5月5日 皮膚エリテマトーデス発症のメカニズム(4月27日号 Science Translational Medicine 掲載論文)
AASJホームページ > 新着情報 > 論文ウォッチ

5月5日 皮膚エリテマトーデス発症のメカニズム(4月27日号 Science Translational Medicine 掲載論文)

2022年5月5日
SNSシェア

SLE 患者さんの7割に皮膚の発疹が見られる。Lupus と呼ばれるように、発疹は両側だが局所的に見られる、特徴的なのは蝶形紅斑とよばれる顔の紅斑だろう。これを見たとき、紅斑部と正常部に皮膚を分けて、病変が紅斑部に限局していると考えてしまう。

今日紹介するミシガン大学からの論文は皮膚 Lupus を示す SLE 患者さんの様々な場所からのバイオプシー標本から分離した細胞を single cell RNA seq で調べ、SLE では健常部で既に炎症が始まっていることを示した研究で4月27日号 Science Translational Medicine に掲載された。タイトルは「Nonlesional lupus skin contributes to inflammatory education of myeloid cells and primes for cutaneous inflammation(非病変部の皮膚も顆粒球系細胞の炎症へのeducationを通して皮膚炎症を誘導する)」だ。

研究は単純で、明らかに紅斑が見られる皮膚と外部からは異常が認められない皮膚バイオプシー標本から細胞を集め、single cell RNA seq で解析し、炎症が病変部に限局しているのかどうかをまず調べている。

様々な実験が行われてはいるが、結論は単純で、ケラチノサイト、ファイブロブラスト、リンパ球、白血球の全てで、病変部のみならず、正常に見える部位でも1型インターフェロン上昇とその影響が見られるという結果になっている。

正直結果はこれだけなのだが、ケラチノサイトの方は全てのタイプのケラチノサイトで IFN が上昇している。そして、他の細胞はすべてこの IFN 刺激により誘導される分子発現で特徴付けられ、受動的反応と言える。例えば、T 細胞で見ると、キラーや炎症細胞だけでなく、抑制性 T 細胞も IFN の影響を受けている。

これらの中でも著者らが最も注目しているのが CD16 陽性の樹状細胞で、健常部が IFN を発現することで、血液から細胞が移動し、ここで活性化型の樹状細胞に分化し、その後の皮膚病変の核になると考えている。

この研究で最も注目すべきデータは、これら single cell RNAseq データを組織レベルに移すため、この HP でも紹介した組織標本を用いて各部位の RNA seq を行う方法が使われていることで、既にキット化されて臨床研究にも利用できるところまで来ているのかと感慨が深い。この方法を組みあわせた結果、ケラチノサイトが他の細胞の変化を組織化していることがよくわかる。

以上が結果で、病変が現れる前から炎症がケラチノサイトの変化をベースに始まっていることは確かに重要で納得できるのだが、では蝶形紅斑のように、いつも同じ場所に病変が現れる要因や、炎症が始まっていても正常に見える部分 の皮膚病変とは何なのか、もう少し突っ込んだ議論が欲しいと思う。

カテゴリ:論文ウォッチ

5月4日 記憶低下や反復行動は自閉症由来アストロサイト移植で誘導できる(4月1日 Molecular Psychiatry オンライン掲載論文)

2022年5月4日
SNSシェア

ヒトES細胞から分化細胞を誘導できるようになった後、その機能を確かめるために、マウスに移植して細胞機能を調べる実験が数多く行われた。免疫不全マウスを使うのは当然だが、さらに NK 細胞などの機能を抑制する必要があり、これに適したマウスが開発された。ただ、ヒト細胞とマウス環境とのマッチングがどこまで自然なのかについては疑問が多い。

今日紹介するコーネル大学からの論文は、自閉症スペクトラム(ASD)の方から樹立した iPS 細胞から誘導したアストロサイトを、マウス脳に移植して、ASD で見られる反復行動などが誘導できないかを調べた研究で、面白いのだが解釈は慎重にすべき研究で、4月1日 Molecular Psychiatry にオンライン掲載された。タイトルは「Astrocytes derived from ASD individuals alter behavior and destabilize neuronal activity through aberrant Ca 2+ signaling(ASD の方に由来するアストロサイトは Caシグナル異常を介して行動を変化させ、神経活動を不安定化させる)」だ。

おそらくこのグループは、ASD 由来の iPS 細胞から様々な神経系細胞を誘導し、異常がないか調べていたのだと思う。その過程で、アストロサイトを誘導すると、プロテオーム解析で、Ca シグナルに関わる分子の発現が ASD アストロサイトでは大きく変化しており、生理学的に調べると、ATP を加えたときのCa 活性が ASD で高まっていることを発見する。

これまで ASD 研究は、抑制性神経を中心に回ってきたので、アストロサイトが質的変化を示すという結果は面白い。ただ、試験管内でこの変化の帰結を調べるのは簡単でない。そこで「是非に及ばず」と、誘導したアストロサイトを、マウス脳に移植して見ると、意外にも脳内を移動して広く分布し、神経細胞とも接触することを確認する。

さらに、同じアストロサイトを生まれたばかりのマウス脳に注射、60日待って組織になじました後、カルシウムイメージングでアストロサイトの活動を見ると、ASD 由来アストロサイトだけ Ca 反応が高まっていることが確認された。

そして最後に、このマウスについて行動学的検査を行うと、ASD 由来アストロサイトを移植されたマウスでは、同じ行動を反復する行動が現れ、同時に様々な記憶テストで低下が見られ、また海馬の長期増強が低下することを確認している。すなわち、アストロサイト移植で行動や記憶障害を移行させることが出来る。

また、試験管内の今日培養系で、ASD 由来アストロサイトを加えた海馬では、スパインの形成が低下していることまで調べている。

最後に遺伝子ノックダウンで Ca の活動を低下させ、これを移植すると、Ca 反応性の低下とともに、行動異常や記憶が一部改善することから、ASD でアストロサイトの Ca 反応性が高まっていることが、ASD の行動を作る重要な原因だと結論している。

無論、コントロールアストロサイトではこのような変化は誘導できず、また Ca 反応性を低下させる実験で、なかなか文句のつけようがないのだが、それもこの結論をどこまで支持するか、ちょっと躊躇するのも事実だ。

カテゴリ:論文ウォッチ

5月3日 ケトン食が直腸ガン増殖を抑えるメカニズム(4月27日 Nature オンライン掲載論文)

2022年5月3日
SNSシェア

薬剤を用いる病気の治療と比べると、代謝障害などの特殊なケースを除くと、食や栄養管理で病気に対抗する科学的方法の開発は遅れている。一方、憶測や限られた経験をベースに病気に効くと称している方法は、例えば本屋に溢れているから、もし科学的エビデンスが示されたら、その方法は普及するように感じる。

特に最近、ガン患者さんについては治験も行った方法が開発されつつあり、この HP でも紹介してきた(膵臓ガンとカロリー制限:https://aasj.jp/news/watch/18169 、乳ガンとファスティング:https://aasj.jp/news/watch/13544)。いずれも、カロリー制限もうまく行うと、ガンの進行を遅らせる効果があるという研究だった。

この膵臓ガンと栄養についての研究では、カロリー制限は効果があるが、ケトン食は効果がないという結果を示していた。一方、今日紹介するペンシルバニア大学からの論文は直腸ガンの増殖に、ケトン食が強い抑制効果を示すことを示し、そのメカニズムを解明した研究で4月27日 Nature にオンライン掲載された。タイトルは「β-Hydroxybutyrate suppresses colorectal cancer(β-Hydroxybutyrate は大腸直腸ガンを抑える)」だ。

ケトン食は基本的に炭水化物を減らし、脂肪を増やした食事をとることで、脂肪代謝を高め、そのときにケトン体が合成されることを期待する食事で、主にエピジェネティックなメカニズムを介して、インフラマゾーム活性化や IL-17 分泌を抑えて炎症を抑える効果とともに、ケトン体が直接作用して持久力上昇などの効果が知られている。

この研究では最初からケトン食によるガン抑制の可能性に絞って研究を行っている。まず、モデルとして遺伝子導入による直腸ガン発生モデルを用いて、炭水化物と脂肪の割合を変化させた食事を食べさせ、それぞれの食事のガン増殖抑制効果を調べ、脂肪の割合が高いほどガンの増殖が抑制されることを示している。

こうしてケトン食がガン増殖抑制効果を持つことを確認した上で、次にオルガノイド培養法を用いて、この効果がケトン体によるものかどうか、2種類のケトン体、acetoacetate(AcAc)、及びβhydroxybutyrate(BHB)を培養に添加して調べている。

まず驚くのが、BHB はガンだけでなく、大腸の幹細胞の増殖も抑制する。従ってケトン食を、他の目的で利用するとき、考慮が必要かもしれない。勿論、ガン細胞を用いたオルガノイドに対しても BHB は増殖抑制効果を示す。この効果はガンを発生したマウスにミニポンプで BHB を投与する実験からも確認できる。

すなわち、ケトン食は期待通りケトン体の一つ BHB を介して腫瘍に直接働いて増殖を抑える。

最後に、BHB の効果のメカニズムを様々な実験を組みあわせて検討し、ガン増殖抑制は、ガン抑制遺伝子の一つ Hopx をケトン体が誘導することで起こること、さらにこの誘導はヒストン脱アセチル酵素を介する経路ではなく、ケトン体に対する G 蛋白質共役型受容体 Hcar2 に直接働いて Hopx を誘導することを明らかにしている。

全体的印象としては、比較的地味な印象で、驚くといった感じはないが、ガンを少しでも抑えるための取り組みとしては極めて重要で、今後もガンの栄養研究が進むことを期待する。しかし、膵臓ガンではケトン体に効果が見られず、ガン遺伝子としてはほとんど同じ直腸ガンでは今回の論文のように効果があるとすると、まだまだ栄養指導に取り入れて行くには時間がかかりそうに思える。

カテゴリ:論文ウォッチ

5月2日 動脈硬化も神経支配されている(4月27日 Nature オンライン掲載論文)

2022年5月2日
SNSシェア

自分の分野ではなかったが、現役時代パラダイムシフトを感じた一つが動脈硬化だった。一種の老化かななどと済ませていた変化を、動脈硬化は炎症であると新しいパラダイムを示したのが Peter Libby だった。初めて聞いたときはなるほどと納得しただけだが、これがきっかけになって、糖尿病から老化まで、あれよあれよという間に自然炎症の概念は拡大していった。

今日紹介するミュンヘン大学を中心とする26施設が共同で発表した論文は、動脈硬化=炎症というパラダイムの上に、動脈硬化の自律神経ネットワークへの統合が重なった研究で4月27日 Nature にオンライン掲載された。タイトルは「Neuroimmune cardiovascular interfaces control atherosclerosis(心臓血管と神経免疫インターフェースが動脈硬化を調節する)」だ。

この研究は最初から動脈硬化巣に自律神経が新しく結合して、中枢神経支配が成立するはずだという仮説に基づいて始めている。動脈硬化が促進される ApoE ノックアウトマウスの動脈硬化巣を組織学的に調べ、痛み受容体を発現している感覚神経と交感神経が動脈硬化巣のある血管外膜で増加していること、そしてこの増加は、動脈硬化の進行とともに新たに成立していく神経結合であることを明らかにしている。

次に、狂犬病ウイルスを用いる神経結合追跡法を用いて、感覚神経系は脊髄の黄昏神経核を介して傍小脳核や扁桃体へ投射し、一方自律神経の方は腹腔神経節を介して投射しており、端末部分がともに動脈硬化とともに何十倍にも投射が増えることを示している。さらに、神経投射部を調べると、T 細胞やB 細胞を含む強い炎症が起こっており、さらに第三次リンパ組織と呼ばれる構造化された炎症が起こっていることを示している。

このように、動脈硬化巣が新しい神経支配の再構成を誘導することが明らかになったが、神経支配が動脈硬化にとって持つ意味が次の問題になる。これを明らかにするため、外科的に動脈への迷走神経支配を遮断すると、生理的にはほとんど変化は起こらないが、T細胞やB細胞が急速に消失し、第三次リンパ組織様の構造が完全に消失することを観察している。

さらに、将来の治療可能性を考え、腹腔神経節を切除した後 ApoE ノックアウトマウスで動脈硬化の進展を調べると、コレステロール等の値はそのままで、動脈硬化へのリンパ球の浸潤と、それによる第三次リンパ組織の形成、動脈硬化プラーク形成、さらにプラークの不安定性が抑えられることを示している。

以上が結果で、どちらが結果でどちらが原因かというわけではなく、炎症が存在し、そこに免疫系が関わってくると、神経系も巻き込んだサイクルができあがってしまうことを示している。さらに、ひょっとしたら迷走神経系を標的にした動脈硬化治療も可能になるかもしれない。

この論文を読んで思い出したのが、2014年にこの HP で紹介したシロクマの進化だ(https://aasj.jp/news/watch/1531)。シロクマとヒグマのゲノムを比べ、なんと ApoB や LDL などコレステロール代謝に関わる分子が、動脈硬化型へと変化していることを示した論文だ。すなわち、私たちの敵である動脈硬化も、極寒の北極で生存するため、血管を温めるためにか積極的に利用している。しかし、私たちのように一方的に動脈硬化が悪くなるのでは困るから、温度などで調節して油をためたり、減らしたり出来る必要があるだろう。神経支配も、ここでは大活躍しているかもしれない。

カテゴリ:論文ウォッチ

5月1日 歯周炎は造血幹細胞を炎症型に教育する(5月1日 Cell 掲載論文)

2022年5月1日
SNSシェア

歯周炎が全身の炎症に影響することはよく知られた事実で、動物実験レベルでは驚くことに、歯周炎とリウマチが相互に関係し合うことが報告されている。今日紹介するペンシルバニア大学とドレスデン大学からの共同論文は、両方の炎症性疾患を、炎症にプライムされた骨髄幹細胞が仲立ちするという研究で、5月1日号Cellに掲載された。タイトルは「Maladaptive innate immune training of myelopoiesis links inflammatory comorbidities(顆粒球造血へと適応した免疫トレーニングが異なる炎症疾患を仲立ちする)」だ。

これまでこのグループは、歯周炎やリウマチ関節炎のような慢性疾患をマウスに誘導すると、骨髄幹細胞がリプログラムされ、顆粒球増加が起こりやすくなる現象を研究しており、この研究では、このメカニズムが歯周炎によりリュウマチ、あるいはリウマチにより歯周炎を悪化させる可能性を追求している。

読んでいてまず感じるのは、single cell RNA seqやAtak-seqなどを用いている割には、古典的な印象の強い研究で、マウスに炎症を誘導した後、骨髄幹細胞を採取、それを移植されたマウスで次の炎症反応を見るという骨格になっている。

研究では、歯肉を糸で縛る方法で歯周炎を誘導したマウスの骨髄で、造血幹細胞や、少し分化した顆粒球系幹細胞の数が増加し、また遺伝子発現で見たとき顆粒球増殖と移動が起こりやすい方向への分化が進んでいることを示している。さらに、single cell Atak-seqを用いて、これらの変化がクロマチンの変化を伴うエピジェネティックな変化であることを明らかにし、炎症刺激が除去された後も、一定期間持続することを示している。

これを「訓練」された骨髄細胞として、次にこの訓練細胞が、他の炎症刺激への反応への過敏性を媒介するか、骨髄移植モデルで調べ、訓練細胞を移植したマウスはコラーゲン注射で誘導される関節リウマチが悪化することを示している。

また、逆の実験も行っており、コラーゲン注射による関節炎を誘導した骨髄細胞を移植されたマウスは、同じ方法で誘導しても歯周炎が悪化することを示している。

そして、この訓練細胞誘導に、骨髄中でIL1βが上昇することに起因することを、IL1β受容体をノックアウトした骨髄を用いた移植実験で確かめている。

結局、新型コロナウイルスでも問題になった、trained immunityの問題で、歯周炎という、極めて頻度の高い病気を対象にした意外性でCellに掲載されたのだと思うが、それ以外は特に新しいことではない。いずれにせよ、できるだけ炎症の元を除去してInflammageingを抑えるのが長生きのコツであるのはよくわかる。

カテゴリ:論文ウォッチ

4月30日 常若(ever-young)の国 Nanog の不思議(4月28日 Nature Cell Biology オンライン掲載論文)

2022年4月30日
SNSシェア

多能性やリプログラムに興味があって、ES細胞やiPS細胞、さらには山中4因子(Oct2, Sox2, Klf4, Myc)については学んでいても、Nanogについて知っているという学生さんは少ないのではと思う。ただ、現役の後半、この分野の研究に注目してきた私にとっては、思い出の深い分子だ。

Nanog遺伝子は Ian Chambers グループと、山中グループにより同時に2003年Cellに発表されるが、Chambersも山中さんも当時から親しくしていたので、どのように発表するのかCDBシンポジウムで2人が一緒に話していたのも覚えている。最終的に、山中さんが折れて、ケルト神話での「常若の国」Tir na nog から名前がついたようだ。

その後、若返りのシンボル山中4因子の中にNanogが含まれていなかったことにも驚いたが、その後、当時ストラスブールにいた宮成さんが、Nanogが初期胚では片方の染色体からだけ転写され、その後、ground stateと呼ばれる最も多能性の段階に移ると、両方の染色体から転写されることを示した論文にも驚いた。

そして今日紹介するテキサス大学からの論文では、Nanogにプリオンのような凝集を促す配列が存在し、これが離れた染色体上のNanog結合部位を集めて転写を高めるのに働いていることが示され、またまたその不思議に驚いた。タイトルは「NANOG prion-like assembly mediates DNA bridging to facilitate chromatin reorganization and activation of pluripotency (Nanogのもつプリオン様の集合はDNAの架橋を媒介して染色体の再構成を促進し、全能性を活性化する)」で、4月28日 Nature Cell Biology にオンライン掲載された。

蛋白質科学のプロの研究で、私も知らない測定方法が満載の研究だ。プロの目から見ると、NanogのDNA結合部位に続く、トリプトファンフィピーとを持つ、まさにプリオンのような構造を持つドメインが気になるようだ。実際、この部分だけを取り出すと水にほとんど溶けず、NMR解析でもこのドメインがプリオンのように凝集しやすいことを明らかにしている。

そこで、様々な方法を駆使して、本当にプリオンと同じような挙動を示すのか調べ、試験管内でも、細胞内でも、Nanogはプリオンのような凝集傾向を示すが、トリプトファンリピートを欠如させると、この性質が消失することを明らかにしている。

そして最後に凝集能を持たない変異Nanogと正常NanogをDNA結合や、クロマチンとの関係で調べ、

1)Nanogは凝集能が存在して初めて、Nanog結合サイトへの特異性を示すこと。

2)Nanogの凝集能によって、Nanog結合サイトを持つDNAは凝集させられる。

3)この性質により、細胞内ではNanog結合サイトを持つゲノム領域が核内で集合して、スーパーエンハンサーのように転写活性を高める。

ことを明らかにしている。読んだ後、内容にも驚くが、使われているテクノロジーの多様性に圧倒される。ここまで出来ないと、論文にならないとすると大変だろうと思う。

要するにスーパーエンハンサーは相分離だけではなく、プリオン型の分子でも可能なことを示しており、Nanog進化の謎がまた深まった気がする。

カテゴリ:論文ウォッチ

4月29日 リモート会議の功罪(4月27日 Nature オンライン掲載論文)

2022年4月29日
SNSシェア

文明の進歩の結果、もはや起こることはないだろうと思っていたことが、新型コロナパンデミック、そしてロシアのウクライナ侵略と続けて起こってしまった。しかし、同じことが起こらないように努力するのも人間で、パンデミックだけでなく、武力大国の侵略についても、抑止のための新しい仕組みを求めた取り組みが、既に平行して進んでいると思う。

3日前に紹介したように、治療薬についても、変異や新種にかかわらず効果を持つ治療薬の開発が進んでいるし(https://aasj.jp/news/watch/19550)、ワクチンもユニバーサルワクチンについての論文の数が増えてきた。もちろん、これらの医学成果を迅速に行政に反映できるシステム転換も必要になるが、少なくとも我が国では心許ない。

そんな中、ポストコロナへ備える論文と言えるのだが、リモートワークの功罪について科学的に調べようとした行動心理学の研究が、コロンビア大学から4月27日 Nature にオンライン発表された。タイトルは「Virtual communication curbs creative idea generation(バーチャルなコミュニケーションは創造的アイデアの生成を抑える)」だ。

タイトルを見るだけで、多くの企業の経営陣は驚いてしまうと思う。バーチャルコミュニケーションというのは、まさにリモートワークでの会議を指しており、コロナ禍で積極的に導入された結果、米国の就業者の75%が少なくとも週1日はリモートで済ませたいと思っているようだ。

私も、顧問先との会議はほとんどがリモートになっているし、患者さんや研究仲間との公開勉強会も、リモートのおかげで気軽に出来るようになって、開催数が間違いなく増えた(今日も脊髄損傷のジャーナルクラブを予定している:https://aasj.jp/news/seminar/19556)。一方で、授業や講演については、リスポンスがわかりにくく、またじっと画面を見てしまうので、疲れることも事実だ。

この研究では、リモート会議で生まれる成果に絞ってその功罪を調べている。わざわざ会議をする目的は、報告を聞くだけと言うこともあるが、問題解決が最も重要な目的だ。そして、解決のためのアイデア出しと、いくつかの可能性の中からの正しい選択が、会議の課題になる。

この研究では、一人の相手と向き合っての会議、そして多くの人が参加する会議の状況で、特定の課題に対していくつのアイデアが出たのか、またそのアイデアは創造的かを調べ、バーチャルで会議を行うと、アイデアの総数や創造的なアイデアの数が減ることを示している。

一方、いくつかの可能性から正しい選択をするセッティングでは、バーチャルで会議を行った方が正しい決断が出来ることを示している。

このような行動心理学の課題は、用いられた評価方法が正しいかどうかで、何が創造的なのか問題はありそうだが、ここでは結論を鵜呑みにしておくことにする。

では、何故このような結果が生じるかだが、視野や視線を追う実験を行い、PC画面に視野が限定されることが、創造性を損なう原因になると結論している。言い換えると、少々気が散る環境で、周りを見渡しながらアイデアを考えるほうが創造的になり得るという結果だ。ただ、だからといって大きなモニターに変えたらいいかというとそうではないことも確かめる念の入れようだ。

このように、注意深く他の可能性についても議論しているが、全て省く。そして、リモートには功罪があり、それをうまく組みあわせることで、もっと効率の良い会議が可能になると結論している。

Natureの編集方針がポストコロナに移行したことを示す面白い論文だ。ただ、創造性が高いアイデアの数の違いといっても、6.7に対して7.9なので、有意差といっても、参考にする程度でいいのではないだろうか。リモート会議は明日から中止といった短絡思考が出ないことを祈る。

カテゴリ:論文ウォッチ

4月28日 病室を移動可能なポータブルMRI(4月20日号 Science Advances掲載論文)

2022年4月28日
SNSシェア

MRIは原理を聞いても、未だに何故あれほど素晴らしい画像が得られるのか、イメージできないぐらい素晴らしいテクノロジーだと思う。そして、プロトンの共鳴を高めるため、これまで静磁場のレベルを上げて、高い解像度を得る方向に機器は開発されてきた。現在一般に使われる MRI は1.5テスラらしいが、私が検査を受けたときも、世界で1例という希なケースではあるが、検査室のドアが開いていて、ボンベが飛んできて亡くなった例があるという話を聞かされた。これは危険があると言うより、まずないという意味で使われているのだが、ボンベを引きつけるぐらいの磁場が存在している。従って、磁場を完全に遮蔽した状態で検査を受ける。

当然 MRI をもっと手軽に、病室でも使えるようにしようと思うと、共鳴させるために磁場は絶対必要なので、磁場の強さを抑えるしかない。今日紹介するイェール大学とハーバード大学からの論文は、磁場を25分の1に抑えた MRI を開発し、迅速な脳卒中診断が可能かどうか調べた観察研究で、4月20日号 Science Translational Medicine に掲載された。タイトルは「Portable, low-field magnetic resonance imaging enables highly accessible and dynamic bedside evaluation of ischemic stroke(ポータブル低磁場磁気共鳴画像装置は、虚血性卒中にどこでも使えてベッドサイドでダイナミックな評価を可能にする)」だ。

現代の情報処理技術を見ていると、低磁場によりシグナルが低下しても、検出をうまくやることでそこそこの画像を得ることが出来るのだと想像するが、開発の焦点などは全く専門外なので省く。結果生まれたのが、昨年、Nature Communications(オープンジャーナル)に写真が掲載されている1.5x1.5x1.5程度の、しかもほとんどシールドがない装置だ(写真のURL: https://www.nature.com/articles/s41467-021-25441-6/figures/1)。

基本的には、ERでも利用できると言うことで、他の機器に影響を及ぼさない程度の磁場でとどまっている。2021年の論文では、診断が優しい脳出血についてベッドサイド診断の可能性を示しているが、今回はCTでは診断が難しい虚血性脳梗塞部位の診断が出来るか、一般的 1.5or3T のMRIでの画像と比較している。

画像も、一般にルーチンとして知られる、T1強調、T2強調、FLAIR、そして拡散強調画像を集めている。結論はシンプルで、脳梗塞であれば大体9割が、ポータブル方で診断可能で、T2強調や、FLAIRでは、普通のMRIと比べてそれぞれ98%、100%の一致が見られている。

また、ポータブル法で得られる診断結果は、高速の大きさ、病状の深刻さ、さらに予後を十分予測できる検査として使える。勿論、拡散強調画像のように、超急性期の診断では、見落としもあるので、大いに改善の余地はある。ただ、ERでも使えること、さらにCovid-19のような感染症でも利用できるという大きなメリットを考えると、より多くの施設で使われ、必要な改善を加えることで、大きな戦力になっていくことが予想できる。さらに、AIなどが加わると、磁場を上げなくとも、高い診断能力が可能になる可能性もある。

以上、MRIがポータブルになると誰も考えもしなかったが、この機械は結構ヒットする予感がする。

カテゴリ:論文ウォッチ

4月27日 前頭側頭型認知症発症機序についてのパラダイムシフト(3月28日 Nature オンライン掲載論文)

2022年4月27日
SNSシェア

多くの神経変性正疾患では、細胞内外に不溶性蛋白質の繊維様の構造体、アミロイドフィブリルが形成される。例えばアルツハイマー病では細胞外のアミロイドβ と細胞内のTau、パーキンソン病やレビー小体認知症では αシヌクレインのフィブリル形成が細胞変性を誘導する。同じような蛋白質として最近注目されてきたのが TDP-43 で、人格変化や行動異常を伴う、大脳前方の萎縮による認知症として知られる前頭側頭型認知症(FTLD) やALSでは TDP-43 のフィブリル形成が神経変性を誘導すると考えられてきた。

今日紹介するUCLAからの論文は、FTLDがTDP-43 のフィブリル形成により起こるというパラダイムを、TMEM106Bと呼ばれるリソゾーム蛋白質によるフィブリル形成が原因であると、完全なパラダイムシフトを迫る研究で、3月28日、Natureオンラインに緊急掲載された。タイトルは「Amyloid fibrils in disease FTLD-TDP are composed of TMEM106B not TDP-43(FTLD-TDPのアミロイドフィブリルはTDP-43ではなくTMEM106Bにより形成される)」だ。

FTLDはTDP43 意外にも、FUS蛋白質やTau蛋白質の蓄積でも起こることが知られており、フィブリル形成を起こした蛋白質によりFTLD-TD、FTLD-FUS などと分類されてきた。FTLD-TDはフィブリルが TDP-43 に対する抗体で染色されることから、TDP-43蛋白質がフィブリル形成を起こした群として扱われてきた。

この研究の重要性は病理的にFTLD-TDと診断されているにもかかわらず、アミロイドフィブリルは本当にTDP-43から出来ているのか疑ったことにつきる。まず、アミロイドフィブリルを分離し、一般的なアミノ酸組成の検討ではなく、まずクライオ電顕で得られた構造から、TDP-43から構造が出来ると仮定すると、多くの矛盾が生まれることに気づく。そして、得られる構造を形成できる唯一の蛋白質としてTMEM106B を特定することに成功している。

このモデルに従って、TMEM106Bのアミロイドフィブリル構造及びその形成過程について検討し、

1)TMEM106Bはリソゾーム蛋白質で、アミロイドフィブリル形成が起こるためには、119/120番目のアミノ酸部位で切断され、リソゾーム内に放出された分子が、フィブリル形成し、細胞質に吐き出されて蓄積する。

2)構造は、ゴルフコースのように18の β シートが重なっており、これまで知られているフィブリルの中でも安定性が極めて高い。

3)構造から、おそらくフィブリル形成を促すリガンドが存在するが、特定は出来ていない。

4)TDP-43は構造化せずに TMEM106B フィブリルないに潜り込んでいるため、抗体でフィブリルが染まるという錯覚を起こしてしまった。

5)一方、フィブリルに構造化された TMEM106B を染色できる抗体はまだ存在せず、結果フィブリルがTDP-43 由来であるとする間違いにつながった。

6)TMEM106B はこれまでFTLDのリスク遺伝子として特定されていた。

という結果を得ている。

大きなパラダイムシフトで、これまでの病態を TMEM106B 原因説で見直すことで、病気を防ぐ介入方法の開発にまでつながることが期待できる、重要な研究だと思う。

以下、読者からのコメントも掲載します。私が論文を勝手に解釈している部分を指摘していただいています。是非参考にしてください。

4) に関して、”TDP-43がTMEM106Bのフィブリル内に潜り込んで”というのは少し誤解があり、2%Sark+1%SDS不溶画分にはTMEM106BのアミロイドフィブリルとTDP-43の凝集体の両方が存在していましたが、TDP-43がTMEM106Bのフィブリル内にあるのではなく、同じ画分にTDP-43凝集体も存在していたがフィブリル構造ではなかった、という事のようです。
バルクで抽出していますので、TMEM106BとTDP-43が同じ細胞由来かどうかもまだわかりません。抱き合わせで出たもう一報(PMID: 35344985)の免染ではTMEM106B凝集体はTDP-43凝集体とはだいぶ形が違いますし、私はそれぞれ違う細胞で凝集体を作っている可能性もあるのではないかと思いました。
TDP-43のamyloid-like filament structureに関してcryo-EMで解析した報告もあり(PMID: 34880495)、TDP-43がフィブリルを作らないとは言い切れないと思います。ただ今回の論文では既報よりも強力な界面活性剤を使用していますので、通常よりも3倍ほど強い構造のTMEM106Bがより多く残った可能性もあるかもしれません。
タイトルがキャッチーなので私も「おっ」と思いましたが、著者らは既報を否定しているわけではなく、TMEM106Bのアミロイドフィブリルという、もう一つの主役候補に光を当てたのだと思います。

5) に関して、今までTMEM106B凝集体の免染を試みた人たちもいましたが、存在するTMEM106BのC末抗体はすべてエピトープがフィブリル内部にあり、これが免染や免疫電顕で同定されなかった原因の1つだと私も思います。ただ、4)のコメントにも繋がりますが、”フィブリルがTDP-43由来であるとする間違いにつながった”というわけではなく、TDP-43が脳内で凝集体を形成する事自体は明らかであり、それ自体が伝播能を持ってネイティブのTDP-43を凝集化させることも確認されています。本論文でもTDP-43の凝集化自体を否定しておらず、既報が間違いだったわけではありません。

TMEM106Bフィブリルがどのような病的機能を持ち、FTLDの病態にどのように関与しているのかはこれから次々と明らかになってくると思いますが、少し前に出た関連論文(PMID: 35247328)では、FTLD-TDPだけでなくDLBやPSPでもTMEM106Bフィブリルが確認されていますし、PMID: 35344985では正常高齢者脳でも確認されていますので、FTLD-TDPを超えた何らかの機序が存在している可能性もあるものと、期待しています。

長文失礼致しました。

カテゴリ:論文ウォッチ

4月26日 新しいSARS型コロナウイルスパンデミックに備える(4月19日 Science 掲載論文)

2022年4月26日
SNSシェア

我が国のCovid-19感染状況は不思議な平衡状態に達し、世の中は平常時に戻りつつあるようだ。そんな中人々の関心も、ロシアのウクライナ侵略と、それに対する抵抗へと移り、感染状況を示す数字も上の空といった感じだろうか。

ただ国民の健康を守る衛生当局はそうはいかない。多くの先進国でまだ何万人もの感染者が出ていても慌てなくなってきたのは、新しい状況に医療体制を適応させ、ワクチンや治療薬を最善の方法で提供できる自信があるからだろう。もはや感染者の隔離自体をやめる国も続出している。これに対し、我が国では未だに感染者の診療を一般医は拒んで良いし、薬剤についても、切り札と言われたパクスロビドも、承認されてもほとんど利用されていないようだ。報道では、飲み合わせが悪いなどと、他の薬剤を使用しているヒトが対象から除外されるからだそうだが、パクスロビドと併用するリトナビルも、薬剤濃度を高める効果は短期的なので、感染したときは他の薬はやめて治療に専念すれば良い。当たり前のことを当たり前に出来ないと、新しい一歩は踏み出せるはずがない。

論文を読んでいると、研究も未来に備えるといった研究が増えてきた。未だに4回目接種などと議論されているワクチンも、変異体に備えるための新しいワクチン研究が進んでいるし、治療薬も将来起こりうるSARS型コロナに対応できる抗体薬も地道に開発が行われている。

今日紹介する米国コロンビア大学からの論文は新たなSARS型コロナウイルス感染が始まったときに、すぐに利用できる治療抗体薬開発のための研究で、4月19日 Science にオンライン掲載された。タイトルは「An antibody class with a common CDRH3 motif broadly neutralizes sarbecoviruses(共通のCDRH3モチーフを持つ抗体は広い範囲のSARS型コロナウイルスを中和する)」だ。

基本的にはSARS型コロナウイルスのほとんどに対応できる抗体薬は可能かを追求している。これまでの研究で、スパイク分子で通常は内部に隠れている inner face と呼ばれる部位に結合する抗体が、CoV2だけでなく広いスペクトラムを持つとされてきた(https://aasj.jp/news/watch/17664)。

実際、δ株が発生したとき、この性質を持つソトロビマブは他の株と同じように中和できると喜んでいたが(https://aasj.jp/news/watch/18376)、ウイルスの方がずっと賢く、異次元の変異を持つオミクロン株に簡単にこの牙城が崩された。

そこでオミクロンも含めてもっと広いウイルスに対応できる抗体を探索し、新たな流行に備えようとしたのがこの研究だ。

まず回復者血清の中から、広い範囲のウイルスに効果がある抗体を持つ人をえらび、この人達の末梢B細胞から、オミクロン株に反応するB細胞を抽出、そこから抗体遺伝子を分離し、抗体を再構成して、3種類の抗体を作成している。

期待通りこれらの抗体はオミクロンも含め多くの変異体に結合できるが、中でも10−40と名付けた抗体は、ほぼほとんどのSARS型コロナウイルスを中和できる。この結果はプラクティカルには極めて重要で、今後世界中で同じ方法を用いて、同じようなモノクローナル抗体が作成されるだろう。

この研究ではさらに進んで、では何故10−40がこのようなパワーを持つのか、他の抗体と分子構造的に比較している。その結果、

1)10−40も含めて、広い範囲のウイルスに効果を持つ抗体は全て、これまで知られているように inner surface に結合している。

2)しかし、抗体の結合する向き、あるいはスパイクとの接合面とで少しづつ違いが生まれ、スペクトラムも異なる。

3)10−40は、inner surface と結合するだけでなく、多くのウイルスの inner surface と10個以上の水素結合、3個以上の 塩橋 を形成する。実際、さらに多くの結合が他のウイルスとで見られていおり、全体で12種類の結合は、全てのコロナウイルスとの結合で保存されている。

4)さらに、抗体側の特徴として利用しているD領域がD3-22に固定されており、しかも突然変異が見られない抗体で、このような広い範囲のウイルスへの強い中和活性が見られる。

を明らかにしている。特に結果 4) は面白く、ある意味で私たちの抗体遺伝子も、広い反応性を生み出すべく用意できていたことになる。

この抗体だけで良いのかどうかはわからないが、同じ手法は様々なウイルスにも適応可能で、是非次のパンデミックに備えた研究として進めて欲しい。

我々日本人が忘れてならないのは、最初の抗体療法は北里柴三郎とベーリングによって実現したことだ。伝統をうけてこの分野で我が国もリードすることを夢見ている。

カテゴリ:論文ウォッチ
2024年5月
« 4月  
 12345
6789101112
13141516171819
20212223242526
2728293031