8月18日 個人用ガンワクチンの治験が始まっている(8月15日 Nature Medicine オンライン掲載論文)
AASJホームページ > 新着情報 > 論文ウォッチ

8月18日 個人用ガンワクチンの治験が始まっている(8月15日 Nature Medicine オンライン掲載論文)

2022年8月18日
SNSシェア

今回のコロナ禍で、世界はアデノウイルスベクターや mRNA ワクチンの威力を知ることになったが、これらのモダリティーが大成功した原因の一つは、ワクチン製造のスピードにある。以前紹介したが、我が国で多くの専門家が、ワクチンの評価には何年もかかるなどと言っていたとき、ウイルスのゲノム配列が明らかになってから、なんと4日目にはヒトにも注射可能な GMP基準のワクチンができあがり、第1相治験まで3ヶ月かからなかった。

このスピードの源は、これらのモダリティーが、個人用ガンワクチンのために開発されてきたからだ。このためには、ガンが発現する変異分子を特定する迅速なゲノム解析と、その結果を迅速にワクチンにする必要がある。ガンという病気の性質を考えると、ワクチンには時間がかかるなどと言えるはずはなく、その結果配列があればすぐにワクチンを完成させるスピード感が要求される。ゲノム配列決定にしても、ワクチン開発にしても、このスピード感の欠如が我が国の問題だ。

今日紹介する Gritstone bio 社からの論文は、2種類のモダリティーを同時に使って、個人のガンゲノム解析から特定したガンのネオ抗原ワクチンを合成。末期のガン治療に用いた治験研究で、これが出来るようになったと言うだけでも感慨深い研究だ。タイトルは「Individualized, heterologous chimpanzee adenovirus and self-amplifying mRNA neoantigen vaccine for advanced metastatic solid tumors: phase 1 trial interim results(チンパンジーアデノウイルスと、自己増殖型 mRNA を用いた個人用ガンネオ抗原ワクチンを進行した転移性固形腫瘍に使う第1相試験)」で、8月15日 Nature Medicine にオンライン掲載された。

ワクチンは、まず腫瘍のバイオプシーサンプルの全エクソーム解析を行い、突然変異が起こっている遺伝子を特定、その中から徹底的な情報処理に基づき、20種類のガンのネオ抗原を選び、20種類の別々のネオ抗原(変異部を中心に25アミノ酸配列)配列が一つの蛋白質として合成される遺伝子配列を決定する。

この遺伝子配列を、Covid-19ワクチンにも使われた、チンパンジーアデノウイルス(ChAd)に導入すると同時に、ベネゼラ馬脳炎ウイルスの配列を利用した自己複製型 mRNA ワクチンも合成する。

こうして出来た2種類のワクチンを、まず ChAd、その後 mRNA ワクチン投与を繰り返すというプロトコルで、チェックポイント治療とともに患者さんに投与している。

要するに、ステージ4の治療に十分使える迅速さで、個人用ガンワクチンを実現したことになる。

結果の詳細は省くが、末梢血で調べられることは徹底的に行って、ガンに対する免疫誘導を調べている。結果、選んだいくつかのガンネオ抗原に対して CD8キラー細胞を誘導することが出来、遺伝子発現から、長期記憶細胞も含まれていることまで確認している。

肝心の臨床結果だが、約半数は残念ながら亡くなっているが、残りは病気の進行を抑えることが出来ており、人によってはガンの縮小も見られるという結果だ。基本的には第1相なので、安全性と、CD8T細胞を誘導できたという点で満足している。

現在はステージ4だけでなく、手術に組みあわせるネオアジュバント治験も行われているようなので、臨床結果についてはそちらを待った方がいい。ただ、かなり自信に満ちた書き方なので、期待できるのではないだろうか。

しかしなんと言っても、個人用ガンワクチンを、しかも2種類のモダリティーを組みあわせて実行できるシステムを作り上げた点がすごい。

カテゴリ:論文ウォッチ

8月17日 形態と遺伝子発現を統合したガン組織の解析(8月10日 Nature オンライン掲載論文)

2022年8月17日
SNSシェア

組織学と遺伝子発現を統合することは、組織学者の長年の夢だが、この HP でも紹介したように、まずスウェーデンカロリンスカ大学のグループが(https://aasj.jp/news/watch/5490)、その後MITのグループが(https://aasj.jp/news/watch/9926)、これを可能にする技術を報告している。基本的には、スライドグラス上にバーコードのついた RNA トラップを敷きつめ、その上に組織を置いて、組織に発現する RNA をトラップし、バーコードから採取された場所が特定されるライブラリーを形成、遺伝子発現を解析する方法だ。

今日紹介するオックスフォード大学からの論文は、前者の方法を改良した方法で、ガン組織の多様性ではダントツの前立腺ガンの多様性をこの方法で定義できるかという課題にチャレンジした研究で、8月10日 Nature にオンライン掲載された。タイトルは「Spatially resolved clonal copy number alterations in benign and malignant tissue(良性及び悪性の組織で、遺伝子コピー変異クローンの局在を特定する)」だ。

同じに見えても、一つの組織内のガン細胞が既に多様化していることはよく知られている。また、最近急速に普及する single cell technology により、この多様性をクローンレベルで特定することも可能になり、ゲノム変異および遺伝子発現から見て、ガンが増殖過程で多様化していることを疑う人はいない。

この研究では組織局在と、遺伝子発現を対応させられる方法を用いて、ガンの多様性を再定義し、これまでの組織学との相関も明らかにしようとしている。

ただこれには大きな問題がある。Single cell RNA sequencing では、確実に RNAがsingle cell 由来であることが保証されているが、スライド上にすぽっとしたバーコードは50ミクロンほどの大きさのため、5−10個の細胞が一つのスポットでカバーされる。従って、遺伝子発現は複数の細胞の平均値になり、single cell ほどの精度がなくなる。

そこで、ガンの変異を、遺伝子発現量が大きく変化する遺伝子コピー変異(CNV)のみに限定し、複数の細胞の遺伝子発現の平均でも、CNVを特定できるソフトを開発して、組織上でガンの系統樹を描くことに成功している。

予想通り、良性から悪性まで混在する組織上で、一つのクローンが良性と悪性領域の両方を形成していること、そしてこの過程で前立腺ガンで見られる Myc や PTEN 遺伝子の CNV が起こっていることを明らかにしている。すなわち、CNV に変異を絞っても、組織上でのクローン系統樹を書くことが出来る。

膨大な結果が示されているが、まとめてしまうと、CNV はガンが発生する前、正常組織で起こっており、その中から良性型の管腔型腫瘍が発生する。実際、決定的とされる Myc や PTEN 遺伝子の CNV も良性型で既に見られ、組織学的には良性型でも既にガンのドライバーは完成していることがわかった。そして、このような変異を繰り返す中で、悪性度が進行していること、またこうして生まれた悪性細胞は組織上で他の細胞から分離独立した集団を形成することを示している。

結論は以上で、ガンの多様性という点では既に明らかになっていることだが、ともかくこの方法で細胞のクローンを組織上で追跡できるようになったことが大きい。というのも、遺伝子発現だけでは、エピジェネティックス変化かジェネティックス変化かがわからない。ともすると、前立腺ガンの多様性をエピジェネティックスだけで捉えられると考える人も多かったが、どっこい、ゲノム変化はやはりガンの主役であることを再認識させてくれた。遺伝子発現をゲノム変化に読み直すという発想の転換のおかげだ。

カテゴリ:論文ウォッチ

8月16日 人間が言葉を話せるための解剖学的進化(退化)(8月12日号 Science 掲載論文)

2022年8月16日
SNSシェア

現役を退いて、それまでの専門から自由になったとき、一度考えてみたいと思ったのが、無生物から生物が誕生する「Abiogenesis過程」と、「言語の誕生」だ。幸い、生命誌研究館の中村桂子先生のおかげで、顧問として静かで自由な5年間を過ごすことが出来、それぞれの問題について多くの論文に当たり、自分なりに納得できるシナリオを描くことが出来た。この過程については、生命誌研究館の「進化研究を覗く」というコーナーでまとめておいた(https://www.brh.co.jp/salon/shinka/2016/)。また、これらの文章はそっくりそのままこのHPにも移行させているので是非読んで欲しい(https://aasj.jp/news/lifescience-current/10954)が、この時に集中して勉強したおかげで、今も Abiogenesis と言語誕生については、専門ではないが講義が出来ている。

さて、私に限らず、言語誕生の条件については、もっぱら脳と社会の問題として捉え議論がされているが、人間のように複雑な音を使いこなせる咽頭の構造も重要だ。ただ、この問題については、人間はサルと異なり喉頭の位置が低くなって出来た大きな空間をうまくコントロールするシステムができあがっていると説明していた。

この通説に真っ向から異論を唱えたのがウィーン大学の Fitch で、生きたサル(マカク族)が様々な状況で鳴くときの口から喉にかけての構造変化をX線ビデオで撮影し、発せられる音と対応させることで、サルも人間と同じ複雑な音を発することが出来ることを明らかにした(Fitch et al. Sci. Adv. 2016; 2: e1600723、9 December 2016)。

今日紹介するウイーン大学 Fitch と京大霊長類研究所 西村さんの共同論文は、複雑な音を出せるという条件は同じなのに、何故人間だけがそれをフルに使得るようになったのかについての系統生理解剖学の研究で、8月12日 Science に掲載された。タイトルは「Evolutionary loss of complexity in human vocal anatomy as an adaptation for speech(人間が解剖学的複雑性を捨てることで言語に合わせた発声のための解剖基盤を獲得した)」だ。

この研究では生きたサルの発生に関わる領域の詳細な解剖を MRI を用いて行い、ヒトとサルの違いとして、vocal membrane と呼ばれる声帯から飛び出した構造が人間では完全に欠けていることを発見する。

系統的に見ると、vocal membrane は新世界ザルでは長く、オナガザル科では短い。そして、オナガザル科から分岐した霊長類では多様な構造をとっていることから、進化的に急速に多様化していることがわかる。しかし、構造が失われたのは人間だけだ。

次に内視鏡を用いた生理学的研究、死亡したサルの声帯を用いた解剖学的研究、最後にシミュレーションを用いた研究を合わせて、vocal membrane があると、同じエネルギーで強い音を出せるが、大きな声は出せても音のコントロールが聞きにくいことを突き止めている。

以上の結果から、どちらが先かはわからないが、人間では vocal membrane を退化させることで、脳支配によるコントロールされた音を出せる様になったというのが結論だ。

言語の解剖学的基盤に焦点を当てて、生理解剖学的に研究を進める Fitch さんとその仲間の研究は勉強になる。Vocal membrane もそれぞれの種では決まった構造をとっており、これが発生するためのゲノム基盤も今後わかるだろう。言語脳と連動する身体の構造がわかることは重要で、言語の発生を考える上でも重要な貢献だと思う。

最後に、西村さんの所属が Primate Research Institute となっており、安堵した。いくら不正があったからと言って、簡単に霊長研の名前を捨てる京大の暴挙に怒っていたが、研究は国際的なポジションが大事なので、形にこだわる役人や大学執行部を日本語でだまして、英語で元を取るという作戦は評価したい。とはいえ、私たちの世代にとって、霊長研という日本語も、多くの先生の顔が浮かんできて捨てがたいのも事実だ。

カテゴリ:論文ウォッチ

8月15日 少し風変わりなガン治療法(8月3日 Nature オンライン掲載論文)

2022年8月15日
SNSシェア

ガンの増殖には他の細胞と比べて高いエネルギーが必要なため、多くのガン細胞はエネルギー代謝システムを再編して、高い増殖能を維持できるようになっている。特に、グルコースの取り込みを高めて、ピルビン酸、乳酸という経路を用いる ATP 合成が高まっている。このおかげで、グルコースの取り込みを指標として、多くのガンの存在を PET で診断できる。

当然このガン共通の代謝経路は、治療標的になる。例えば、ダイエットやファスティングがガン治療を助けると考えられる要因の一つは、ガンの取り込めるグルコースを低下させることだ。

今日紹介するスウェーデン・カロリンスカ研究所からの論文は、同じように代謝経路を変化させてガンを抑制する方法なのだが、栄養制限ではなく、なんと寒さに晒すことで、脂肪組織を変化させガンを抑制するという意外な方法についての論文で、8月3日 Nature にオンライン掲載された。タイトルは「Brown-fat-mediated tumour suppression by cold-altered global metabolism(低温により代謝全体が変化し、褐色脂肪組織が活性化されることで腫瘍が抑制される)」だ。

褐色脂肪組織は、私たちが寒さに晒され体温を高める必要があるとき、寒さを感知した交感神経系のシグナルを受けて、UCP1 という分子の作用で、ミトコンドリア酸化的リン酸化を ATP合成ではなく、熱産生に振り向け、体内の温度を高める働きがある。この熱産生に、ミトコンドリアや脂肪だけでなく、グルコースの取り込みも高まることが知られている。このことから、寒さに晒して褐色脂肪組織を活性化することで、腫瘍の代謝環境を変えて、腫瘍を抑制できるのではと着想したのがこの研究だ。

この着想が当たった。皮下に腫瘍を注射する実験系だけでなく、ガン遺伝子導入による自然発ガン実験系でも、マウスを4度の環境に置くだけで腫瘍の増殖を抑えることが出来る。また、腫瘍へ栄養を送る血管の密度も低下し、ガンの免疫を抑える白血球も低下する。結構いいことずくめだ。

マウスは4度の部屋でもなんとか生きるようで、褐色脂肪組織活性化に使われる。この結果、体温は維持されるので、腫瘍が寒さに晒されて、代謝が低下するというわけではない。これをさらに証明するため、肝臓に腫瘍を注射する実験も行っている。

この結果が、褐色脂肪組織が活性化された結果であることを示すため、褐色脂肪組織を外科的に取り除く実験を行い、褐色脂肪組織の活性化がガンの増殖を抑える原因であることを証明している。

FDG-PET でグルコースの取り込みを調べると、FDG はほとんど褐色脂肪組織に取り込まれ、腫瘍に行っていないので、腫瘍の代謝が大きく変化していることが想像される。遺伝子発現を調べると、低温により褐色脂肪組織で上昇するグルコーストランスポーターが、腫瘍では低下しており、またグリコリシス経路も低下しており、ガンに必要なエネルギー経路が阻害されていることもわかる。

一方、血中グルコース濃度を高めると、トランスポーターが回復、低温でも腫瘍は増殖できることもわかる。

最後に、褐色脂肪組織の熱合成に必須のUCP1をノックアウトしたマウスで調べると、低温でもガンが増殖することもわかった。

実験としてはここまでで、着想は面白く、大当たりなのだが、何故褐色細胞の活性化が腫瘍増殖を抑えるのかは明らかになっていない。代わりに、人間のガン患者さんを一人だけお願いして、薄着で22度で7日間暮らしてもらうと、なんと FDG-PET の褐色脂肪組織のとリ込みが上昇することを確認している。ただ、この患者さんでは腫瘍での FDG 取り込みは変化なかった。

以上、人間の治療法の可能性も示しており、臨床応用の道筋はついたので、臨床応用が進むことを期待する。ただ、このブログをみて、勝手な治療に走るのだけは待って欲しい。

カテゴリ:論文ウォッチ

8月14日 ジャンク DNA が体細胞のゲノム多様性に大きく貢献する(8月4日 Cell 掲載論文)

2022年8月14日
SNSシェア

昨日はLINEトランスポゾンが、long noncoding RNA として炎症に関わる遺伝子発現を抑える論文を紹介し、ジャンク DNA も機能が持てるように我々の進化が進んでいることを紹介した。このように明確な機能が見つかることは希で、多くの場合、LINE や Alu と呼ばれる霊長類のレトロトランスポゾンは、ゲノムの多様性生成に大きな役割を果たしていると考えれている。

というのも、昨日紹介したように、同じ起源を共有する配列が、我々のゲノムに驚くほどの数で散らばっているという事実は、良く似た配列(相同)がゲノムのあちこちに存在することを意味し、何らかのh拍子で DNA が切断されると、この相同性を元に、相同組み換えが起こり、ゲノムに欠損や重複の大きな変異が生まれるきっかけになるからだ。これは、通常の相同染色体同士の組み換えと異なり、ゲノム上に存在する相同領域同士で起こるので、non-allelic 相同組み換え(NAHR)と呼ばれている。ただ、これだけ多くの繰り返し配列が存在すると、実際には変異を特定することは簡単ではない。ましてや体細胞では、細胞ごとに起こるイベントは異なっており、組み替えによる変異をシステミックに特定することは簡単ではない。

例えば、長いDNAについて配列を解読する Long read 解析を繰り返せば、欠失や重複は発見できるのだが、特定の変異が起こる頻度が少なすぎて、大変な作業になる。これに対し、今日紹介する横浜理研の Piero Carninci 研究室からの論文は、Alu や L1 配列を特異的に生成した後、それぞれの断片の配列を決定し、ゲノム配列と比べて、相同組み換えによる変異を特定する方法を開発している。勿論同じことは、long read でも可能で、新しい方法を、long read でも確認して、この方法が信頼できる方法であることを確かめている。

その結果、細胞一個あたり NAHR が1−4個存在することを明らかにしている。面白いのは、このような変異が全ての組織で平等に起こるわけではなく、例えば腎臓や肝臓では NAHR の数は4個前後あるのに、脳は1個前後で止まっている。ところが、一つの染色体内で起こる NAHR の数は脳の方が多い。しかも、脳内では比較的近くの繰り返し配列との NAHR が見られるのに、腎臓や肝臓ではほとんどない。これがゲノムの3次元構造を反映していると考えると、脳と他の臓器では異なる染色体 3D 構造があると推察される。

これを確かめるために、iPS から神経幹細胞への分化過程を調べ、分化とともに神経型の NAHR が出現することも示している。そして、クロマチンが活性化されている領域と、閉じられている領域での NAHR を算出し、iPS と神経幹細胞のエピジェネティックな状態を反映して、NAHRが起こっていることも示している。

以上のように、NAHR は細胞分化の過程で起こると考えられ、そのときの遺伝子発現を反映する。従って、様々な病気を理解するヒントになる。例えば、21番染色体で NAHR の起こりやすい場所を探すと、中心体から10Mbにホットスポットが特定されるが、これはダウン症で転座が起こる領域として知られている。また様々なガン遺伝子の近くにも、特に Alu 型 NAHR が特定されることは、Alu 配列がガンの染色体不安定性に使われるのと一致する。

最後に大サービスで、アルツハイマー病とパーキンソン病の脳で NAHR を探索し、パーキンソン病の濃飛質で NAHRの数が増えることや、アルツハイマー病では病気発症に関わるプレセニリン遺伝子の近くに NAHR が起こりやすいことも確認している。

NARH から見えてくることをいろいろ示しているが、この研究のハイライトは方法が開発できたことで、それぞれの細胞分化の過程で起こりやすい NAHR 探索を続けることで、違った視点で細胞分化やガン発生がわかるように思う。

カテゴリ:論文ウォッチ

8月13日 ジャンクDNAを免疫抑制に上手に飼い慣らす(8月10日 Nature オンライン掲載論文)

2022年8月13日
SNSシェア

私たちのゲノムの大きな部分がジャンクDNAと呼ばれる、機能が全くわからないDNAにより閉められているのは、読者の皆さんにもよく知られていると思う(LINEについてはJT生命誌研究館で書いていたブログを参照してほしいhttps://www.brh.co.jp/salon/shinka/2015/post_000011.php)。このジャンク DNA の中で、レトロウイルスによく似て、一部は転写もされる DNA の一つが LINE と呼ばれる7kb程度の、レトロトランスポゾンで、ヒトゲノムでは数千の LINE が特定されている。ほとんどの場合、LINE もジャンク DNA として片付けられているが、マウスでは多くの LINE が免疫関係の遺伝子に飛び込んでいることがわかっており、何らかの機能があるのでは考えられてきた。

今日紹介するオーストラリア・Garvan 医学研究所からの論文は、LPS やコクサッキーウイルス感染により発現が誘導され、しかも Schlafen と呼ばれる細胞周期を止め、コクサッキーウイルス感染に重要な働きをすることが知られている分子の上流に飛び込んだ LINE、Lx9 遺伝子をノックアウトし、その機能を調べた研究で8月10日 Nature にオンライン掲載された。タイトルは「The retroelement Lx9 puts a brake on the immune response to virus infection(Lx9レトロエレメントはウイルス感染で誘発される免疫反応にブレーキをかける)」だ。

LINE トランスポゾンの数は膨大なので、特異的ノックアウトは簡単ではないが、極めて保存されたスプライスサイトを選び出して、ノックアウトに成功している。この結果、Lx9 から転写される long noncoding RNA の発現は完全に消失している。

ノックアウトマウスは正常に発生し、さらに健康に成長する。しかし、Lx9 の転写を誘導するコクサッキーウイルスに感染させると、驚くなかれウイルスの増殖はコントロールと変化内にもかかわらず、膵炎のみならず、肺炎を併発し、多くのマウスが死んでしまう。即ち、ウイルス感染によって誘導された炎症のコントロールがきかなくなっていることがわかる。

このような免疫抑制の欠如の原因を調べる目的で、組織上の遺伝子発現などを調べた結果、Lx9 long noncoding RNA が Schlafen のみならず αインターフェロン受容体など、様々な免疫性の炎症に関わる分子に結合して、その翻訳を抑えていることがわかった。即ち、ノックアウトで long noncoding RNA が転写できないと、これら遺伝子の抑制が効かずに、炎症が増強してしまうことが明らかになった。

最後に、全ての形質が、long noncoding RNA の発現がなくなるためであることを証明するため、レトロウイルスで Lx9long noncoding RNA をマウスに投与すると、肺炎や膵炎が治まり、マウスも生存できることを示している。

以上が結果で、これまでレトロトランスポゾンは、ガン抗原として働いたり、遺伝病の原因になったりと、ネガティブな役割についての論文が多かったが、この研究は、私たちがジャンクDNA をうまく使って進化していることを示しており、面白い。

カテゴリ:論文ウォッチ

8月12日 新皮質ミクログリアの性質は神経細胞により決められる(8月10日 Nature オンライン掲載論文)

2022年8月12日
SNSシェア

ミクログリアは、胎児発生の早い段階で脳に分布し、脳内で独立したシステムを形成し、マクロファージと同じように、貪食や炎症に関わっている。これに加えて、神経細胞やアストロサイトとの相互作用を通してネットワーク形成や、神経活動に影響する。2019年に Science に発表されたカリフォルニア大学サンフランシスコ校からの論文によると、自閉症患者さんの皮質表層部のミクログリアの遺伝子発現が、典型人の同じ場所のミクログリアとは異なることが示され、神経活動への重要な役割が示唆されている。

今日紹介するハーバード大学からの論文は、皮質各層のミクログリアの分布や性質が、それぞれの層に存在する神経細胞との相互作用で形成される可能性を示した研究で、8月10日 Nature にオンライン掲載された。タイトルは「Pyramidal neuron subtype diversity governs microglia states in the neocortex(新皮質の錐体神経細胞の特性がミクログリアの性質を支配する)」だ。

新皮質は発生過程で異なる性質を持つ神経細胞からなる6層の構造を持っている。この研究では層構造とミクログリアに注目し、生後7日では新皮質各層に均一に分布しているミクログリア細胞が、14日目になると上層から下層に移るほど密度が低下することを発見する。

この変化が、各層の錐体細胞との相互作用によるのではないかと着想し、まず各層ごとにμグリアを分離し、single cell RNA sequencing(scRNAseq) で調べている。言うは易いが、各層を切り出し、ミクログリアをFACSで分離し、scRNAseqに供するのは大変な作業だ。

この甲斐あって、1-4層のミクログリアと、5層、6層のミクログリアの遺伝子発現が大きく変化していることを突き止める。重要なのは、例えば錐体神経の運命決定に関わる Fezf2 をノックアウトし、特に5-6層での神経分化が変化するマウスでは、ミクログリアの分布も変化することから、基本的には神経細胞によってミクログリアの性質が決められていることがわかる。

この研究では、scRNAseq のデータを組織上で再確認するために、組織上で75種類の遺伝子発現を同時に調べることが出来る MERFISH と呼ばれる方法を用いて、各層の神経細胞とミクログリアが協調して変化していることを明らかにしている。

最後に、各層の錐体細胞についても scRNAseq を用いて遺伝子発現を調べ、ミクログリアのデータと対応させ、相互作用に関わる可能性のある分子を特定している。結果はどれか一つの組み合わせというものではないが、それぞれの層で対応する表面分子の組み合わせが特定できる。この研究では、これまで発表されているデータに基づき、これら相互作用分子の組み合わせを5種類に分類し、上層部のみで起こる組み合わせ、下層部のみで起こる組み合わせ、そして全層での相互作用に関わる組み合わせが存在して、それぞれの層でのミクログリアの性質が決まっていくことを明らかにしている。その組み合わせの中には、L2/3 層で神経細胞の発現するセマフォリンとミクログリアでのプレキシンの組み合わせなど、発生学的には面白そうな組み合わせも示されているが、この研究ではそれぞれの分子を欠損させて、ミクログリアとの相互関係が壊れるかどうかは調べていない。

以上が結果で、最終的には新皮質各層のミクログリアが錐体神経の支配を受けていることを現象的に示した研究で、それぞれの相互作用の機能的意味については今後の研究が必要だ。ただ、手作業と、最新のテクノロジーを組み合わせた、ダイナミックな研究で、最初に述べた自閉症のミクログリア変化を調べる手がかりになる重要な研究だと思う。

カテゴリ:論文ウォッチ

8月11日 抗がん剤を結合させた抗HER2抗体は、大きな分子量にもかかわらず、脳血管関門を通過し、乳ガンの脳転移に高い効果を示す(8月8日 Nature Medicine オンライン掲載論文)

2022年8月11日
SNSシェア

現在のネオアジュバント治療と手術療法を組み合わせた徹底的な治療法により、乳ガン治療の成績は格段に上昇しているが、それでも、ネオアジュバント治療以前の治療法を受けた患者さんを中心に、脳転移を含む再発例は多い。中でも脳転移では、HER2を発現しているケースでも、抗体薬のような大きな分子の透過性は悪いと考えられることから、従来のシステミックな治療は難しいと考えられていた。

最近乳ガンに関しては新しい薬剤の開発が続き、患者さんの励ましになっているが、その中でも第一三共が開発した、HER2に対する抗体にトポイソメラーゼ阻害剤(deruxtecan)を結合させ、乳ガン細胞に抗体が結合して取り込まれると、細胞内でリンカーが外れてトポイソメラーゼが細胞の増殖を阻害する抗体―薬剤結合薬(ADC)は、転移性の乳ガンに対する強い効果を示すとして世界中で利用が始まっている。ただ、効果を高めるため1分子の抗体に8分子の deruxtecan が結合している大きな構造を持つため、脳転移には効果がないのではと言われていた。

今日紹介するウィーン医科大学からの論文は、それまで HER2 抗体を含む様々な治療の効果が見られ亡くなった15人の脳転移の患者さんに、DS8201 を3週間に1回、通常治療に使われるのと同じ量(5.4mg/Kg)の治療が脳転移にも高い効果を示すことを示した第二相治験で8月8日 Nature Medicine に掲載された。タイトルは「Trastuzumab deruxtecan in HER2-positive breast cancer with brain metastases: a single-arm, phase 2 trial(Trastuzumab deruxtecanの脳転移を起こした HER2 陽性乳ガンへの効果:単一群第二相治験)」だ。

基本的には、このような大きな分子が脳血管関門を超えて脳組織に移行するとは考えにくいのだが、結果はこの予想を覆し、DS8201 が病気の進行を止める高い効果を示すという結果だ。

評価基準はシンプルで、ガンが進行したかどうかだけを評価している。従って、脳転移巣が大きくならなければ、progression free であると判断される。論文がオープンアクセスなので許されると思うので、結果をカットアンドペーストしておく。

この図は、治療によりガンがどの程度縮小したかをしらべた図で、右端の2例は完全に縮小したことを示す。また、左端の患者さんでも縮小はしていないが、ガンは大きくなっていないことを示している。

結果から予想できる、病気の進行を抑える期間は14ヶ月と計算されている。もちろん副作用も100%の患者さんで見られるが、これまでの DS8201 治療と大体同じと考えてよい。

以上が結果で、15例程度の少数例の、非無作為化試験という問題を踏まえた上でも、これまで脳血管関門を通るとして使われてきた薬剤より効果が高いのではと結論している。

おそらく乳ガン転移領域の脳血管関門が高分子を通過しやすくなっていると想像されるが、我が国で開発された薬でもあり、早期に治験を終えて、脳転移の患者さんにも利用できることを期待している。あるいは、すでに転移性乳ガンに対して認可されているので、そのまま適用を増やせばいいだけかもしれない。

カテゴリ:論文ウォッチ

8月10日 他種間交雑で導入された遺伝子動態を調べる(8月5日 Science 掲載論文)

2022年8月10日
SNSシェア

ネアンデルタール人と現生人類がきびすを接して生活していた頃、他種間ではあるが交雑が行われ、その痕跡が私たちのゲノムの中にレガシーとして残っていることは今世紀最大の発見の一つだ。流入したネアンデルタール人の遺伝子は、通常なら組み換えを通して、一人一人のゲノムの中では薄まるが、集団としては広く分布していく。実際には様々な選択圧に加えて、組み換え時のホモロジーが低いことから、現生人類ゲノムから除去されやすい。これらを勘案して、我々の先祖の歴史をゲノムから想像するのだが、実際にグループ間の交雑がどのように行われるのかなど、短い期間の交雑データーがほしいところだが、全く不可能だ。

今日紹介するデューク大学からの論文は、ケニア・アンボセリ国立公園に生息する黄色ヒヒの群れを9世代50年にわたって記録し続け、そこで行われたアヌビスヒヒとの交雑で流入したゲノムの動態を調べた本当に頭が下がる研究で、8月5日号の Science に掲載された。タイトルは「Selection against admixture and gene regulatory divergence in a long-term primate field study(長期にわたる霊長類の野外研究により、他種間交雑と遺伝子発現の多様性が選択圧にさらされていることがわかった)」だ。

この研究の素晴らしいのは、50年前に将来の科学解析の可能性をよく考え、黄色ヒヒとアヌビスヒヒの生息域の境界に住むグループを選び、黄色ヒヒの集団の家族歴を全て記録するとともに、血液サンプルからゲノムを調べ、流入したアヌビスヒヒのゲノムが選択される動態を調べたことだ。観察当初は、黄色ヒヒだけのグループに、1980年ぐらいから後で、ゲノムからアヌビスヒヒと交雑したことがわかったはぐれザルが合流する歴史などが記録され、そこからアヌビスヒヒのゲノムを持つ現集団が出来ていく過程が追えている。我が国でも長期的視野に立つ研究の重要性が強調されるが、私が務めた京大で霊長類研究所のリストラを平気で行う様子を見ると、我が国の長期的視野などお題目に過ぎないこともよくわかる。

データを見ると、さらにこのグループの長期的計画のすごさを実感する。元々アンボセリの西と東に完全に分離されているアヌビスヒヒと黄色ヒヒのゲノムは、期待通り古代の交雑の痕跡はあるが、近年の交雑の痕跡は全くなく、いわば5万年前のネアンデルタール人と現生人類のような関係にある。ところが元々黄色ヒヒのアンボセリのグループには多量のアヌビスヒヒのゲノム流入を観察できる。即ち、他種間の交雑が境界では頻繁に行われていることを示している。

重要なのは、この研究では野外観察により詳細な家族歴が記録されており、ケースによっては他種間交雑による子供のゲノムも完全に把握できている。この結果、流入したアヌビスヒヒのゲノムを追うことで、相同性が低下することで、外来ゲノムが組み換え過程で自然選択される部位やレートが正確に計算でき、黄色ヒヒでは、アヌビスヒヒのゲノムは6%ほど相同性が低下しており、これがゲノムを排除する自然選択圧として働いている。まさに、ネアンデルタール人ゲノムについて想像されていることに一致する。

また、コーディング領域や、プロモーター領域は、種としての同一性を守る方向で選択されている。これを確かめるため、血液で発現している MRPL2 遺伝子の発現レベルを調べ、この領域にアヌビスヒヒのゲノムが入ると遺伝子発現が低下することまで確定している。即ち、両者が分離した後、それぞれが生息域に適応して獲得してきた形質を維持する方向に選択圧が働き、アヌビスヒヒのゲノムが排除されていることが、はっきりわかる。

以上、これまで我々の中にあるネアンデルタール人やデニソーワ人ゲノムについて想定されていたことと同じだが、家族歴が加わることで、想定が証明レベルに高まっている。しかし、このような研究を支える大学や国が存在することが、科学力だと思う。

カテゴリ:論文ウォッチ

8月9日 バクテリオファージで炎症性腸疾患を治療する(8月4日号 Cell 掲載論文)

2022年8月9日
SNSシェア

以前、顧問先の企業の研究員に、バクテリオファージで細菌叢を操作することは可能か聞かれたことがある。細菌叢は複雑で一つの属でも複雑な構成をしているため、例えば大腸菌だけを相手にする実験的なファージ研究とは全く異なる難しさがあること、さらに運良く細菌を特異的に溶菌させても、耐性がすぐに現れるのではと答えたことがある。

しかし、こんな常識を全く気にせず、炎症性腸炎をプロモートする細菌をバクテリオファージで除去する課題にチャレンジしたのが、今日紹介するイスラエル・ワイズマン研究所からの論文で、8月4日号 Cell に掲載された。タイトルは「Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation(ヒト炎症性腸炎と連関する腸内細菌叢をファージを組み合わせて標的にすることで腸炎の治療が可能)」だ。

これまで、多くの研究により、クローン病や潰瘍性大腸炎などの炎症性腸炎(IBD)に、腸内細菌叢が関わっていることが明らかになっている。即ち、細菌感染症ではないが、細菌により免疫系が炎症型へと傾くと考えられ、実際正常人の便を移植することで、症状が軽快する例が示されてきた。とすると、IBD で腸の炎症を後押しする特定のバクテリアがいるかもしれないと、これまで探索されている。

この研究の前半は、IBD で特に増加しており、無菌マウスに移植したとき、腸内免疫システムを炎症型へと変化させている細菌の探索を行い、最終的に腸内常在菌の Klebsiela pneumonie(Kp)を特定する。事実、Kp はこれまで公開されている IBDコホートの腸内細菌叢で増加しており、マウスに移植するとインターフェロンγ を分泌する炎症型CD4T細胞が増加、炎症を抑える IL10 をノックアウトしたマウスに Kp を移植すると、大腸に強い炎症が起こることを確認している。

標的細菌が見つかると、細菌を溶菌するファージの特定に移る。基本的には、他のバクテリアに対する作用は全て気にせず、Kpの分岐群を溶菌させられるかどうかに絞り、ファージを探している。ファージの標的になったバクテリアの方も当然耐性を獲得してくるが、この変異体にも作用のあるファージをさらに探して、最終的に試験管内だけでなく、マウスに経口投与してKpを減少させ、しかも腸管内で一定期間維持されるファージの組み合わせを突き止める。

あとは、マウスに抗生物質を投与した後、Kpを移植して IBD を起こす実験系で治療効果を確かめている。結果はドラマチックなものではなく、治療群で一定の効果が見られている。

最後に、人間への応用を考え、消化管での環境に耐えられることを確認した後、胃酸分泌を抑える条件で人間に投与し、腸管内でファージが10日以上維持されることを確認している。

結果は以上で、あとは SPFマウスに Kp を投与するというマウスのモデル実験ではなく、実際 Kp が増えて、かつ IBD が発生している患者さんを選んで治療できるか、臨床研究が出来るだけとなった。個人的には、そう簡単ではないと思うが、結果をまとう。

カテゴリ:論文ウォッチ
2025年1月
« 12月  
 12345
6789101112
13141516171819
20212223242526
2728293031