4月25日    極めて実践的ガン免疫基礎研究(4月26日号 Cell 掲載論文)
AASJホームページ > 新着情報 > 論文ウォッチ

4月25日 極めて実践的ガン免疫基礎研究(4月26日号 Cell 掲載論文)

2022年4月25日
SNSシェア

臨床に利用される治療法は、それまでの膨大な基礎医学研究により支えられていることは言うまでもないが、基礎医学研究といえども明確に臨床応用を意識して実践的に考える基礎研究と、臨床応用可能性を意に介さず医学的現象を追求するタイプに分かれる様な気がする。もちろん、動物を使っていても徹底的に臨床に即した前臨床研究と、全く応用とは無関係な基礎医学研究の間に線を引くことは難しい。

今日紹介するハーバード大学、ダナファーバーガン研究所からの論文は、少しでも早く臨床に結びつけたいという気持ちが伝わってくる結構実践的な研究で、4月28日号 Cell に掲載された。タイトルは「Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis (NK細胞による免疫治療をミトコンドリアを介する細胞死を標的にすることで高める)」だ。

キラーT細胞やNK細胞を培養してガン患者さんに投与し、ガンを征圧する試みの歴史は長く、現在も臨床応用が進んでいるが、残念ながら普及するには至っていない。これは、原理は正しくても、メカニズムの詳細が理解できておらず、コントロールできない要因が多く残されているからだ。

NK細胞は、標的細胞が多い場合は、グランザイムBを分泌して、細胞のアポトーシスを誘導して殺すことが知られている。この時グランザイムBはミトコンドリア膜からチトクロームcを遊離させ、これがアポトーシスにつながることが知られていたが、この研究ではこの過程を、グランザイムBによるBID蛋白質の分解が引き金になり、それがBak/Baxを活性化し、ミトコンドリア膜電位を消失させ、細胞死を誘導することを明らかにしている。

さらに、NK細胞による標的細胞の障害は、all or noneといったものではなく、分泌されるグランザイムBの量に応じて蓄積していき、最終的に閾値を超えると細胞死が起こることも明らかにしている。

以上の結果を総合すると、NK細胞でガンを傷害しようとするとき、Bak/Bax活性化を阻害するBcl2などの分子を前もって抑制しておけば、少ないNK細胞、またグランザイムBでガンを殺すことが出来ることになる。すなわちBcl2阻害剤を使うことでキラー活性を高める可能性が出てくる。

ただ、残念ながらこのような阻害剤は、NK細胞も細胞死へと誘導してしまい、ただ阻害剤を使うだけではうまくいかないことがわかった。

ここからがこの研究の実践的な点で、NK細胞がBcl2阻害剤に抵抗力を持つ条件がないか調べている。すると、NK細胞を24時間、約2割の細胞が死ぬ程度の量のBcl2阻害剤で前処理することで、Bcl2だけでなく、Bcxl,、MCLなどのアポトーシス抵抗性蛋白質の発現が高まること、そして一度処理されると、後は抵抗性を獲得したまま増殖させることが出来ることを明らかにしている。

最後に、前処置してBcl2阻害剤抵抗性を獲得したNK細胞を、ガン細胞を移植したマウスに移植すると、ガンの増殖を強く抑えることが可能になることを示している。また、一般的なT細胞もグランザイムBを使っていることから、同じ方法で治療できる可能性があることも示している。

さらに、Bcl2阻害剤が効果がない腫瘍では、MCL阻害剤を組みあわせることでガンを抑えることが出来、どの阻害剤が最適化もBHプロファイリングと呼ばれる方法で前もって予測できることも示している。

このように、NKやキラー細胞を一度試験管内で増殖させる治療法については、キラー細胞の培養法を変化させて、Bcl2やMCLを誘導し、それをBcl2やMCL 阻害剤とともに投与することで、より強い効果が得られることを示している。

おそらくキラー細胞培養を行って居る研究室なら、明日からでも可能な方法なので、是非試していって欲しいと思う。

カテゴリ:論文ウォッチ

4月24日 アルツハイマー病の伸展様式(4月9日 Neuron オンライン掲載論文)

2022年4月24日
SNSシェア

アミロイドβ(Aβ)除去療法の治験結果が大きく期待を下回ったことから Aβ の役割を疑う声を聞くが、この考えはおそらく不勉強か偏った考えに基づく意見で、様々な状況から多くのアルツハイマー病(AD)で Aβ 蓄積が関与していることは間違いない。最も信じられている仮説は、Aβ 蓄積により神経の過興奮が誘導され、それが神経内の Tau を変化させて、Tau 蓄積と伝搬が起こるという考えで、これが正しいとすると除去療法はこの段階を狙って治療することが重要になる。

しかしこの仮説も、Aβ の蓄積場所と Tau の蓄積場所の違いなど、まだまだ説明がつかない点が多くあった。今日紹介する韓国・高麗大学とカリフォルニア大学サンフランシスコ校が共同で発表した論文では、様々なステージの AD について行った Aβ と Tau の蓄積を調べる PET 画像を詳細に解析することで、AD 伸展過程を解析、Aβ と Tau との相互作用の仕方について、明確な仮説を提案した論文で、4月9日 Neuron にオンライン掲載された。タイトルは「Regional Ab-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading(局所的な Aβ-Tau 相互作用がアルツハイマー病とTau の伝搬開始と伸展を誘導する)」だ。

これまでの研究で AD 症状の発展には Tau の細胞内蓄積と脳各部への神経細胞間伝搬による拡大が関わることが広く認められている。そこで、この研究ではまず様々なステージの数多くの患者さんの Tau の蓄積様態を調べ、Tau の伝搬過程を詳しく解析している。

この結果、これまで示されていたように Tau の蓄積は嗅内野から始まること、そして嗅内野から下側頭回に伝搬が進んだ後、急速に脳全体に広がることを明らかにしている。そして、テンソル MRI 法から特定された脳内領域間の結合を重ね合わせて、下側頭回がまさにネットワークのハブの働きをしていることを明らかにした。

次は、このパターンに Aβ 蓄積が手を貸しているかが問題になる。そのため、Aβ を調べる PET を用いてその蓄積を画像化し、Tau の画像と重ねると、Aβ の蓄積が下側頭回で始まるのに呼応して嗅内野から Tau が下側頭回へと伝播し、これをハブとして脳全体に広がることがわかった。すなわち、Aβ は、神経投射の端末にあろうと、神経細胞体にあろうと、神経細胞に働いて Tau の沈殿、伝搬を誘導する。その結果、最初嗅内野で Tau が蓄積を始めた後で、下側頭回に Aβ 蓄積が始まると、これに投射していた神経を伝って Tau が下側頭回へと広がり、その後下側頭回に蓄積した Aβ、あるいは下側頭回から投射した先で蓄積した Aβ の作用を受けて、Tau 蓄積が拡大するというシナリオが提案された。

結果は以上で、いくつかの脳画像を、多くの患者さんで、しかもステージを追って、場合によっては同じ人について病気の伸展に合わせて集めることで、仮説とはいえ、明確で説得力のあるシナリオができあがったといえる。

これを検証するのは簡単ではないが、幸い Aβ 除去のための手段が存在する。このシナリオが正しいとすると、嗅内野の Tau が下側頭回に広がるのを止めることが最も重要で、Tau ペットで嗅内野にシグナルが認められ、Aβ の蓄積が進んでない時点で、抗体など Aβ 除去剤を使ってみて、病気の進行や Tau の下側頭回への伸展が止まるかどうかを調べることが、仮説の検証になるように思える。是非新しいコホートでチャレンジしてほしいし、今からでも遅くないと思う。

カテゴリ:論文ウォッチ

4月23日 交通事故死亡者数を知らせる電光掲示板は交通事故を増やす(4月22日号 Science 掲載論文)

2022年4月23日
SNSシェア

道路標識は様々な情報をドライバーに提供し、本来は交通事故や違反運転を抑止するためにあるのだが、その効果が科学的に検証されているのか、あまり考えたことはなかった。しかし、このような生活の中での当たり前を、「本当?」と一度問い直すことは重要だ。

今日紹介するミネソタ大学からの論文は、この当たり前を疑い、道路での情報提供のあり方に一石を投じた研究で、4月23日号 Science に掲載された。タイトルは「Can behavioral interventions be too salient? Evidence from traffic safety messages(行動制限のための指示はドキッとさせてもいいのか?交通安全メッセージからの証拠)」だ。

以前は目にした記憶がはっきりあるが、最近利用する道路では交通事故や死亡数を示してドライバーの注意を促す掲示板を見た記憶がない。ただ、米国では州ごとの年間交通事故死を電光掲示することが行われており、この数字を見たドライバーが、より注意深く運転する行動変容が期待されている。

勿論数字を見たドライバーの意識は変化する可能性があるが、その結果事故は減るのかどうかをさらに確かめたのがこの研究だ。

といっても、事故死亡数掲示の影響を科学的に調べるのは簡単ではない。幸いテキサス州では、事故死亡数を月のうち1週間だけ表示するという変則的掲示が行われており、同じ領域で死亡者表示の有り無しを比べることが出来る。

この研究では、死亡者数表示期間に、電光掲示板から10km以内で起こった交通事故数を、電光掲示板以前の10km以内、あるいは掲示のなかった月と比べ、死亡者数を掲示することの効果をまず確かめている。

さて結果だが、交通局真っ青といえる結果で、表示のなかった週と表示のあった週で、同じ区間の事故数を比べると、表示区間の事故数は2.5%近く上昇し、表示から離れるほどその頻度は低下することがわかった。また、表示が10km以内で繰り返し掲示されると、その区間では事故数増加が維持されている。

すなわち、事故死者数を見た記憶が鮮明であればあるほど、事故につながるという結果になる。著者らは、この原因が事故死者数を知って驚いた結果、運転への集中が途切れ、事故が増えると考えて、これを裏付ける証拠を集めている。

一番強い証拠として、表示される数字が高いほど事故が多いことを示している。交通事故死者数は年ごとに変化するが、表示を見た後で見られる事故の増加は、死者数の多い年ほど増加しており、逆に死者数が平均より半減していた年では、表示区間での事故数は低下している。

さらに、テキサスでは前の月までの死者数総計が表示されることになっており、1年分が蓄積した12月の数字が最大になるが、これは1月に掲示される。そして、2月には1月の累計が表示される結果、数は大きく減少することになるが、事故数は1月が最も高く、2月が最も低い。この2種類の結果は、要するに数が大きい(驚きが大きい)ほど事故が増えることを示している。

さらに面白いのは、同じ事故でも車同士の事故が増加することで、単独事故のような大きなエラーではなく、小さなエラーにつながる運転能力への影響が大きいことを示している。

結果は以上で、死亡者数にとどまらず、要するに脅しでドライバーの注意を喚起し、行動変容を促そうとする手法自体が間違っていることを示している。しかし、この結果を国や自治体はどのように受け止めるのか、注意してみてみたい。

カテゴリ:論文ウォッチ

4月22日 ゲノムの傷も病気の過程を知る記録になる:アルツハイマー病のケース(4月20日 Nature オンライン掲載論文)

2022年4月22日
SNSシェア

単一細胞のゲノム解析手法がいくつも開発されたおかげで、体細胞突然変異解析についての論文を目にする機会が増えてきた。先日は、肺上皮細胞で、老化による突然変異蓄積に加えて、喫煙者ではタバコによる違うタイプの変異が時間とともに増加することが示された(https://aasj.jp/news/watch/19509)。このような論文を読むと、DNA は遺伝子とその発現をコードする情報と言うだけでなく、個々の細胞の経験を知るための情報としても使えることがわかる。

この、ゲノムに残された特殊な体験を、アルツハイマー病の興奮神経細胞で調べたのが、今日紹介するハーバード大学からの論文で4月20日 Nature にオンライン掲載された。タイトルは「Somatic genomic changes in single Alzheimer’s disease neurons(単一のアルツハイマー病神経に見られる体細胞ゲノム変異)」。

方法論などは前回紹介した気管支上皮細胞の単一細胞ゲノム解析と同じだ。ただ、アルツハイマー病(AD)で特に問題になる興奮神経細胞だけを FACS で純化して解析している。また、海馬の CA1 領域、及び前頭前皮質から細胞を調製し、AD の影響を、正常神経細胞と比較している。

結果は以下のようにまとめられる。

1)肺上皮で見られたように、年齢とともに神経細胞でもほぼ同じレートで変異が蓄積する。肺上皮と比べたときこの結果は極めて重要で、神経細胞はほぼ分裂しないと考えていいので、新陳代謝する肺上皮も、増殖しない神経細胞も、同じように変異が蓄積することは、変異が細胞の増殖ではなく、転写時に発生する DNA ストレスで起こっていることがわかる。これは突然変にのタイプからも推定される。以上、細胞が生きて DNA が転写される限り、変異は時間とともに蓄積する。

2)AD 患者さんの細胞でも、この自然に起こる変異の蓄積はほぼ同じレートで見られる。ただ AD の場合、これに加えて新しいタイプの変異が上積みされ、結果として AD では変異の数が増加する。特に海馬の CA1 で変位数の上昇が大きい。この上積み分の変異のタイプを調べると、酸化ストレスによる DNA 切断由来の変異であることがわかる。

3)最後に、これらの変異によって神経細胞活動に影響が出る可能性についても調べている。勿論、ゲノムを調べた細胞の機能を知ることは出来ない。従って全て推定だが、一つの遺伝子機能が完全に欠如した変異が、0.1%の確立で生まれること、そして転写時に変異が発生することから、当然神経細胞に必要な分子の発現に関わる変異が発生すると考えられることから、変異によって神経活動が低下する可能性は十分あると結論している。

結果は以上で、まだテクノロジーが安定しないのではと、なかなか鵜呑みにしづらいのだが、ゲノムに記されたエラー記録から病気を調べることが流行る気がする。

 

カテゴリ:論文ウォッチ

4月21日 ゲノムから顔の形態を再構成する(4月7日 Nature Genetics オンライン掲載論文)

2022年4月21日
SNSシェア

誰でも実感しているように、顔は間違いなく遺伝的要因が多い。ということは、私たちが親子をみて似ていると感じる特徴は、遺伝的に説明できる。同じように、日本人と中国人、アジア人とヨーロッパ人を見て私たちが感じる違いも、遺伝的に説明できると期待できる。これを裏返すと、ゲノムから顔の造作の大枠を再構成することは可能であることを意味する。

とすると、顔が一人一人異なることは、顔の形成に関わるゲノム領域に多様性が存在することを意味する。幸い、ゲノムの多様性を定義する一塩基多型(SNP)やその他の変位の多様性に関するデータベースは今も増大し続けている。もし、顔の造作を因数分解して、それぞれの因数が多様性を示すなら、ゲノム多型と相関を調べられるし、この対応が出来ると、ゲノム多型を、造作に関わる因数と相関させ、最終的にゲノムから顔を再構成することは可能なはずだ。

ここで必要なのは、顔の造作を様々な要素に分解して、それぞれの多様性から顔全体の多様性を分析することだが、これも顔認識研究のおかげで大きな進展を遂げている。その結果、ゲノムから顔を再構成するための研究が進んできている。

この代表がペンシルバニア州立大学から昨年1月に発表された論文で、顔の要素の多様性を説明するSNPを203種類特定している。この結果から、顔の造作に関わる遺伝子の多くは、発生やエピジェネティック過程に関わる、発生学者なら納得の遺伝子発現の多様性によること、そしてそれらSNPの関与を顔の要素の各部分と相関させられることが明らかになった(Nature Genetics 53, 45, 2021)。

今日紹介する中国上海の復旦大学からの論文は、ヨーロッパ人で行われた顔要素のゲノム多型解析を東アジア人に拡大し、以前の結果を確認するとともに、東アジア人とヨーロッパ人の基本特徴を持つ顔の再構成にチャレンジした研究で、4月7日 Nature Genetics にオンライン掲載された。タイトルは「Genetic variants underlying differences in facial morphology in East Asian and European populations(東アジア人とヨーロッパ人の顔の形態の違いに関わる遺伝的多様性)」だ。

著者の中には、2021年の論文にリストされた著者も存在し、手法などはほぼ同じと言える。ただ、東アジア人についての解析を行い、244種類のSNPを見つけたこと、さらに遺伝的多様性と関わる部位から顔の三次元画像を再構成する手法を試している点が新しい。

結果だが、

1)今回発見された244種類のSNPのうち、89種類だけがヨーロッパ人の203種類と重なっている。

2)逆に、残りの155種類は東アジア人特異的、そして2021年論文の114種類はヨーロッパ人特異的で有ることがわかる。

3)この両人種で全く異なるSNPは、基本的にそれぞれの人種でのminor allele frequency (major 以外の多型の頻度)が高い。すなわち、それぞれの人種だけで多様性が拡大している。

4)顔の要素に対応するSNPの多くは、中胚葉、神経堤などの発生やエピジェネティックスなどに関わる遺伝子で、これまでの研究を確認した。

以上が大体の結果だが、この研究では東アジア人とヨーロッパ人で頻度が最も大きく異なるトップ13種類のSNPを選び(鼻の高さや眉の間の距離に関わる遺伝子など)、その平均値から東アジアの顔とヨーロッパの顔を再構成している。示せないのが残念だが、SNPスコアだけから計算される違いを5倍して、より強調すると確かに私たちが持つ東アジア人とヨーロッパ人の差を反映している顔が示されており、納得する。

そして、これらの顔も、例えばヨーロッパでは鼻の高い形質が選択されてきたことをゲノムから示し、今後顔の形態はよりグローバルな方向へ進化する予感を示している。次は、ネアンデルタール人の顔を再構成して欲しい。

カテゴリ:論文ウォッチ

4月20日 自由に進化させられるサイトカインの設計(4月14日 Cell オンライン掲載論文)

2022年4月20日
SNSシェア

IL-2はT細胞の増殖を誘導するインターロイキンとして最も古くから利用されており、現在でもガンのキラー細胞試験管内増幅に利用されている。ところが、IL-2を生体内に投与する治療は行われていない。というのも、キラー細胞だけでなく、抑制性細胞、NK細胞、果ては単球までが刺激され、作用が多様すぎてコントロールがきかない。これは、IL-2に対する受容体が3種類もあり、その発現の違いにより、IL-2への様々な感受性が生まれるためだ。従って、IL-2やIL-15分子を変異させて、それぞれの受容体の刺激の仕方を変化させる、人工リガンドを用いて、キラー細胞だけ(https://aasj.jp/news/watch/9537)、あるいは抑制性T細胞だけ(https://aasj.jp/news/watch/14564)を増殖させる方法の開発が続けられ、実際に人体に投与するところまでこぎ着けている。

このように既存のインターロイキンに変異を導入する代わりに、それぞれの受容体に対する結合力の異なる抗体を用いて受容体からのシグナルを自由に調節できないか調べたのが、今日紹介するスタンフォード大学からの論文で、4月14日 Cell にオンライン掲載された。タイトルは「Facile discovery of surrogate cytokine agonists(サイトカインに代わる作用分子の簡単な開発)」だ。

これまでサイトカイン受容体に対する抗体を用いて、サイトカイン自身に代わるアゴニスト効果を得る研究は行われてきている。ただこの研究では、通常の抗体を用いず、抗体の重鎖変異部分(VH)だけを用い、VHをファージディスプレイと呼ばれる方法を用いて進化させ、これをリンカーで結合させることで、サイトカインの代わりにならないか調べている。

まずIL-2について可能性を調べている。IL-2は α、β、γ の3種類の受容体から出来ているが、細胞内へのシグナルは β、γ 受容体が集まることで発生する。そこで、βに対するVHと γ に対するVHをリンカーで繋いで、両分子を近接させる可能性を探っている。実際には、βに対する65種類のVH、γに対する50種類のVHを選んだ後、配列からそれぞれ4種類、6種類に絞り、全ての組み合わせで人工リガンドを作成、細胞の増殖に必要なSTAT5活性能力を指標に10種類に絞って、様々な活性を調べている。

当然膨大な結果なので、要点をまとめると次のようになる。

1)刺激により誘導される転写因子を調べると、IL-2に比べて多様な刺激が発生している。例えば、STAT5は活性化されているが、STAT1は全く活性化されないといった変化が、VHリガンドでは得られる。

2)この違いは、VHリガンドにより誘導される β、γ 受容体の構造が大きく異なることに起因している。すなわち、受容体の集り方を変化させることで、細胞内のシグナルを変化させられる。

3)その結果として、T細胞やNK細胞の異なる活性を引き出すことが出来るリガンドを設計できる。例えば、NK細胞だけを強く活性化したり、エフェクターT細胞やメモリー細胞を別々に刺激することが出来る。

今後、β に対するVHだけを組み合わせたり、γ に対するVHだけを組み合わせたりすることで、さらに自由に活性を調節できる可能性がある。

これを示すために、この研究では β に対するVHに、IL-2とは異なるIL-10受容体に対する抗体を組みあわせるリガンドを作成し、これによりCD8は増殖させるが、CD4は全く増殖しないリガンド作成に成功している。

また、2つのインターフェロン受容体に対する異なる結合力を持ったVHを組みあわせたリガンドを設計して、抗ウイルス活性ではインターフェロンに匹敵するだけでなく、問題になる炎症性サイトカインをほとんど誘導しない新しいリガンドの作成にも成功している。

以上が結果で、VHを徹底的に進化させた後(あるいは、進化の結果、袋小路に入った受容体システムの進化を巻き戻しているのかもしれない)目的に合った分子を選択することで、従来の方法より遙かに自由にシグナルを設計できるリガンド作成方法が可能になったことを示す、重要な研究だと思う。

カテゴリ:論文ウォッチ

4月19日 体細胞突然変異は寿命のバロメーター(4月13日 Nature オンライン掲載論文)

2022年4月19日
SNSシェア

昨日は気管上皮細胞に蓄積する突然変異を single cell レベルの全ゲノム配列決定法を用いて調べる研究を紹介した。単一細胞の突然変異を特定できるレベルまで、極微量DNA解析法が進展してきていることを示しているが、対象にする細胞数が多くなければ、単一細胞にこだわらなくても、突然変異の蓄積を調べる方法がある。英国サンガー研究所で開発された方法で、固定された組織から特定の細胞片を切り出して、そこから作成したゲノムライブラリーの配列から、ゲノムあたりの突然変位数を調べる方法だ(Nature Protocols vol16, 841,2021)。この方法だと、DNA が分解していないフレッシュな組織をすぐ固定することが出来れば、いつでもゲノム解析を行うことが出来、今後研究対象を拡大するのに役立つ。

今日紹介するのは、同じサンガー研究所からの論文で、この方法を使って様々な哺乳動物腸管のクリプト組織の突然変異を測定し、突然変異の起こりやすさと寿命や動物のサイズとの相関を調べた研究で4月13日 Nature にオンライン掲載された。タイトルは「Somatic mutation rates scale with lifespan across mammals(体細胞突然変異発生率が哺乳動物の寿命と対応する)」だ。

この研究では16種の哺乳動物について、死の直後大腸バイオプシーを行い、フレッシュな組織を固定保存した後、大腸の一個のクリプト組織をレーザーで切り出し、ゲノム解析に供している。一つのクリプトは、多くの場合一つのクローン由来と考えられるので、変異が薄まらず検出することが出来る。

16種類の哺乳動物には、定番のヒトやマウスに加えて、キリン、ライオン、トラ、イルカ、キツネザルなど、フレッシュな標本採取に苦労したと思われる動物が含まれている。おそらく、様々なところに網を張り巡らせて、動物が死亡した直後の穿刺針によるサンプリングを行っていると想像する。さらに、この中にはガンが起こりにくい動物として有名で、最近熊本大学の三浦さんの研究で、その原因が自然炎症メカニズムの欠損にあることが明らかになったハダカデバネズミも含まれている。

サンプリングと言い、方法開発と言い、大変な努力の結果の論文だが、結果は極めてシンプルだ。

1)異なる年齢でサンプリングが出来た、ヒト、犬、マウス、ハダカデバネズミでの突然変異蓄積は、昨日の論文と同じで、完全に年齢と比例する。

2)突然変異の起こり方は、ほとんどの種で同じだが、マウスやフェレットのように活性酸素によるダメージの多い動物がいる。またこのような動物は突然変異の蓄積率が高い。

3)これまで突然変異修復力と動物の大きさに相関があると考えられてきたが、全く存在しない。

4)一方、突然変異蓄積率と寿命はほぼ完全な負の相関が見られる。すなわち、突然変異が起こりやすいほど寿命が短い。

以上が結果で、特に4番目の結果は老化を考える上で極めて重要だと思う。実際データを見ていると、突然変異が2000から4000になったぐらいで、ほとんどの動物が死亡するという現実が示されている。

これまで突然変異は、ガンの発生を促すことで寿命を縮めるという意見もあったが、ハダカデバネズミもガンになりにくくても、突然変異は蓄積し、寿命を迎える。何故マウスと比べ、変異蓄積率が低いのかは研究が必要だが、この低い突然変異率が長寿をもたらしている。しかし、変異が一定のレベルに達すると、もはや戻ることは出来ない。

変異の蓄積により、多くの幹細胞システムで、クローン増殖が起こることが示されているが、おそらくこのような細胞に置き換わってしまうことで、システムの維持が不可能になるのだろう。

人間社会で、多様性を維持できず、特定の集団が優勢になると、組織が維持できなくなるのと同じだ。

カテゴリ:論文ウォッチ

4月18日 単一気管支基底細胞の全ゲノム解析からわかること(4月11日 Nature Genetics オンライン掲載論文)

2022年4月18日
SNSシェア

我々の細胞が様々な要因で突然変異を蓄積していることはよく知られているが、これらはほとんどガン細胞の解析から生まれた結果で、正常細胞でのデータはほとんどない。というのも、突然変異は細胞ごとに異なるため、解析に必要な細胞数を増やせば増やすほど、個々の突然変異は薄まってしまう。そのため、元々1個の細胞由来のガン細胞では詳しい突然変異解析が可能だが、正常組織では難しい。

では正常細胞での突然変異解析はどうすればいいのか?結局、個々の細胞を別々に解析して、集団解析から得られる正常ゲノムと比較するしかない。この目的のために、単一細胞の核を抽出し、その中に含まれる全てのDNAを増幅する方法が開発され、血液やバイオプシーサンプルについて、解析が行われ、確かに正常細胞でも突然変異が蓄積していることが確認できるようになった。

今日紹介するニューヨーク・アルバートアインシュタイン医科大学からの論文は、気管支からブラッシングと呼ばれる方法で気管細胞をこそぎとった後、基底細胞を培養して、健常単一細胞を調製、そのゲノムを細胞ごとに解析し、正常細胞で起こる突然変異を調べた研究で、4月11日 Nature Genetics に掲載された。タイトルは「Single-cell analysis of somatic mutations in human bronchial epithelial cells in relation to aging and smoking(ヒト気管支上皮細胞の老化と喫煙に関わる単一細胞突然変異解析)」だ。

私が医学部を卒業したころでも、すでにガンの確定診断に気管支鏡下のブラッシングを用いていたが、おそらくそのときに、ガンの疑いがない反対側でもブラッシングを行い得られた細胞を培養して集めた研究だ。従って、31人の参加者のうち15人が肺ガンと診断されている。この中で12人が喫煙歴なしの方だが、このグループでガンと診断されたのは1例だけで、残り13例は全て喫煙者だ。

いずれにせよ、ブラッシングから、培養、そして単一細胞ゲノム解析と、苦労をいとわずやり遂げたことがこの研究のハイライトになる。その結果、正常サンプルが得られにくい肺でも、正常細胞での変異蓄積様態がわかった。

1)変異は年齢とともに蓄積する。喫煙歴の全くない人では28変異/年の率で蓄積する。

2)これに対して喫煙者は予想通り変異が倍加しており、平均で91変異/年に達する。これは正常のほぼ3−4倍だ。

3)変異の種類を調べると、喫煙者では、喫煙特異的な変異が、老化に伴う変異にかぶさる形で増えているのがわかる。

4)この程度の細胞数の解析では、発ガンに関わる遺伝子の変異が発見されることはない。ただ肺全体では、当然発ガン遺伝子の変異も上昇していると考えられる。

5)この研究で最も驚くのは、喫煙年数と変位数は比例して上昇するが、タバコの量とは必ずしも比例しない点だ。生涯喫煙数を示すPack-yearsという指標(例えば1日1パック(20本)を40年続けると40になる)でみると、40までは変位数の上昇と比例するが、それ以上になると逆に減少傾向が出ている。ひょっとしたら、他の障害の結果修復機能が高まるのか、不思議な現象だ。

以上が結果で、予想通りの結果とともに、タバコの量についての意外な結果が明らかになった。ただ、数は少ないので、もう少し調べていく必要があるだろう。いずれにせよ、大変な実験に脱帽。

カテゴリ:論文ウォッチ

4月17日 細菌が食欲を調節する新しいメカニズム(4月15日 Science 掲載論文)

2022年4月17日
SNSシェア

腸内細菌叢は食に反応して増殖様態を変化させるが、その変化が今度は食欲を調節するという可能性が最近取り沙汰されている。例えば、細菌により合成される短鎖脂肪酸が腸管のブドウ糖合成を活性化して、これが門脈迷走神経系を介して脳に働くという間接的な話に加えて、なんと大腸菌により合成されるペプチドが、直接視床の神経に働いて食欲を調節するという話まで出てきている。

今日紹介するパストゥール研究所からの論文もその一つになると思うが、なんと細菌由来の muramyl di-peptide(MDP) を認識する細胞内センサーNOD2が視床の抑制ニューロンに発現し、腸で分解されたMDPを感知して食欲を抑制するという研究で、4月15日号の Science に掲載された。タイトルは「Bacterial sensing via neuronal Nod2 regulates appetite and body temperature(Nod2を介するバクテリアの感知が食欲と体温を調節する)」だ。

NOD2 には個人的な思い出がある。京大時代の大学院生だった小倉君が、留学先で NOD2 がクローン病の原因遺伝子の一つであることを発見して Nature に論文を発表したという連絡を受け、それまでは外国でなんとかやっているのかどうかと心配していたので、本当にほっとした。このバクテリアセンサーNODについての研究は、Nod-like receptor 分子ファミリーとインフラマゾーム概念確立へと発展しているが、NOD1、NOD2は最も古典的なバクテリアセンサーだ。

NOD2 は NLRP と異なり、カスパーゼ活性はないので、NFκB などの経路を介して細胞の機能を調節する。センサーとしてバクテリア由来 MDP が特定されているので、もっぱら腸内細菌叢のセンサーとして機能していると考えられてきた。ところが最近になり、NOD2 と様々な神経疾患との相関が発見され、神経機能にも何らかの貢献があるのではと考えられるようになっていた。

そこでこの研究ではまず脳で NOD2 が発現しているかどうか調べ、特に視床や視床下部での発現を確認する。NOD2 は細胞内で発現しているので、もしこの分子が働いているとすると、内因性のリガンドが存在するか、MDP が脳に到達する必要がある。MDP を経口投与する実験から、MDP が脳に到達することを確認し、腸内細菌叢由来の MDP が、脳の NOD2 を直接刺激できることを示している。

次は脳内の NOD2 機能だが、NOD2ノックアウトマウスでは、メスで成熟後食欲増加、それに伴う体重増加が見られ、また高齢になった後は自律神経茂樹による体温の低下が抑制されることを発見し、食欲と体温の調節が腸内細菌叢により行われる可能性を示している。

この発見が研究のハイライトで、後は細胞特異的遺伝子ノックアウトや、神経細胞の電気生理などを組み合わせ、NOD2 は視床下部抑制性ニューロンに働き、その興奮性を抑える働きがあること、そしてこの結果として、食欲が抑制され、体温低下を誘導したりする作用があることを明らかにしている。

なぜメスだけで、しかも特定の年齢でこの効果が見られるのかについては、明らかにエストロジェンとの相互作用が示唆されるが、メスで MDPペプチドが視床下部に集まること以上の解析は出来ていない。

結果をまとめると、腸内細菌由来 MDP が、血管を通して脳内の NOD2 を刺激するという話になり、想像をたくましくすると、女性ホルモンにより起こる食べ過ぎを、バクテリアが MDP・NOD2 を介して抑えてくれて肥満を防いでいるという話で、面白いが、人間でも同じことがいえるのか、せめて脳の遺伝子発現だけでも示してほしかった。

カテゴリ:論文ウォッチ

4月16日 CAP-1002(ヒト心臓由来培養細胞製品)でドゥシャンヌ型筋ジストロフィーの進行を抑える( Lancet vol399, 1049 掲載論文)

2022年4月16日
SNSシェア

ドゥシャンヌ型筋ジストロフィーはジストロフィン遺伝子の変異により、筋肉が徐々に変性することで起こるため、根本的な治療法はジストロフィン分子の発現を回復させることだ。このHPで紹介したエクソンスキップ遺伝子治療(https://aasj.jp/news/watch/7160)など、臨床試験も始まっており、結果が待たれる。

一方で、筋肉変性を遅らせる治療も行われており、主に炎症を抑える目的でステロイドホルモンを用いると、病気の進行を2.8〜8年抑えられることも示されている(https://aasj.jp/news/watch/7744)。他にも、ウロリチンなども動物実験では効果が示されている(https://aasj.jp/news/watch/15383)。

今日紹介するカリフォルニア大学デービス校を中心にした研究グループからの論文は、Capricor Therapeutics が開発したCAP-1002を用いて炎症や線維化を抑え、重症の筋ジストロフィーの患者さんの腕や心臓の機能を維持して自立を図ることを目的とした治験研究で、3月号の The Lancet に掲載されたので、少し遅れたが紹介する。タイトルは「Repeated intravenous cardiosphere-derived cell therapy in late-stage Duchenne muscular dystrophy (HOPE-2):a multicentre, randomised, double-blind, placebocontrolled, phase 2 trial(Cadiosphere由来細胞を繰り返し静脈注射する末期のドゥシャンヌ型筋ジストロフィー治療(HOPE2):二重盲験多無作為化プラセボ対照施設治験)」だ。

CAP-1002 は2人のヒト心臓から Capricor Therapeutics 社が培養株として樹立した細胞治療剤だが、心臓細胞を再生させるのではなく、この細胞がエクソゾームを通して吐き出すmiRNAを用いて、炎症や線維化を抑える効果を利用している。おそらく筋肉に親和性があるため、筋肉や心臓での細胞変性を遅らせる効果がある。

この研究はこの治療法の最終段階治験で、既に歩けなくなった患者さんの腕の筋肉機能低下を遅らせるとともに、心筋の変性を抑えることを目指している。

最終的に20人の患者さんを無作為化し、12人を偽薬、8人をCAP-1002 群にわけ、3ヶ月に1回細胞を静脈注射し、12ヶ月後の病気の進行を PUC1.2 と呼ばれている方法で調べている。

数値で表されているので、実感については私も評価できないが、スタート時点で80点だった機能が、対照群では29.3に低下するが、CAP-1002 群では65.5にとどまり、71%進行を遅らせることが出来ている。一方さらに重要な心臓機能では、ほぼ100%進行を遅らせることが出来たという結果だ。

注射しているのは他人の細胞になるので、高率にアレルギー反応が見られるが、最終的に治療中断を余儀なくされたのは1例にとどまっている。

以上が結果で、高い効果が期待できるという結論になると思う。

正直なところ、エクソゾーム、miRNAといった原理を聞くと本当にうまくいくのかと疑いたくなるのだが、最終治験にまで持ってきた努力が報われた結果だと言える。このグループはおそらく遺伝子治療の対象にはなかなかならないことを考えると、期待は大きい。

カテゴリ:論文ウォッチ
2024年5月
« 4月  
 12345
6789101112
13141516171819
20212223242526
2728293031