の制限になっている。
今日紹介するスペインにあるデ・ブルゴス大学からの論文は、高温により残留磁気のパターンが固定されることを利用して、囲炉裏に使われた石の残留磁気を調べて、それが使われた時間を数十年単位で計測した研究で、6月5日 Nature にオンライン掲載された。タイトルは「The time between Palaeolithic hearths(旧石器時代の囲炉裏の使われた時間差を調べる)」だ。
残留磁気を用いて地球磁場の変化を探る研究については知っていたが、この残留磁気が熱によって固定されることを利用して、岩石が熱に晒された時間を推定する方法があることは全く知らなかった。
この研究では、ネアンデルタール人によって繰り返し使われた El Salt 洞窟 UnitX で発見された5カ所の囲炉裏跡が使われた時代関係を、この方法を用いて解析している。といっても、私には測定の具体的イメージほとんどないので、ちょっと調べてみたが、サンプルを調製した後、熱をかけたり、磁場を消去したり、大変な作業を有する測定だ。そして、その地域の地磁気の変化と照合して時代測定を行っている。
実際には使われた絶対的時間を測定するのではなく、残留磁気から5カ所の囲炉裏の間の時間差を調べ、これらは250年程度の時間で順番に作られたもので、それぞれは数十年ー100年程度の時間差で順番に作られたことを明らかにしている。すなわち、人間の寿命レベルの時間的違いで、囲炉裏が新たに作られたことを意味している。
以上が結果の全てで、わかったことはこれ以上でも以下でもない。200年というと鎌倉幕府より長い時間だが、その間にネアンデルタール人で何があったのか、同じ地層の他の遺物を比べないと、この発見の意味を知ることは難しい。ただ、火を使うという人間特有の行動を利用すると、少なくとも鎌倉幕府をさらに5つの時代に分けることができるようになったことから、旧石器時代の歴史がさらに詳しく分析できそうな期待はある
2024年6月13日
他個体からの輸血や骨髄移植は安全に行えるようになっているが、移植する細胞の中に機能的 T 細胞が残っていると、Graft-versus-Host 反応 (GvH) と呼ばれる移植した細胞がホストの臓器をアタックするという、恐ろしい状況が生まれる。いったん起こってしまうと、現在最も有効とされている JAK 阻害剤を組み合わせた方法でも18ヶ月目の生存が38%という状況だ。
この状況を改善する方法として2004年から試みられているのが、間質ストローマ細胞株(MSC)の移植で、明らかに GvH 反応を抑える証拠があるのだが、有効な MSC の安定供給が難しいという最大の問題があった。
今日紹介するオーストラリア Cynata Therapeutics 社からの論文は、一人の個人から調整した iPS 細胞ストックから MSC を誘導し、安定供給を可能にした細胞治療製品 CYP-001 を、ステロイド抵抗性の GvH 治療に用いた観察治験研究で、5月22日 Nature Medicine にオンライン掲載された。タイトルは「Two-year safety outcomes of iPS cell-derived mesenchymal stromal cells in acute steroid-resistant graft-versus-host disease( iPS 細胞由来間質ストローマ細胞を用いたステロイド抵抗性 GvH 病の2年目の成績)」だ。
前もって治験登録を行ったiPS細胞由来細胞を用いた移植治療治験は、我が国も含めて数多く進行していると思うが、2020年同じ Nature Medicine に、論文として結果報告までに至った最初の iPS 細胞利用製品として報告されたのが CYP-001 で(Nature Medicine 26:1720−1725、2020)、今日紹介する論文は同じ患者さんの2年目の経過になる。
2020年の論文では、一人のドナーから100万個の iPS 細胞が入ったバイアルを9万本調整、それぞれの iPS 細胞バイアルからほぼ100人分に当たる MSC 治療用ストックを作成できることが示されている。そして、GvH が発生して標準のステロイド治療に反応しなかった15人について、1週間間隔で2回、100万個/Kgあるいは200万個/Kg CYP-001 を投与して、安全性を確認するとともに、100日目で86%の患者さんが治療に反応したことを報告している。
このとき調整された iPS 細胞及び MSC は計算上ほぼ3000万回の治療に使えるということで、ほぼ世界中の需要を長期間まかなえることになる。
そして今回の報告では、9例の患者さんが2年目も存命だが、そのうち3名は慢性の GvH 症状が続いていることを示している。そして、生存曲線から死亡例は最初の6ヶ月までで4例、12ヶ月で新たに2名発生している。
結果は以上で、GvH 治療として最も期待できるとされる18ヶ月目で38%生存を明らかに凌駕する画期的な成績といえる。今後、急性期を乗り越えた後半年ぐらいで発生する慢性 GvH に CYP-001 を再投与する、あるいはこれまでで最も効果が見られた JAK 阻害剤や、さらに強い T 細胞抑制などを組み合わせることで、GvH を完全に克服できるようになるのではと期待される。
MSCをiPS細胞から作って製品にするとは、現役時代予想しなかったが、iPS細胞段階ではほぼ無限に細胞を増やすことができることを利用して、細胞治療では実現が難しかった全世界で使える一種類の細胞製品を完成させたことが最も重要なポイントだと思う。おそらく FDA の認可も近いと思うので、ついに万国共通に使えるiPS細胞由来細胞製品が生まれたと喜んで良さそうだ。
2024年6月12日
老化を図る生物学的な指標の一つに幹細胞システムのクローン増殖が挙げられる。研究しやすい血液で調べられることが多いが、突然変異の結果増殖能が高まったクローンを高頻度に特定できることがわかっている。そして、このようなクローン増殖は白血病の頻度を高めるだけでなく、機能異常の血液細胞が増えて動脈硬化を助長したりすることが知られている。
今日紹介するペンシルバニア大学歯学部からの論文は、血液クローン性増殖が認められる人に歯周病が多いという観察を、マウスを用いて実験的に確かめた研究で、6月4日 Cell にオンライン掲載された。タイトルは「Clonal hematopoiesis driven by mutated DNMT3A promotes inflammatory bone loss(DNMT3A 変異によるクローン性の造血は炎症性の骨喪失を促進する)」だ。
まず4946人の52歳から74歳までの動脈硬化リスクを調べる米国の地域コホート研究参加者の血液を調べると、年齢とともに増加するクローン性造血を3.9%の人で認め、なんとその61.8%が de novo メチル化酵素 DNMT3A の変異を持っており、しかも重症の歯周病が多かったという結果から始まっている。
これを実験的に確かめるため、DNMT のドミナントネガティブ変異をヘテロで持つ骨髄幹細胞を10%、正常骨髄幹細胞を90%の割合で移植したキメラマウスを作り、歯周病と骨の欠損が見られるリューマチ性関節炎で調べている。
まずこの DNMT3A 変異を持つ血液細胞幹細胞は正常細胞より増殖能が高く、3ヶ月も経つと、最初10%だったのが5お%にまで増加する。これとともに、血中 IL-1β、IL-6、TNF が増加し、自然炎症が進行していることがわかる。そして、自然に歯槽骨がむき出しになっているのを認めている。
そこで、実験的歯周炎を誘導すると、DNMT3A 変異を10%持つ個体では、歯周炎の悪化が強く、また歯周での炎症が強く起こっていることを確認する。同じように、骨吸収を伴うリューマチ性関節炎でも、病理的な所見と、症状の悪化が見られる。すなわち、クローン性造血が特に骨吸収を伴うような病気で悪化することを明らかにしている。
あとは歯周組織の single cell RNA sequencing などを用いて、特に歯周病の悪化の原因を探っており、DNMT3A 変異細胞が増えることで、特に白血球の浸潤と炎症性サイトカインの分泌、抑制性 T 細胞の機能不全、そして破骨細胞の分化促進がこの原因であることを突き止める。
DNMT3A の機能を考えると、de novo メチル化が低下することで遺伝子発現異常が起こっていると考えられるので、目血ロームを調べると、全体的に強くDNAメチル化の程度が下がり、多くの遺伝子で発現が高まっていることが認められる。中でも、mTOR を核とする代謝ネットワークに関わる遺伝子の発現が強く認められたので、mTOR 阻害剤ラパマイシンを投与すると、歯周病の悪化を抑えることに成功している。
DNMT3A の機能から考えると、示されたことは、不思議のない納得の話だが、歯学部ということもあり歯周病に焦点を当てた点が面白い。今後高齢者の難治性歯周病は、クローン性造血のサインであるという話になる気がする。
2024年6月11日
相変わらず細菌叢の研究は盛んだが、細菌叢の多様性や種類と身体の状態を相関させる現象論研究から、細菌叢の機能を問うより因果論的な研究へシフトしている。例えば Cell の様な一般紙を1ヶ月振り返ると、胆汁成分から代謝性脂肪肝を防ぐ分子を合成する細菌を特定した研究、そして胆汁ステロイドから妊婦さんに影響のあるプロゲステロンを合成する細菌と酵素についての研究のように細菌の特定・機能のメカニズムの解析が組み合わさった研究と、今日紹介するペンシルバニア大学からの論文のように、膨大な細菌叢データを情報科学的に解析し、やはり有用物質を特定する論文が掲載されており、掲載には現象論を超えたより具体的な結果が求められるようになっている。
今日紹介する論文は、細菌のゲノムビッグデータから機械学習で抗菌ペプチドの特定にチャレンジした研究で、6月5日号の Cell に掲載されている。タイトルは「Discovery of antimicrobial peptides in the global microbiome with machine learning(世界中の細菌叢に存在する抗菌ペプチドを機械学習で発見する)」だ。
研究では、得られる細菌のゲノムデータから、まず遺伝子をコードするオープンリーディングフレーム(ORF)を抜き出し、それをすでに抗菌ペプチド(AMP)を学習した Marcel と呼ぶモデルに読み込ませて、AMP とモデルが判断した、なんと90万近いペプチドを特定している。
といっても90万と言われてしまうと本当にこれが AMP 活性があるのか、やはり実際の実験が必要になる。実際、最初は構造や相同性から、AMP としての機能を確かめようとしているが、α ヘリックスを持つことなどすでに知られている以上に、絶対的な指標は発見されていない。
結局90万の中から100種類のペプチドを選んで合成し、この活性を多剤耐性菌を含む様々な細菌について抗菌実験を行い、79種類に抗菌活性を認めルという結果から、機械学習モデルの予測性が結構高いと結論している。
さらに明確な抗菌活性を示した AMP の殺菌メカニズムを確かめる実験も行い、ペプチド添加により膜電位が破壊され、最終的に細胞壁の破壊を起こす共通のメカニズムを持っていることを示している。そして、これらの AMP を皮膚の感染創に加えることで菌の増殖を抑えられるという生体実験も示している。これらの機能解析結果から、Marcel モデルの信頼性を示した上で、次に AMP がどのように進化してきたのかについて解析を行っている。
この研究で調べられた細菌叢は、土壌細菌叢、海洋細菌叢、人間の腸内細菌叢、口内細菌叢などなど、多岐にわたるが、AMP はそれぞれの細菌叢特異的で、オーバーラップはあまりない。そして、AMP の発現の高い細菌叢は他の細菌を受け入れにくくできており、特定の細菌叢構成を維持する方向で AMP が進化していることがわかる。
次に、このような短いペプチド遺伝子がどのように形成されるのかを調べると、1)長い遺伝子にストップコドンが入る変異で短いペプチド遺伝子が形成される、2)タンパク質をコードする遺伝子が重複後に、ストップコドンが入るケースで、そのほとんどはリボゾームタンパク質由来、3)水平遺伝子伝搬、4)最初から AMP として新たに進化したケース、などが特定できる。
結果は以上で、要するに Marcel モデルを AMP 予測に使えることを示した大変な研究だ。
私たち人間も、インシュリンをはじめとするたくさんのペプチドホルモンを有しており、その多くはプロホルモンを分解して形成されるが、このような合成方法がほとんどないのに驚くが、一方で細菌叢の個性維持に個体間を超えるホルモンのような働きを AMP が持っていることもよくわかる。
2024年6月10日
Ras変異は半分以上のガンで見られ、ガン治療標的の一丁目一番地といえる。ただ、変異Ras に対する薬剤開発は一時ほとんど不可能ではないかとすら考えられるほど、多くのチャレンジをはねつけてきた(https://aasj.jp/news/watch/3288)。しかし、G12C 型変異に対する薬剤開発の成功に続いて、昨年に入って新しい発想の Ras 阻害剤が開発され(https://aasj.jp/news/watch/23613)個人的にも Ras がついに治療標的になりつつあると期待している。
今日紹介するノースカロライナ大学からの論文はその意味では極めてタイムリーな論文だが、これほど研究されてきた変異 Ras の作用がほとんどわかっていなかったことを実感させる研究で、6月7日 Science に掲載された。タイトルは「Defining the KRAS- and ERK-dependent transcriptome in KRAS-mutant cancers(変異 KRAS ガンの KRAS と ERK 依存性トランスクリプトームを定義する)」だ。
これまでも変異 KRAS が発現したとき細胞内に起こる変化についての研究は数え切れないぐらい存在する。思い起こすと、KRAS 経路の研究はショウジョウバエで進み、RAS-RAF-MEK-ERK というシンプルなキナーゼのカスケードの集約した様に思う。ただ、実際のガンでの経路になると、話はもっともっと複雑になっていた。
この研究では人間のガンを用いた KRAS のこれまでの研究が複雑になってしまった要因は、細胞が置かれた状況が複雑すぎた結果で、試験管内でできるだけ単純化して KRAS 阻害のしかも急性効果を調べることから始めるべきと考えて実験を計画している。
主に KRAS 変異を持つ膵臓ガンに、KRAS ノックダウンを行い24時間後の転写因子の変化を調べている。ノックダウンでも、あるいは阻害剤を用いても、例外なく細胞周期が抑制される。実際の臨床では、KRAS 阻害剤が効かない例が多く存在するが、少なくとも試験管内で維持された細胞株では変異 KRAS が必須だ。
そして、KRAS を阻害したとき変化する遺伝子発現は、ほとんどの細胞株でほぼ同じであることがわかった。しかも膨大な変化を誘導するシグナル経路もショウジョウバエの研究以来知られているRAF―MEK―ERK に集約され、これまで指摘されていた PI3K 経路などは、膵臓ガンでは特定することはできない。
そして、この転写の変化をもたらす下流の分子も E2F、MYC、SRF、FRA1 の限られた転写因子の活性化によることがわかる。これらの一部は RAS-ERK 経路で直接リン酸化され活性化されるが、サイクリン/CDK のリン酸化により維持される E2F のように、KRAS カスケードシグナルによる間接効果と考えられる分子が多い。例としては、細胞骨格リン酸化による SRF 転写因子の活性化だが、完全に ERK からの経路が特定できているわけではない。
このように、KRAS-ERK のリン酸化カスケードが重要であることは間違いなく、早い時期の細胞周期だけではなく、細胞周期後期を調節する APC/C 複合体のメンバーは直接 ERK によるリン酸化を通して調節されている。また、エピジェネティック調節因子もこの経路によるリン酸化で調節される。
このように、サイクリン/CDK 、エピジェネティックス、細胞骨格など細胞周期にとって必須の分子がこの経路により調節されており、その結果 RAS 阻害による細胞増殖の抑制が起こる。
この研究のハイライトは、ERK などの阻害実験を KRAS 阻害実験と比べることで、KRAS の効果はほぼ100%古典的経路を使って伝達されていることを明らかにした点で、KRAS 阻害の抵抗性出現も、この結果をまずベースにして考えていく必要がある。
極めて複雑で膨大な結果を単純化して紹介したが、この単純性から出発し直して KRAS シグナルを再検討し、これからの RAS 阻害剤を使った治療を丹念に観察することの重要性を示している。例えば薬剤が効かないのは本当に RAS-MEK 経路の急性抑制が消失したのか確かめた上で、抵抗性を考える必要がある。
いずれにせよ、KRAS 阻害が古典的経路に集約することを改めて確認した研究で、RAS 阻害薬時代の論理的治療計画にとっても重要な研究だと思う。
2024年6月9日
PD-L1 は PD-1 のリガンドとして、T 細胞の免疫抑制に関わることは一般にも広く知られ、PD-L1 に対する抗体も、PD-1 に対する抗体と同じようにチェックポイント治療に使われている。ただ最近になって、PD-L1は細胞膜だけではなく核に移行して転写に関わったり、小胞に移行して小胞と細胞骨格との相互作用に関わることが示されてきた。
今日紹介するロサンゼルスにある Cedars-Sinai 医学センターからの論文は、PD-L1 が微生物を取り込んだ時にできる小胞、ファゴゾームに発現して、マクロファージの酵母やカビ特異的反応の受容体として働いているという意外な機能を明らかにした研究で、6月5日 Nature にオンライン掲載された。タイトルは「Profiling phagosome proteins identifies PD-L1 as a fungal-binding receptor(ファゴゾーム内のタンパク質をプロファイルする過程で PD-L1 がカビを認識する受容体であることが明らかになった)」だ。
このグループは、マクロファージが貪食した時にできる細胞内小胞、ファゴゾーム内での過程を研究するために、取り込んだ微生物の分子と直接相互作用する細胞側の分子を網羅的に調べるための PhagoPL という方法を開発して研究をしていた。微生物にパーオキシダーゼを発現させ、この酵素を用いてファゴゾーム内で微生物に直接相互作用するホスト側の分子をビオチンラベルする方法で、ファゴゾームで取り込んだ微生物を処理するための一般的分子とそれに加えて微生物の種類ごとに特異的に発現する分子を網羅的に調べることができる。
この実験を出芽酵母、黄色ブドウ球菌、そして大腸菌について行うと、PD-L1 が特に出芽酵母を食べさせたファゴゾーム内に移行して、しかも出芽酵母の分子と直接相互作用していることを発見する。この発見が研究のハイライトで、なぜ PD-L1 が出芽酵母のファゴゾームへ優先的に移行するか、不思議な現象だ。
ただ、この研究では PD-L1 と出芽酵母との相互作用に焦点を当てて研究を進めている。まず、出芽酵母のどの分子と相互作用するのかを調べ、なんと出芽酵母の膜上に発現したリボゾームタンパク質の一つ Rpl20b と直接結合することを発見する。リボゾームタンパク質が場合によっては細胞膜上に発現されることも初耳で、いろいろ不思議なことが起こっている。ただ、これは出芽酵母に限るわけではなく、カンジダでも Rpl20b が膜上に発現すると PD―L1 と結合するので、カビ類に広く見られる現象だと結論している。面白いことに、Rpl20b と相互作用する能力はもう一つのファミリー分子 PD-L2 にも認められる。
最後に、酵母の Rpl20b の分解を人為的に分解できるようにした方法を用いて貪食後に分解させたとき、ホスト側に起こる変化を調べ、Rpl20b と PD-L1 の相互作用の機能を調べている。この実験では、最初からサイトカインや自然炎症に関わる分子に焦点を当てて検索し、特にマクロファージの IL-10 や IL-6 分泌が少し低下することを発見する。最近の研究で PD-L1 は STAT3 と相互作用することがわかっているが、Rpl20b の過剰発現実験などから、PD-L1 と相互作用して生成する STAT3 のレベルが上がることから、おそらくこの経路が IL-10 転写抑制に関わると結論している。
残念ながらカビの感染時に何が起こるのかを示すことはできていないが、PD-L1 がカビのセンサーとして働いていることは、分子進化を知る上でも面白く、また意外な現象だと思う。
2024年6月8日
老化に伴って大本の血液幹細胞の数や機能が低下することが知られているが、にもかかわらず血小板産生だけが上昇していることが示されていた。今日紹介するカリフォルニア大学サンタクルズ校からの論文は、細胞分化で起こることが知られている Flk2 発現というイベントを記録できるマウスを用いることで、老化動物では血小板だけが正常幹細胞分化経路を外れて合成される経路ができることを示して、この謎を見事に解いた研究で、6月6日号の Cell に掲載された。タイトルは「An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis(年齢とともに増加する血小板分化経路が血栓症を悪化させる)」だ。
この研究では、Flk2 発現により誘導される Cre 組み替え酵素を用いて、それ以前の血液幹細胞と、Flk2 発現というイベントを経験した後の血液幹細胞を、赤い蛍光(Tom)と緑の蛍光(GFP)でそれぞれ区別できるマウスを使っている。
通常血液分化では Flk2 発現というイベントを経験するので、血小板も含めて末梢血は GFP を発現する。これは老化したマウスでも同じだが、驚くことに血小板だけ老化とともに GFP 陽性細胞が低下し、Tom 陽性細胞が5割を占めるようになる。これは巨核球の前駆細胞レベルですでに起こっており、血小板の分化経路の極めて早い段階で、Flk2 発現というイベントを通らない合成経路が老化とともに増えることがわかる。これは血液の老化に存在する新しい様式を示す驚くべき発見だ。
分化経路が違うということは、同じ血小板分化経路でも発現する遺伝子に違いが出るということで、Tom 陽性巨核球は single cell RNA sequencing で全くことなるクラスターを形成している。また血液幹細胞特異的遺伝子が Tom 陽性の巨核球前駆細胞へ分化した後も強く発現していることから、Flk2 発現をすっ飛ばした分化経路であることがわかる。
問題は、分化経路が変わったために、血小板としての機能が変化することで、まず増殖能が高く、血小板増加刺激に対して強く反応し、若いマウスと比べ144時間目の血小板数は3倍以上に達する。さらに、血小板機能自体も、活性から血栓形成に至るまでの過程が促進しており、結果血栓形成能が高くなっている。
実際老化したマウスの血管にレーザーで傷をつけて血栓形成を見ると、Tom 陽性の血小板の割合が多いことがわかる。すなわち、新しい老化型分化経路で合成されてきた血小板が血栓形成に優先的に関わっていることがわかる。
以上が結果で、おそらく老化に伴うエピジェネティックな変化で巨核球から血小板への分化経路だけが Flk2 を経由する経路から分化し、これが血栓形成能の高い血小板が老化動物だけで見られる原因であることがわかる。寿命の全くことなる人間でどうかについては、まだまだ研究が必要だが、この経路につながるエピジェネティックな変化がわかれば、明らかになってくると思う。そして、この変化は明らかに老化の指標として使えるので、今後面白い領域へ発展する予感がする。
2024年6月7日
冬眠は広く知られているが、Diapause(休眠)についてはあまり知られていないのではないだろうか。冬眠と異なり、休眠は外界の急な変化に対応しており、例えばマウスの胚盤胞は母親が外敵のような強いストレスに晒されると発生を長期間停止し、ストレスが解消してから発生することで、胎児が発達することで生じる危険を回避する。LIF は ES細胞を維持するための重要な因子だが、マウスでは発生の維持ではなく、なんと休眠の維持に関わっていることを Austi Smith らが発表したときは驚きだった。
この休眠が最もドラマチックな形で見られるのがアフリカの African turquoise killifish(以後 killfish )で、乾期で乾ききった池の中で何ヶ月も休眠を続け、短い雨期に生殖を行う種が存在し、休眠の仕組みを理解する重要な動物になっている。
今日紹介するスタンフォード大学からの論文は、killfish が休眠性を進化させる過程をゲノムから調べた面白い研究で5月28日 Cell にオンライン掲載された。タイトルは「Evolution of diapause in the African turquoise killifish by remodeling the ancient gene regulatory landscape( African turquoise killfish は古い遺伝子の転写を再構成することで休眠を進化させた)」だ。
この論文ではまず休眠で特異的に発現している遺伝子を探索し、その多くが薬5億年以上前、脊髄動物進化過程で起こったゲノム重複で生まれたパラローグ遺伝子であることを特定する。また、killfish以外の哺乳動物の休眠でも同じ種類の遺伝子が選択的に発現していることを明らかにする。一方、その後魚類の進化で起こったり、killfish 進化過程で起こった遺伝子重複による新しいパラローグ遺伝子はほとんど使われていない。すなわち killfish の休眠には脊椎動物進化という古い段階で発生したパラローグを使い回していることがわかった。
Killfish が休眠性を獲得するのは1千万年よりざらに新しい時代なので、様々な killfish のクロマチン構造を ATAC-seq で比較し、クロマチン構造の進化を調べると、休眠で発現する、極めて古い進化で発生したパラローグ遺伝子の転写調節領域のクロマチン構造が、極めて最近進化してきたことが確認される。すなわち、古い遺伝子に新しい転写システムを導入して休眠という特殊な状況で使っていることがわかる。
そこで、休眠遺伝子の発現に関わる転写因子を、転写調節領域の配列から特定すると、何種類かの転写調節因子の結合部位が、主に点突然変異によって新たに発生し、休眠で発現するようになることがわかる。そして、結合部位の変化が明らかな転写因子全てについて、CRSPR でノックアウトすると、REST、FOXO3、PAPR の3種類の転写因子ノックアウトで休眠遺伝子特異的な発現変化が起こることを明らかにする。
そして、それぞれの転写因子が脂肪代謝、オートファジー、シナプス、細胞周期などを調節して休眠という大きな変化を誘導することを示している。中でも脂肪細胞分化の核といえる PPAR が関与していることから脂肪代謝の変化について生化学的に詳しく調べ、長い脂肪酸のついたトリグリセライドの合成が休眠遺伝子により高まり、結果として細胞内の脂肪滴の量が増えることを示している。
以上、休眠という多くの遺伝子の発現をプログラムし直して、しかし正常とは違った条件で生きるための遺伝子発現システムの進化を、とてもわかりやすい物語として提示し、なるほど休眠とはこんなことだったのかと納得する面白い研究だった。
2024年6月6日
ガンは生まれついて持っている遺伝子に突然変異が重なって(somatic mutation)発生するが、一般にガン家系とか、ガンの遺伝とか言われてきたように、遺伝可能な多様性(germ line variation)が関わることも間違いない。もちろんガン遺伝子やガン抑制遺伝子そのものの多様性はガンの発生しやすさに直結するが、それに限らず実に多様な遺伝子がガンの遺伝リスクとして特定されており、例えば乳ガンだけでも200種類のゲノム多型がリストされている。
免疫反応を低下させる様々な多型もガン発生リスクになることはわかっているが、免疫を誘導するガン抗原そのものが遺伝性要因になる可能性はほとんど研究されていない。というのも、somatic mutation と比べると、germ line の変異は免疫発生時期から発現して、免疫系の自己と認識されるため、germ line変異はトレランスになると考えられてきた。
ところが今日紹介するスタンフォード大学からの論文は、この先入観を疑い、トレランスになっている自己抗原でも免疫を誘導し、これがガン発生の免疫サーべーランスに関わる可能性を追求した面白い研究で、先入観を持たないことの重要性を示す論文だ。タイトルは「Germline-mediated immunoediting sculpts breast cancer subtypes and metastatic proclivity(生殖系列に媒介される免疫編集がガンのサブタイプと転移しやすさを決める)」だ。
自己抗原でも場合によっては自己免疫反応を誘導するように、全く変異のないガン遺伝子ERBB2 や H4ヒストンに対して T細胞反応が起こっていることが報告されている。すなわち、ホストの MHC との結合が弱いケースでは、トレランスが成立しない可能性がある。
この研究では、ガンで遺伝子増幅が起こる分子では、somatic 変異がなくても、それに対する免疫反応の起こりやすさがガンの発生頻度の差を生むのではないかと考え、様々なサブタイプ(例えば HER2 陽性、あるいはトリプルネガティブなど)が知られている乳ガンを例に、ゲノムデータベースを解析して、自己分子に対する免疫反応が乳ガンの発生に影響している可能性を調べている。
最初に調べたのは、乳ガンで増幅が見られる HER2 分子で、この分子由来のペプチドと高い親和性を持つMHCを持つ人と、親和性の低い MHC を持つ人を比べると、前者は HER2 陽性のガンになりにくいことを示している。すなわち、HER2 ペプチドを抗原として提示できる MHC を持つ人では、HER2 の増幅が始まると免疫サーべーランスが働くために、HER2 陽性のガンが発生しにくいことになる。
この現象をさらに裏付けるため、次に HER2 の germ line 変異が片方の染色体に存在して、複数のペプチドが提示できる場合と、変異が存在せず同じペプチドしか提示できない場合で HER2 陽性乳ガンの発生リスクを調べている。予想通り、MHC がペプチドを提示できる場合、変異の数が多い HER2 陽性腫瘍は起こりにくい。
他にも乳ガンで増幅がおこる遺伝子 MYC、SCKE などでも同じような現象が見られルことが示され、乳ガンに見られる増幅遺伝子の多くが、ガン抗原としても働いて、遺伝子増幅が始まった細胞の免疫サーべーランスに関与し、特定の乳ガンサブタイプの起こりやすさを決めていると結論している。
面白いことに、転移ガンについて同じように germ line 遺伝子の免疫原性とガンのサブタイプを調べると、初期ガンとは全く逆の現象が見られることを次に示している。HER2 を例に説明すると、転移ガンでは HER2 を提示して免疫を誘導できる MHC を持っている方が、HER2 陽性腫瘍の率が高くなる。他の増幅ガン遺伝子でも同じ傾向が見られることから、おそらく抗原に対する免疫反応が、ガンに対する選択圧となって、免疫をすり抜けた悪性のガンで見ると、逆境となる抗原を持っているガンの方が増えるという結果を招いたと考えられる。
結果は以上で、ガン発生時には、ガン発生に必要な増幅遺伝子は、免疫原性が高いほど免疫サーべーランスによりがんリスクを下げるが、このサーベーランスはより悪性で免疫をすり抜けるガンの選択圧としても働くため、悪性再発例では逆に germ line 変異が多いほど悪性になる傾向があるという結論だ。
実際の免疫反応は全く調べていないので専門外には少しわかりにくい論文になっているが、データベース解析だけからガンの免疫サーべーランスを見事に示した研究だと思う。
2024年6月5日
アルツハイマー病(AD)治療薬の開発はこれまで、βアミロイドやリン酸化 Tau タンパク質の合成阻害や除去を中心に行われてきた。ただ、これら分子の変化から神経細胞死までの間にはまだまだ多くのプロセスが複雑に絡んでいるので、他にも創薬ターゲットは間違いなく存在する。ずいぶん前のことになるが、2017年に HP で、患者さんの海馬に留置電極を設置して記録すると、脳波では解らないてんかん様の過剰な興奮が見られることを示したマサチューセッツ総合病院からの論文を紹介した(https://aasj.jp/news/watch/6848)。これは AD 神経で細胞質への Ca 流入が高まっているからで、特に Store operated Ca チャンネル(SOC)がリン酸化 Tau により活性化されるチャンネルとして注目されてきた。当然 SOC などを AD 治療薬の直接標的にする可能性が考えられるが、Ca は細胞シグナルの要で、AD 特異的作用を得ることは簡単ではない。
今日紹介するベルギーの創薬ベンチャー reMYND からの論文は、Ca チャンネルにこだわることなく、まずリン酸化 Tau を発現する神経細胞特異的に起こる Ca 流入異常に基づく細胞死を防止する薬剤を探索し、これまで想定されなかったメカニズムの AD 細胞死メカニズムに対する薬剤の開発で、5月31日 Science に掲載された。タイトルは「Pharmacological modulation of septins restores calcium homeostasis and is neuroprotective in models of Alzheimer’s disease(セプチン機能を薬理学的に回復させることでアルツハイマー病モデルのカルシウムのホメオスターシスを回復し神経を保護する)」だ。
Ca 異常を抑える分子のスクリーニングについてはほとんど詳しく述べられていないが、いくつかのヒットから、リン酸化 Tau による神経死を抑える REM127 の開発に成功している。REM127 は神経死だけでなく、試験管内でアミロイドにより誘導されるシナプス結合喪失を防ぐことができ、AD 神経のカルシウム異常、そしてそれに続く細胞死の阻害薬として期待できる。
次に問題になるのが、この薬剤が AD 特異的な効果を示すメカニズムだが、かなり複雑なのでほとんど詳細を省いて紹介するが。AD 治療薬開発という目的に合致した作用機序が示されている。
まず REM127 が結合する分子を探索すると、細胞膜近くで微小管の調節を通して ER と SOC との相互作用を介して Ca 流入を調節している Sepsin6(SP6) が特定された。SP6 をノックダウンすると、細胞質への Ca の異常流入が高まり、細胞死が誘導されることから、SP6 は細胞膜直下で SP2、SP7 などと一緒に、SOC の活性化を抑えていることがわかった。
次にリン酸化 Tau を発現させる実験などから、通常神経細胞では SP6、SP2、SP7 により形成される細胞骨格の働きで、SOC が低い活性レベルで抑えられているのに、リン酸化 Tau が強く発現すると、この細胞骨格が破壊され、その結果 SOC が活性化され、細胞質内の Ca が上昇し、細胞死が誘導される。しかしこのとき REM127 が存在すると SP6 が安定化するとともに、ReS19-T 分子を新たにリクルートすることで、SOC 活性化を抑制する構造を再構築し、細胞死を抑えるというシナリオだ(それぞれの分子の名前については気にせず読み飛ばしてほしい。興味のある人は是非自分で調べてほしい)。
結論だけを述べたが、実際には構造解析、細胞への遺伝子導入やノックダウンを駆使して、SOC、SP6、そして ReS19-T 分子の関係や機能を細胞学的に詳しく調べている。ただ、このような詳細をすっ飛ばし誰もが知りたいのが、この薬剤の AD に対する効果だ。
これについては、Tau 及びアミロイドそれぞれのトランスジェニックマウスに経口投与する実験を行い、REM127 により、神経の異常興奮が押さえられること、アミロイドや Tau によるシナプス可塑性や長期記憶の低下を抑えられることを示している。
そして何より驚くのは、REM127 投与により、βアミロイドの蓄積やリン酸化 Tau 蓄積のような病理変化も抑制できる点だ。すなわち、Ca 異常がそれぞれの蓄積に深く関わっていることだ。これを見ると、アミロイドβ 蓄積から Tau リン酸化といった順番を再検討する必要が出てくるかもしれない。
いずれにせよ、カルシウムチャンネル自体ではなく、SOC と小胞体の相互作用を調節する SP6 を標的にし、しかも抑制ではなく、分子安定化を誘導して、Tau により破壊された SP6/2/7 骨格を再建するという複雑なメカニズムで、ついにAD 特異的な SOC 抑制に成功したといえる。
REM127 がそのまま人間に使えるかは全くわからないが、新しいメカニズムが明らかになったことは、AD 特異的 Ca 異常の治療薬が開発できることを示しており、期待している。