10月10日 ガン局所でキラー活性を高めるバクテリア(10月6日 Nature オンライン掲載論文)
AASJホームページ > 新着情報

10月10日 ガン局所でキラー活性を高めるバクテリア(10月6日 Nature オンライン掲載論文)

2021年10月10日
SNSシェア

バクテリアで合成しても活性が維持されるラマやラクダのH鎖抗体遺伝子を組み込んだバクテリアを、ガン局所に投与して、ガン細胞を貪食させる活性を上げたり(https://aasj.jp/news/watch/10496)、チェックポイント治療を局所で行う治療法(https://aasj.jp/news/watch/12384)についてはすでに紹介した。この背景には、ウイルスなどよりはるかに安価に大量生産が可能なバクテリアを使うことで、ガンの免疫治療をより身近で出来る期待がある。その意味で、早く実現して欲しいし、もっと多くの方法が開発されることを願っている。

今日紹介するスイス・ルガノ大学からの論文は、バクテリアをガン局所に送り込んで、代謝を変化させることでキラー活性を高め、ガンを抑制するという研究で、10月6日Natureにオンライン掲載された。タイトルは「Metabolic modulation of tumours with engineered bacteria for immunotherapy(免疫治療のために操作したバクテリアを用いてガンの代謝を変化させる)」だ。

同じグループはL-アルギニンを投与するとガンに対する免疫を高められることを2016年Cellに発表している(http://dx.doi.org/10.1016/j.cell.2016.09.031)。メカニズムとしては、特に活動性の高いキラーT細胞の糖分解を抑え、ミトコンドリアの酸化的リン酸化を高める作用がアルギニンに存在し、さらにアルギニンを感知する転写因子を介して細胞死が抑制されることで、メモリー型のT細胞が多く合成されるという話だった。実際、メトフォルミンがガン免疫を高めるという話も、同じラインの話になる。

それならなぜアルギニン投与が普及しないのか不思議だが、2-16年の実験で使われたアルギニン量は、人間にするとなんと一日150gで、現実的ではなかった。もちろんガン局所への投与も行われているが、拡散が早くて効果はほとんどなかったようだ。

そこでこのグループは、体内に注射しても毒性が少ない大腸菌のアルギニン合成系を操作して、ガン細胞から発生するアンモニアを利用して局所でアルギニンを合成できるバクテリアを遺伝子操作で合成している。

原理については2016年にすでに確認しているので、後は期待通り働くかだけが問題になる。残念ながら全てマウス実験系の話だが、

  1. ガン局所に注射すると、そこで増殖し細菌数が維持され、局所でアルギニンを持続的に合成する(腫瘍あたり15μg)。
  2. 大腸ガン細胞株MC38を移植する実験系で、ガン局所にこのバクテリアを投与し、同時にチェックポイント治療を行うと、チェックポイント治療だけの群と比べると、ガン増殖を抑制し、70%で完全にガンが消失した。
  3. このバクテリアを注射したガン局所には多くのT細胞が浸潤してくる。
  4. 一度ガンを消滅させた後、もう一度ガンを移植して免疫記憶の成立を見ると、アルギニンバクテリアとチェックポイントを用いた群では、免疫記憶が成立して、2回目に移植したガンの増殖を抑える。
  5. アルギニンバクテリアを全身投与すると、ガンのサイズが大きい場合、ガン局所に定着し、ガン免疫を高められるが、現在のところ局所投与ほどの効果はない。
  6. 局所投与の副作用はないが、全身投与だと体重減少など副作用が見られる。

以上が結果で、人間の場合根治という贅沢は望まないでもいいので、是非治験を進めて安価なガン免疫治療につなげて欲しい。

さて2回バクテリアとガンについての論文を紹介して、なんと2編ともイタリア語圏のスイスからの論文であることに気づいた。これに意味があるのかどうかは全くわからないが、偶然にしても面白い。

カテゴリ:論文ウォッチ

10月9日 アンドロゲンを合成して前立腺ガンを助ける細菌(10月8日号 Science 掲載論文)

2021年10月9日
SNSシェア

今日から2回、ガンと細菌との相互作用についての論文を紹介する。

今日紹介する南スイスガン研究所からの論文は、前立腺ガンの治療として行われる去勢などのホルモン治療によって腸内細菌叢に現れるバクテリアが、なんとアンドロゲンを合成して、ガンの増殖を助ける可能性を示唆した研究で、10月8日号のScienceに掲載された。タイトルは「Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis(共生バクテリアがアンドロゲン合成を通して前立腺ガンのホルモン療法抵抗性に関わる)」だ。

元々ガンと腸内細菌叢は重要なテーマとして多くの研究が進んでいる。おそらく、この研究もその一環として行われたのだろう。実験的前立腺ガンが、去勢手術後徐々に抵抗性を獲得する現象に細菌叢が関わるのではと考え、まず細菌叢全体を抗生物質で除去すると、ガンの増殖が強く抑制されることがわかった。一方、去勢療法を行わないケースでは抗生物質の効果はない。すなわち、去勢により腸内細菌叢が変化し、この変化が前立腺ガンを助けることが示唆される。そこで去勢手術有り無しで細菌叢の変化を調べた結果、去勢療法により、Ruminococcus gnavusとBacteroides acidifaciensの2種類が特に増殖することを発見する。

次に、細菌叢が前立腺ガンの増殖を促進しているか調べる目的で、便移植実験を行うと、去勢後の便はガンの増殖を促進すること、また去勢後の便の代わりに、Ruminococcus gnavusを投与しても同じようにガンの増殖を促進することを突き止めている。

この原因について、まず細菌叢の変化による免疫やメタボロームの変化に起因する可能性を追求しているが、明確な因果性は認められなかった。そこで最後に、腸内細菌叢が前立腺ガンの増殖を促進するアンドロゲンを合成するのではと着想し、去勢マウスでの抗生物質投与の影響を調べると、抗生物質投与で血中アンドロゲンが低下することを突き止める。すなわち、細菌叢がアンドロゲンを合成している。

そこで、テストステロンの材料になるpregnenoloneとバクテリアを培養する実験から、去勢により細菌叢で増えてくるB acidifaciensやR gnavusなどがテストステロン合成能があることを示している。またアイソトープ標識したpregnenolone投与実験から、体内でもテストステロンへの変換がバクテリアにより行われていることを確認する。

最後に、同じことが前立腺ガン患者さんでも起こっているのか調べる目的で、去勢後に再発した患者さんの便を調べると、テストステロン合成能を持つRuminococcusが上昇しており、この小さな差がガンの再発を助けている可能性を示唆している。

以上が結果で、結論だけ見ると恐ろしい気がすると思うが、治療という観点からは、最初からアンドロゲン受容体へのテストステロン結合を阻害する治療法を併用しておれば、この問題は起こらないことになる。現在の基本的治療法は、アンドロゲンを減らす治療が中心かと思うが、この研究が本当なら、テストステロンのレベルを細かくモニターするとか、腸内細菌叢を移植などで正常に保つ治療法、そしてアンドロゲン受容体阻害など、なんとか対応しようがあるように思う。

カテゴリ:論文ウォッチ

10月8日 リプログラミング問題 (10月14日号 Cell 掲載論文)

2021年10月8日
SNSシェア

山中さんが米国Wislerでの会議で初めてiPSの話を公開したとき、たまたま座長を務めていたが、あのときの会場の興奮は忘れることはない。しかし、日本に帰ってこの話を宣伝しても、「アーチファクトにすぎない」という厳しい反応が多かった。その後、外国であまり騒ぐのでJSTも支援が必要ではないかと考えたようで、当時の理事長が本当にノーベル賞級の仕事かとわざわざ聞いてきたのを覚えている。

その後の経緯はもう紹介する必要はないだろうが、発生学の原則に反するリプログラミング問題は常に厳しい批判にさらされてきた。ただ、山中iPSはリプログラミング問題を受容する閾値を下げたことは間違いない。その結果現在まで、様々なリプログラミング研究が発表されてきた。

特に最近のトピックスは、脳内で遺伝子操作を行うと、グリア細胞を神経細胞にリプログラムできて、パーキンソン病まで治療可能であるとする研究だ。もともと、アストロサイトと神経細胞が転換可能であることは、私が現役時代、Raffらにより試験管内で示されており、本当なら素晴らしいというイメージで見てきた。

今日紹介するテキサス大学からの論文は、脳内のグリア細胞を遺伝子操作で神経へリプログラミングできるという研究が、ほぼ全てアーチファクトを見ているに過ぎないことを示した研究で、10月14日号のCellに掲載された。タイトルは「Revisiting astrocyte to neuron conversion with lineage tracing in vivo(体内でアストロサイトから神経への転換を追跡した実験を再検討する)」だ。

はっきり言って、体内でのグリア・神経リプログラミング全否定の論文で、これまでの実験に使われた方法論を再検討し、結果は再現できるが、結果の解釈は完全に間違っていると結論している。

  1. 多くの実験で、アデノウイルスをベクターとして用い、グリア特異的プロモーターを発現に用いた遺伝子導入システムが用いられているが、遺伝子の発現がグリア細胞特異的という前提で全てが解釈されている。しかし、ゲノム操作で細胞系列をラベルした実験と組み合わせると、この前提が全く間違いであることがまず示されている。すなわち、グリア特異的と考えていた遺伝子操作が神経細胞でも起こっており、局所で現れた遺伝子導入された神経細胞は、元々神経細胞だったという話になる。
  2. 遺伝子転換に用いたNeuroD1は、神経分化に影響がない突然変異型でも、同じ実験結果が得られる。すなわち、NeuroD1本来の効果が現れたとは考えられない。
  3. これまで転換を誘導しやすくすると考えられている脳の損傷は、全くアストロサイトの分化に影響しない。
  4. ではなぜグリア特異的プロモーターが神経細胞で働いて、神経細胞を標識してしまうのか?これについては、アデノウイルスで神経に導入されたNeuroDが、アデノウイルス自体の刺激とともに、利用したGFAPプロモーターを神経細胞内でも活性化してしまって、あたかもNeuroDによって神経が誘導されたとように見えてしまう。
  5. これまではNeuroD1を用いる実験の否定だったが、さらに最近話題になった、クリスパーを用いてPTBP1をノックダウンする実験についても追試を行い、アデノウイルスを用いたノックダウン実験自体が再現できないだけでなく、ノックダウンできても神経転換は起こらないことを示している。

実際、PTBP1ノックダウン実験は、パーキンソン症状が治療できるというところまで示した研究で、これが全否定されたことの失望は大きいと思う。いずれにせよ、リプログラミングには常にこのような、時によってはねつ造とすら考えざるを得ない問題が伴うことを再認識させてくれる、面白い論文だった。

最後に個人的な印象だが、最初の頃の実験は別として、最近2年に集中しているNeuroDやPTBP1とリプログラミングの論文は、研究室の所在はともかく、全員が(今日紹介した論文も)中国名が責任著者を占めているのが気になった。おそらく、早く情報を仕入れて論文に仕上げるスタイルの研究が、中国ネットワークで形成されているように思う。まさに中国が科学大国になってきた証拠だが、このスタイルからはトップジャーナルの論文は出ても、山中さんのようなオリジナルな研究は出る確率は低いので、コップの中の嵐と冷静に見ておればいいだろう。

カテゴリ:論文ウォッチ

10月7日 一卵性双生児発生のエピジェネティックス(9月28日号 Nature Communications 掲載論文)

2021年10月7日
SNSシェア

一卵性双生児は、卵割した娘細胞が、それぞれ独立して発生を始めることから起こるが、これまでこの過程は全くランダムに起こる一種の事故のようなものと考えていた。ただ、専門家にとってはそれほど話は簡単でないようだ。というのも、独立した発生の開始は12%の妊娠で起こっているらしく、ほとんどは片方が発生を止めて消滅して終わる。ところが一部の妊娠では、最後まで発生が進むことから、この差を決める何らかの要因があると考えられる。

今日紹介するオランダ・アムステルダム自由大学からの論文は、一卵性双生児が発生する時期が、ちょうどDNAメチル化などエピジェネティックな再プログラムが進行する時期なので、一卵性双生児が発生するエピジェネティックな条件があるのではと着想し、一卵性双生児特異的なDNAメチル化パターンを探索した研究で9月28日号Nature Communicationsに掲載された。タイトルは「Identical twins carry a persistent epigenetic signature of early genome programming(一卵性双生児は持続する初期のゲノムプログラムのエピジェネティックな特徴を持っている)」だ。

この研究では双生児のエピゲノムを経時的に調べているコホート研究データに蓄積されたDNAメチル化部位(45万カ所)についてのデータを、一卵性双生児(MZ)と、二卵性双生児(DZ)で比較し、MZ特異的に変化が見られるメチル化部位を最終的に834カ所特定している。このうち、497カ所ではメチル化レベルが低下しており、一方残りの337カ所ではメチル化レベルが上昇している。

こうしてリストされたMZ特異的領域は、どのコホートでも同じようにリストされ、またこの中で発生したメチル化レベルの変化は、成長後安定して維持される。また、双生児同士を比べると、ほぼ同じメチル化サイトの変化を共有している。また、口腔粘膜細胞を用いて調べても同じ結果になる。

では、ゲノムのどどの部位でメチル化が変化しているのか?まず、メチル化が低下する部位はテロメアに近く、メチル化が上昇する部位はセントロメアに近い。すなわち、元々染色体が閉じられている領域に集中している。そして、多くは転写因子のプロモーター部位のCpGアイランドに集中しており、しかも発生初期に細胞の分化や増殖、あるいはカドヘリンのような接着を調節している遺伝子調節領域であることも示している。

最後に、実際の一卵性双生児ではないが、DNAメチル化によるインプリンティング異常により起こる発生異常、Beckwith―Wiedermann症候群の子供についてDNAメチル化部位を調べると、MZと同じメチル化パターンが見られることを示している。すなわち、Beckwith―Wiedermann症候群インプリント異常は、もともと発生初期のメチル化パターンのMZ型変化に起因しており、おそらくほとんどのケースでMZとして発生を始めるが、発生途中で片方が発生できなくなったと考えられる。

以上、ランダムな過程と思い込んで、考えもしなかった問題を、プロとしてエピジェネティックな原因を探索したことが素晴らしいと思う。とはいえ、ここで示された過程が本当にMZの原因になるかどうかは、全く解析されていない。要するに現象論だ。これを証明するためには、大変な努力が必要だが、MZ発生過程を調べるためだけにこの苦労を背負う研究者が本当に出てくるのか、難しいところだ。しかし、初期発生過程のエピジェネティック操作は、重要な分野として育つと思うので、その辺から、今回示された可能性の証明が出てくるように思う。

カテゴリ:論文ウォッチ

10月6日 ハンチントン病をビタミンでなおす (9月29日号 Science Translational Medicine 掲載論文)

2021年10月6日
SNSシェア

ハンチントン病のメカニズムについては理解が進んでおり、ハンチンティン遺伝子内のCAG繰り返し配列が増大して、生産されるタンパク質のポリグルタミンがタンパク質を凝集させ、結果細胞内に蓄積したタンパク凝集塊が、細胞ストレスを誘導し、神経変性に至ると考えられている。

このように、原因遺伝子がわかっているため、究極の目標としてCAGリピート数を正常化した遺伝子に戻す遺伝子治療、また当面これに変わるものとしてハンチンティン遺伝子の発現量を低下させる遺伝子治療の治験が進行している。

CAGリピート病で重要なことは、原因遺伝子が何であれ、実際に細胞死を誘導するのが、タンパク質の凝集を引き金とする細胞ストレス反応で、この過程を制御できれば病気の進行を遅らせることができる。

今日紹介するスペイン・マドリッド、オチョア分子生物学センターからの論文は、RNAのポリA添加部位に結合し翻訳レベルを変化させるCPEBの異常がハンチントン病(HD)ストレス反応の重要な要因であることを突き止め、この翻訳異常に起因するビタミン不足を補うことで、HDの進行を遅らせる可能性を示した研究で、9月29日号のScience Translational Medicineに掲載された。タイトルは「CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington’s disease(CPEBの変化による異常なmRNAポリアデニル化によりハンチントン病で発生するSLC19A3欠損症は治療可能)」だ。

ショウジョウバエを用いたモデルで、CAGリピート病ではCPEBの異常が起こることがわかっており、この研究ではまずHDの患者さんの線条体組織でのCPEBの発現を調べ、CPEB1が異常に上昇するのに対してCPEB4の発現が低下していることを発見している。

同じパターンがマウスのHDモデルで見られることを確認した上で、このCPEB1異常によりポリAの変化が見られるmRNAを調べると、ほとんどのmRNAでは変化がないものの、おおよそ9%のmRNAでポリAが短く、残りの9%で長くなっていることを発見している。

そして驚くことに、ポリAの長さの変化が見られるmRNAの多くが、HDだけでなく、アルツハイマー病やパーキンソン病で発現に変化が見られる遺伝子であることがわかった。すなわち、HDで見られるCPEBの変化により、神経変性疾患に関わる遺伝子のmRNAのポリAが選択的に変化させられることが明らかになった。またこれら遺伝子の多くでは、ポリAの長さが低下し、その結果翻訳が低下することを確認している。

今後ポリAに変化が起こった遺伝子リストについて、HDの病態を調べる必要があると思うが、この研究ではSlc19a3と名付けられたビタミンB1の細胞内へのトランスポーターに着目した。というのも、この分子の変異により脳基底核の変性が起こることが知られており、またこれをビタミンB1とビタミンB7の大量投与で抑えられることが知られているからだ。すなわち、HDでもSlc9a3変異と同じことが起こっている可能性がある。

実際、これらビタミンの代謝物の変化はHD患者さんやマウスモデルでも見られることから、マウスモデルを用いて生後3週目から飲み水を通してB1、B7の大量投与を行うと、線条体の萎縮を防ぎ、運動異常の出現をかなり抑えることができることを明らかにしている。

同じ改善は、HDマウス線条体にCPEB4を過剰発現させることでも見られることから、CPEB1とCPEB4のバランスを調整することで、ポリAの長さが正常に保たせられる可能性も示している。

以上、早期診断、早期治療開始が重要だが、HDをビタミン療法で治療できる可能性は画期的だ。さらに、他のCAGリピート病でも同じ可能性もあることから、変性疾患治療に大きな福音となることを期待したい。

カテゴリ:論文ウォッチ

10月5日 今年のノーベル賞から、炎症性の痛み(例えばワクチン副反応)になぜ女性は敏感なのかを考える(9月1日号 Neuron 掲載論文)

2021年10月5日
SNSシェア

今年のノーベル医学生理学賞は、TRPVやPiezo分子ファミリーの発見と痛み受容のメカニズムを解明したJuliusとPatapoutianに授与された(この研究の広がりについてはYoutubeで解説予定)。

今年のラスカー賞が人工RNAワクチンによるCovid-19の予防を理由に、KaricoとWeissmanに授与されたことから、ノーベル賞もという予想が多かったが、他のモダリティーのワクチンもほぼ同時に開発され一定の効果を発揮していること、またより長期の効果についての評価が必要なことから考えると、今年医学生理学賞には選ばないというのはノーベル賞ならの矜持であるように思える。しかし、mRNA技術の歴史とCovid-19への貢献を考えると、ノーベル化学賞は十分あり得るのではないだろうか。

そこで今年のノーベル賞と、Covid-19を掛け合わせたような論文を紹介できないだろうかと探してみたところ、ちょっと古いが9月1日号のNeuronに、女性はなぜ炎症性の痛みを感じやすいのかについて研究したデューク大学からの論文を発見した。タイトルは「IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice(IL-23/IL-17A/TRPV1経路がマクロファージと感覚神経を介して雌マウス特異的な痛みを発生させる)」だ。

今回、mRNAワクチンの副反応は、特に女性に強かったことがわかっている。これは、ワクチンによる自然免疫の刺激による炎症が原因と考えられるが、なぜ若い女性に副反応が強いのかを明確に説明することは難しい。

この研究では、炎症性サイトカインIL23をマウス足蹠に注射したとき、メスだけが痛み回避反応を示すという現象に着目し研究を始めている。

オスメスの差なので、当然女性ホルモンエストロジェンの作用が想定される。実際、卵巣除去したり、エストロジェンを抑えると、この痛みは消失する。一方、オスにエストロジェンを投与すると、オスも反応するようになる。さらに、男性ホルモン、テストステロンがメスの痛みを軽減することも確認している。

今回のノーベル賞でもわかるように、炎症であっても痛みはTRPV1やTRPVA1を発現する神経細胞を介して誘導される。また、カプサイシン刺激を指標にTRPV1がクローニングされたことからわかるように、TRPVは化学的刺激でもチャンネルが開くことがわかっている。この研究ではIL-23により誘導される痛みがTRPV1を介していることを確かめた後、IL-23とTRPV1刺激をつなぐメカニズムを探索し、最終的にIL-23がマクロファージを刺激しIL-17を分泌させ、このIL-17が直接TRPV1の刺激として働くことを突き止めている。

詳細を省いて、この論文が示したシナリオをまとめると次のようになる。

元々メスのマクロファージは、刺激によるIL-23の分泌が多い。すなわち、メスはIL-23経路の炎症に高い感受性を持つ。そしてIL-23は周りのマクロファージを刺激してもう一つの炎症性サイトカインIL-17を分泌させ、このIL-17が直接神経細胞のTRPV1に作用し、興奮を誘導する。ただ、IL-17によるTRPV1神経興奮は、メスの神経細胞で閾値が低く、これはサルでも人間でも同じだ。

事実、エストロジェン受容体を欠損した神経細胞では、IL-17による痛み刺激だけでなく、TRPV1を刺激する化学物質カプサイシンにより誘導される痛みも低下している。 以上のことから、メカニズムはわからないが、エストロジェン受容体で神経細胞内に誘導される何らかの分子により、IL-17やその他の化学物質に対するTRPV1刺激反応の閾値が低下し、痛みがメスでより強く感じられることになる。

是非Youtubeで解説したいが、TRPVはメカノセンサーとしての役割だけでなく、特に炎症での様々な役割が注目されている。この研究もこの線上にあるが、IL-23/IL-17/TRPV1経路に見られたメス特異的感受性の上昇は、Covid-19ワクチンで多くの女性が経験した副反応の一部を説明できるかもしれない。

もし今回ノーベル賞を受賞した研究の広がりを感じてもらえれば幸いだ。

カテゴリ:論文ウォッチ

10月4日 青と緑が区別される条件(9月27日 Scientific Reports オンライン掲載論文)

2021年10月4日
SNSシェア

最近交差点の信号の色が、緑から青に変わってしまったように思う。おそらくLEDで発生しやすい波長を使うようになった結果だと思うが、日常会話では「青信号」と言っても「緑信号」とは言わないので、言葉と現実が一致してきたと言えるのかもしれない。

実際、緑と青の区別は難しい。夏木々の緑が深まったとき、私たちは「緑緑した」という代わりに「青々した」と表現する。野菜だって「緑もの」とは言わず、「青もの」と表現している。この不思議をじかで感じるのが白内障だ。ちょうど一年前、両眼の白内障の手術を受け、人工レンズに入れ替えたが、手術以前の世界が全て黄色の色素で染められていたことに気づいた。すなわち白が黄色がかって、そして青が緑がかって見えていた。結局、緑と青の区別は絶対的ではない。

今日紹介するフランス・リヨン大学からの論文は、青と緑の実際の色の区別と、それを表現する言葉について、相関を調べた論文で、研究としては小ネタといえるかもしれないが、楽しく納得できる研究で、9月27日Scientific Reportsに掲載されている。タイトルは「Environment and culture shape both the colour lexicon and the genetics of colour perception(環境と文化が色についての語彙と、色認識の遺伝に関わる)」だ。

以前から、語彙上で青と緑の区別が存在しない言語があることが知られていたようだ。特に、赤道直下や北極圏によく見られることから、おそらく紫外線への暴露と関係があるのではと考えられてきたようだ。すなわち、一種の白内障状態が起こって、黄色の色素が青の認識を邪魔しているというわけだ。ただ、言語自体、その土地で純粋に生まれたかどうかは、歴史をたどって調べる必要があり、また民族間の交流でも変化する。もう一つ重要なのは、青と緑を区別する必要がある環境かどうかも問題だ。

この研究では、32種類の言語系統に属する142の集団で、UVだけでなく様々な要因を調べ、青と緑が区別されない言語の条件を調べている。

様々な条件と区別の有り無しとの相関係数を計算した結果、緯度(=紫外線照射)とともに、青の表現が当てはまる湖からの距離、に加えて、言語を利用する集団の大きさ、そして気候(特に湿度)が、語彙上での青と緑の区別に関わることを明らかにしている。そして、これらの相関を集めることで、ほぼ正確にその言語に青と緑の区別があるかを予想できることも示している。

この研究ではさらに進んで、紫外線のような環境が、色覚の多様性を抑えることで、遺伝的な色覚異常と相関するかまで調べ、青と緑を区別しない民族では、色覚異常が少ない点にまで言及しているが、個人的には行き過ぎで、このままだといい論文にはならないように思う。

とはいえ、青と緑について、自分の経験も含めて考えることができた。

カテゴリ:論文ウォッチ

10月3日 慢性骨髄性白血病のスーパーエンハンサー治療(9月22日号 Science Translational Medicine 掲載論文)

2021年10月3日
SNSシェア

私の現役時代は、慢性骨髄性白血病(CML)に対しては骨髄移植以外の有効な治療法はなかった。しかし、白血病細胞のドライバーとして機能している転座による融合遺伝子Bcr-Ablの機能を抑制するimatinib(グリベック)が開発されてからは、病気の進行をほぼコントロールできるようになり、ガン標的薬の成功例として期待を抱かせるきっかけになった。もちろん、治療中にBcr-Abl分子の突然変異でimatinibの効果が落ちても、新しい世代のキナーゼ阻害剤が開発され、病気のコントロールは可能になっている。この結果、imatinib開発後もしばらくは、積極的に推奨された骨髄移植治療は、急性転化が起こるまで待つのが普通になっている。

とはいえ、グリベックでは白血病細胞が完全に消えるわけではない。ガンの幹細胞が残存し、薬剤をやめるとまた再発する。従って、Bcr-Ablを持つ全てのガン細胞を根こそぎ除去する方法の開発が現在も続いている。

今日紹介する中国済南大学からの論文は、ガンのスーパーエンハンサーに注目しCMLの根治を目指した研究で、結果は期待ほどではなかったが、着眼点は面白いと思った。タイトルは「Super-enhancer landscape reveals leukemia stem cell reliance on X-box binding protein 1 as a therapeutic vulnerability(スーパーエンハンサーの解析は白血病幹細胞の治療標的としてXBP1を明らかにした)」で、9月22日号のScience Translational Medicineに掲載された。

多くの転写因子が一つの遺伝子のプロモーターに集められるスーパーエンハンサー(SE)は、Richard Youngにより紹介されてから、多くのガンで重要な働きがあることが知られるようになり、またこれに関わるERG, CDK7、そしてBRD2/3などに対する阻害剤をガンの治療に利用する可能性が追求されている。

CMLはほぼ治療が可能なためだろうか、不思議なことにSEの解析が行われていなかったようだ。この研究では常法に基づいてCML細胞、あるいはそのCD34分画細胞をH3K27acヒストンコードに対する抗体で沈降し、高いシグナルが得られるSEを特定している。詳細は省くが、4例ともETV6やRunxなど、なかなか面白い顔ぶれで、再度CMLでこれらの分子の機能を調べるのは面白そうだ。

ただ、この研究では個々の遺伝子支配にこだわらず、まずSEを壊す影響について調べている。しかしこの実験も、通常よく使われるBRDを標的にしたBET阻害剤ではなく、CDK7阻害剤THZ1を用いている。詳細を省くが、結果はTHZ1を低い濃度で投与すると、グリベックと共同して白血病細胞の増殖がさらに低下し、またTHZ1処理、あるいはCDK7  ノックダウン細胞では、ガンの幹細胞機能が低下する。そして、期待通り多くの遺伝子の転写が抑制されるが、その多くはSE支配下にあると特定された遺伝子だった。

SEについての解析はここまでで、後はSE支配として見つかっていたXBP1遺伝子に着目し、この経路のCMLでの機能を調べている。ただ、XBP1は小胞体ストレスに対する中心分子で、小胞体膜上のIRE1によりmRNAがスプライスされることで、機能タンパク質が合成され多くのシャペロンを合成し、細胞をストレスから守る。従って、ガンでこの経路が発達していることは十分考えられ、XBP1やIREのノックダウンがCMLの増殖を抑え、またXBP1を過剰発現させるとTHZの効果がなくなるという結果をみても驚きはない。ただ、XBP1もガンではSEの支配下にあるのかと、納得はした。

おそらくXBP1ではなく、他のSE支配転写因子に白血病幹細胞を決める分子が潜んでいると思うが、それをSE解析で探ろうとした着眼点は面白いと思う。久しぶりにCMLの論文を読んだ気がする。

カテゴリ:論文ウォッチ

10月2日 細胞分化研究は進化し続けている(9月30日号 Nature 掲載論文)

2021年10月2日
SNSシェア

ゲノムに様々な転写因子が結合可能かどうかは染色体の構造で決まっていることが多く、染色体が閉じておれば、いくら結合サイトがあっても転写因子は結合できず、遺伝子は発現できない。染色体が開いているか閉じているかを調べる方法として、我々の時代はDNA分解酵素に抵抗性があるかどうかで調べる方法が用いられていたが、現在はトランスポゾンがオープンな染色体に飛び込むことを利用したATAC-seqと呼ばれる方法が利用されている。この手法については、2015年にこのHPで初めて紹介したが(https://aasj.jp/news/watch/3843)、一読したときから可能性の大きさを感じた。そのときの予感は的中し、今やsingle cellレベルでも染色体の状況を調べることができるようになっている。

今日紹介するニューヨーク大学からの論文は、介在神経の運命決定過程に焦点を絞って、single cell RNAseq(scRNAseq)とsingle cell ATAC-seq(scATAC)を組み合わせて、細胞分化過程でのクロマチン変化のダイナミズムを調べた研究で、細胞分化決定研究が大きく変化していることを覗わせる面白い研究で、9月30日号のNatureに掲載されている。タイトルは「Genetic and epigenetic coordination of cortical interneuron development(皮質の介在神経発生の遺伝的、エピジェネティック的協調)」だ。

これまで、scRNAseqやscATACを用いる論文は多く読んできたが、この研究のように両方の結果を統合して提示する努力はそれほど多くないと思うし、私にとってはこの論文が最初だと思う。もちろん全ての実験で、一つの細胞で両方のアッセイを組み合わせるのは難しいと思うが、一部の実験ではRNAseqとATACを同時に行っている。

さらに、神経発生では細胞が、分裂中か、分裂を終えたか、は重要な指標なので、これを区別できるマウスの脳を用いて解析を行っている。すなわち、最初から用意周到に研究が計画されている。

研究対象は、内側基底核隆起で分化増殖した後、皮質へと移動する2種類の介在神経(PVとSSTと呼んでおく)の分化決定過程で、マウス発生の様々な時期に脳から採取した細胞を、scRNAseqとscATACで解析し、後はその結果から、運命決定に関わる転写ネットワークがどう成立しているのかを解析している。

結果だが、

  1. 成熟介在神経の遺伝子発現パターンは、生後2日ぐらいから検出できるようになるが、その前は分化決定遺伝子もオーバーラップして発現し、様々なネットワークが混在している。
  2. 異なる方法でも、同じ分化の道筋を描くことができるが、分化決定に関わる遺伝子では、それを取り巻く染色体の構造が生後急速に固定される。その結果、染色体によるエピジェネティックな調節により、分化最終段階を安定化することができる。
  3. これまでPV介在神経の分化に必須とされてきたMef2cをノックアウトすると、実際にはPV細胞だけでなく、未分化段階やSST細胞の遺伝子発現パターンやクロマチン構造の変化を誘導していることがわかる。すなわち一つの転写因子の機能を知るためには、それ自体がどの分子を誘導するのかだけでなく、転写ネットワーク全体での関与を基盤に分化決定への寄与を算定する必要がある。
  4. Mef2cノックアウトのケースを例に、標的遺伝子からなる遺伝子ネットワークを理論的に構築することで、それぞれの遺伝子発現パターンから分化の道筋を予測できることも示している。

分化決定研究としては、常識的な結論なのだが、これを裏付ける実際のデータが、実際の遺伝子発現レベルと、それに関わる染色体構造の変化として得られている点が重要だと思う。この論文では、データの詳しい解析による発見とまでは至っていないが、このようなデータは重要な情報が満載で、是非分化決定に興味のある多くの人が利用して、大きな発見につながって欲しいと思う。

カテゴリ:論文ウォッチ

10月1日 エストロゲン受容体はRNA結合タンパク質として機能し、乳ガンの増殖に関わる(9月30日号 Cell 掲載論文)

2021年10月1日
SNSシェア

生体分子は、自由自在に進化し、一つの分子の中にいくつもの機能を持ち得ることはよくわかっている。それでも、馴染みが深く、詳しく研究が進んでいると思っていた分子が、予想外の機能を持っていることが明らかになり、驚かされることはしばしばだ。

しかし、今日紹介するカリフォルニア大学サンフランシスコ校からの論文を読んだ驚きは、これまでの比ではない。なんと、女性ホルモンとして知られるエストロゲンの受容体が、核内受容体としてエストロゲン依存性の遺伝子発現に関わるだけでなく、様々なmRNAに結合して、スプライシングや翻訳調節などの転写後の調節に関わることで、乳ガンの進行に関わっていることが示された。タイトルはズバリ「ERα is an RNA-binding protein sustaining tumor cell survival and drug resistance(エストロゲン受容体αはRNA結合タンパクとしてガンの生存と薬剤耐性の維持に関わっている)」だ。

私が気づいてないだけで、これまでもエストロゲン受容体α(ERα)が転写因子だけでなく、細胞質で働いているという報告はあったようだ。おそらくこの研究でも最初からこの可能性を追求したのだと思う。ERαを免疫沈降して、結合タンパク質を探すと、elongation factorやスプライシング因子の様な、RNA結合タンパク質と結合していることがわかった。

そこで今度はmRNAを沈降して結合タンパク質を調べると、ERαがRNAの3‘UTR領域の、特別なモチーフに結合していることを明らかにしている。また、ERαのドメイン解析から、RNA結合部位と、核内でDNAに結合するドメインが異なること、そしてRNA結合ドメインを欠損させると、核内での転写が正常でも、乳ガンの増殖が低下することを明らかにしている。すなわち、乳ガンではエストロゲン依存性の遺伝子を誘導すると同時に、RNA結合因子としてガンの増殖に関わっていることが明らかになった。

次に、ERαによるRNA調節とガンの増殖との関連を調べる目的で、ERα結合モチーフを持つ遺伝子を乳ガンで網羅的にノックアウトする実験を行い、なんと237遺伝子から転写されたRNAが何らかの形でERαにより調節されていることを突き止めた。

では、メカニズムがERαによる調節はどのようなメカニズムで行われているのか?これを知るため、ガン増殖との関係がはっきりしているXBP1、elF4G2、そしてMCL1を選んで、ERαの作用を調べると、XBP1では、オルタナティブスプライシングに、MCL1やelF4G2では、elongation factorとの結合を通して、翻訳促進に関わっている可能性を明らかにしている。また、その結果としてMCL1、XBP1、elF4G2のタンパク質の発現量が乳ガンで上昇していることも明らかにしている。

エストロゲンの機能阻害剤を用いて乳ガンの治療を続けると、耐性ガンがしばしば現れるが、最後に、この過程にERαのRNA結合活性が関わる可能性について調べている。詳細は省くが、タモキシフェン耐性を獲得した細胞でも、RNA結合能が欠損しているERαに遺伝子を変化させると、タモキシフェンが再び効くようになる。一方、RNA結合能が欠損したERαでは、様々な細胞ストレスによる閾値が低下し、細胞が死にやすくなることも明らかになった。すなわち、多くの分子がERαで誘導されると細胞のストレスが高まり、これを抑えるためにErαのRNA結合能が働いていることを意味する。そして、ガンはこの両面性を持ったERαの機能をうまく利用して、ERα阻害剤の作用をすり抜けていることを示している。

以上が結果で、今後乳ガンの治療を考えるときには、転写因子としての機能だけでなく、RNA結合能に対しても介入することで、より効果のある治療が可能になることを示している。

しかし、ERαに予想外のRNA結合能があるというだけでなく、ここまで詳細な機能解析が行われたことに、本当に驚いた。

カテゴリ:論文ウォッチ