10月9日 糖尿病とその予備軍の組織代謝(10月4日 Cell Reports Medicine オンライン掲載論文)
AASJホームページ > 新着情報 > 論文ウォッチ

10月9日 糖尿病とその予備軍の組織代謝(10月4日 Cell Reports Medicine オンライン掲載論文)

2022年10月9日
SNSシェア

2型糖尿病は、過食など様々な原因による高血糖に対して、インシュリンが分泌され、この状態が膵臓のβ細胞へのストレスを招くインシュリン抵抗性として知られる糖尿病予備軍を経て、続くストレスによりβ細胞が失われてインシュリン分泌が低下する糖尿病へと発展すると考えられている。この過程には、身体の全ての細胞が関わるが、基本的にはβ細胞、筋肉、脂肪組織、そして肝臓細胞の代謝変化を中心に研究されてきている。実際、この領域の進展は著しく、その結果として、私の現役時代には考えられなかった、様々なメカニズムの糖尿病薬が提供され、今度はどれを選ぶか医師が苦労する時代に突入していると言える。

今日紹介するスウェーデン・ウプサラ大学からの論文は、正常人、糖尿病予備軍、そして2型糖尿病と診断されている人が、急死し、膵島などの移植ドナーとして病院に運ばれてきたとき、膵臓とともに、43カ所の組織を採取、それぞれの組織のタンパク質の発現を網羅的に調べるプロテオーム解析した研究で、10月4日 Cell Reports Medicine にオンライン掲載された。タイトルは「Organ-specific metabolic pathways distinguish prediabetes, type 2 diabetes, and normal tissues(臓器特異的代謝経路が糖尿病予備軍、2型糖尿病を正常人から区別する)」だ。

生前拒否していない場合、死体を公共の目的で利用することが法的に許されているスウェーデンならではの研究で、糖尿病や予備軍のプロテオームをここまで詳しく解析した研究はないと言っていいだろう。膨大だが予想通りの結果で、面白い点をまとめるだけにしておく。

  1. 糖尿病、予備軍、正常人を比べると、予備軍ですでに始まっていると言える変化のほとんどが、膵臓β細胞に集中している。そして、変化の中心は炎症や、自然免疫に関わる変化に集中している。これは以外に思われるかもしれないが、予備軍のインシュリン抵抗性状態では、ほとんどの組織の代謝は正常になんとか保たれており、この状態を保つための全ての調整がβ細胞に集中し、その結果のストレスが、炎症や自然免疫を活性化していると理解できる。
  2. 予備軍から2型糖尿病に発展すると、β細胞では変化はほとんどないにもかかわらず、他の組織で様々な変化が見られる。すなわち、β細胞のストレスが頂点に達してインシュリン分泌が低下し始めると、各組織の糖代謝の低下に対応する様々な変化が起こると考えられる。
  3. 最も顕著な変化は、ミトコンドリアの酸化的リン酸化回路とTCAサイクルが脂肪組織や筋肉で低下するが、予備軍では大きな変化がないことから、インシュリン抵抗性段階よりは、インシュリン分泌低下が始まった後の変化と考えられる。
  4. コレステロール代謝に関わる多くの酵素の上昇も、糖尿病発症の結果としてみられる。しかし、肝臓での変化から、これがすぐに肝臓の脂肪蓄積に発展する心配はなく、他の要因が必要。
  5. 糖尿病による糖の利用制限を克服するための、肝臓や腎臓での糖新生が、糖尿病成立後に高まる。
  6. 糖尿病予備軍から始まる変化で最も恐ろしいのは、凝固系の亢進で、予備軍から始まることを考えると、インシュリン抵抗性によるストレスが多く寄与していると考えられる。この結果は、covid-19感染で糖尿病とその予備軍が重症化しやすかったこともうまく説明する。

以上が主な結果で、概ね予想通りとは言え、それを人間の組織で徹底的に確かめたデータベースが出来ることは重要だ。私も予備軍の一人だが、もう少しβ細胞をいたわる必要があることがよくわかった。

カテゴリ:論文ウォッチ

10月8日 人間の抗原特異的 Treg細胞を用いた治療が可能になる(10月5日 Science Translational Medicine 掲載論文)

2022年10月8日
SNSシェア

抑制性T細胞(Treg)が、自己免疫病を抑えたり、移植臓器拒絶反応を抑える治療の切り札であることはわかっているが、様々な理由で進展は遅い。ただ、Treg の機能や活性化については研究が進んでいるので、これらの成果を遺伝子のレベルに落とし込んで、使いやすい Treg を遺伝子操作で作ってしまおうという研究が行われている。

今日紹介するシアトルにある Benaroya Research Institute からの論文は、T細胞抗原受容体と Treg転写プログラムの両方を遺伝子操作した EngTreg が、1型糖尿病の治療に使えるか調べた研究で、治療実現だけでなく、人間の Treg の性質を知る意味でも重要な論文だと思う。タイトルは「Pancreatic islet-specific engineered T regs exhibit robust antigen-specific and bystander immune suppression in type 1 diabetes models(膵島特異的エンジニア Treg細胞は、1型糖尿病モデルで、抗原特異的および抗原非特異的バイスタンダー免疫抑制を示す)」で、10月5日号 Science Translational Medicine に掲載された。

坂口さんたちが示したように、Treg の分化と機能は FoxP3 と称されるマスター遺伝子により調節されている。即ち、T細胞が FoxP3 を発現してしまうと Treg へと分化してしまう。そこで、この研究では1型糖尿病の患者さんで膵島特異的反応を示すT細胞からT細胞受容体(TcR)遺伝子を分離、それを末梢血CD4T細胞に導入した、膵島特異的T細胞を数種類作成している。こうして遺伝子操作した T細胞は、そのままでは自己免疫反応を誘導してしまう。そこで、この細胞を、FoxP3の発現が抑えられないように、TALENを用いた方法で遺伝子編集を加え、いくつかの膵島由来自己免疫抗原に対するTcRを発現したTreg細胞を作成している。

このように、ヒトTreg細胞の抗原特異性を完全にフィックスすることで、これまで知られている Treg の特徴を完全に再現することが出来る。

まず Treg および、エフェクターT細胞(Tef)ともに、発現TcR を操作したクローンレベルのモデル系を用いて、EngTreg は抗原ペプチド特異的に増殖し、同じ抗原ペプチドに対する Tef細胞は言うに及ばず、同じ培養中に存在する他の膵島由来ペプチド抗原特異的Tef細胞の反応を抑える、バイスタンダー効果を示すことを示している。この実験系では、FoxP3 の発現が固定されているので、生理学的条件を反映しているとは言えないが、治療目的の Treg細胞の性質を詳細に検討できる。

次に、このバイスタンダー効果が、TcR操作Tefだけでなく、自然に誘導された Tef にも発揮されるかを調べる目的で、数種類の抗原ペプチドに対するポリクローナル Tef を誘導し、この反応も、一種類の抗原だけに反応する EngTreg が抑制できることを示している。この結果は、1型糖尿病発症を止めるために、一つの EngTreg があれば十分なことを示し、臨床的には重要だ。

次に、バイスタンダー効果の一部は、直接 Treg、Tef とのコンタクトがなくとも、Treg が分泌するサイトカインにより樹状細胞が変化することで起こることも示している。

さらに面白いのは、EngTreg の抑制活性が、ペプチドに対する増殖反応と逆比例する点で、治療のためのクローンを選ぶとき、ペプチド反応性は重要だが、増殖能より、抑制機能で治療に使う細胞を選ぶ必要があることがわかる。

これら遺伝子操作したヒト末梢血を用いた試験管内の結果が、実際の臨床に利用できるか調べるための前臨床実験として、NOD1型糖尿病マウスを用いて、臨床で予想されるプロトコルを検証している。マウスCD4T細胞に膵島特異的TcRを導入、今度は CRISPR を用いた遺伝子編集で、FoxP3 を持続的に発現する EngTreg を作成し、NODマウスに移植すると、EngTreg は膵臓に移動し、自己免疫性Tef移植による糖尿病の発症をほぼ完全に抑えられることを示している。

結果は以上で、FoxP3 を持続的に発現させる EngTreg がかなり臨床近づいているという実感が得られた。TcR 導入にはレンチウイルスベクターが用いられているが、これは CART の使用実績があるので、安全性を確保することは容易だろう。また、FoxP3 編集にはアデノウイルスが用いられており、標的部位以外の切断の問題は残るが、発症が完全に抑えられるなら、リスクをとる価値はあると思う。

この方法で EngTreg が利用できる用になれば、応用は1型糖尿病にとどまらない。以前、ALS の症状も、Treg移植で抑えられるという臨床実験を紹介した(https://aasj.jp/news/watch/8483)。

是非、ALSのような治療手段が限られた病気にも拡大することを願っている。

カテゴリ:論文ウォッチ

10月7日 分解されたコラーゲンによる膵臓ガンの増殖促進(10月7日 Nature オンライン掲載論文)

2022年10月7日
SNSシェア

膵臓ガンの特徴は、ガン周囲の線維芽細胞増殖と、コラーゲン合成を伴う強い間質反応で、他のガンに比べて膵臓ガンの予後が悪いのは、この間質反応が関わると考えられており、膵臓ガンの間質に関わる論文は何度も紹介してきた。しかし論文は数多く発表されていても、何が決め手かという整理は出来ていない気がする。おそらく、間質反応が強いと白血球浸潤は多くても、キラー細胞の浸潤が抑えられることが、ガンの予後に関わるというガン免疫からの説明はかなり確かそうだが、間質とガン自体の相互作用については、なかなか決め手がない。

今日紹介するカリフォルニア大学サンディエゴ校からの論文は、ひょっとしたらガンを促進する間質の重要な役割を明らかに出来たのではと期待できる研究で、10月5日 Nature にオンライン掲載された。タイトルは「Collagenolysis-dependent DDR1 signalling dictates pancreatic cancer outcome(コラーゲン分解物による DDR1シグナルが膵臓ガンの予後と相関する)」だ。

これまで指摘されてきたことだが、この研究は膵臓ガンの予後に、膵臓ガンが発現するメタロプロテアーゼが関わり、これにより分解されるコラーゲン(cCol)の腫瘍組織での量が、やはり予後に関わるという現象からスタートしている。

この結果は、もしコラーゲンが分解できなければ、ガンの増殖を促進できないことを示唆しているので、メタロプロテアーゼで分解できないコラーゲンを発現するマウスを作成し、ガンの移植実験を行うと、ガン細胞の増殖が強く抑えられることを発見している。

すなわち、メタロプロテアーゼで分解されたコラーゲンはガンの増殖を促進し、逆に分解されないコラーゲン(iCol)はガンの増殖を抑制する可能性が示唆された。そこで、試験管内で両方のコラーゲンの活性を調べると、cCol はガン細胞のマクロピノサイトーシス(外部の分子を大きな小胞を形成して取り込む)を介して、ガン細胞の代謝を高めることが明らかになった。

次に、cCol が膵臓ガン細胞に作用するメカニズムを探索し、DDR1 と呼ばれるチロシンキナーゼ型受容体から、NFkb、p62。そして NRF2 と、炎症でおなじみのシグナルが活性化され、マクロピノサイトーシスが上昇と、ミトコンドリアの生成が亢進することを突き止めている。また、この経路を様々な方法で阻害すると、期待通りガン増殖促進を抑えられることを明らかにしている。

次に、分解されていないiColがこの経路を抑制するメカニズムについてもしらべ、iCol も DDR1 に結合できるが、結合により DDR1 はユビキチン化され分解されることから、受容体としての機能が抑えられることを明らかにしている。

結果は以上で、コラーゲンが切断されるか否かで、同じ DDR1 に結合しても真逆の結果をもたらすことを示し、これまでの膵臓ガン間質についての結果を統一的に説明する一つのとっかかりになるのではと期待できる。また、多くのガン治療標的も示されたので大きな期待が持てる。

実験の進め方はまさにプロの研究で、この研究を行っているのが M Karine というこのシグナル経路研究の大御所なので、納得する。

カテゴリ:論文ウォッチ

10月6日 ゲノムからチンパンジーの歴史を知る(6月8日 Cell Genomics 掲載論文)

2022年10月6日
SNSシェア

ペーボさんのノーベル賞に私が感じる意義については既に述べた。ただ、古代人ゲノム解析のために、様々な遺伝子解析技術を集中させていったオーガナイザーとしてのペーボさんの役割もおおきい。その結果、人間だけでなく、動物についてもその歴史をある程度知ることが可能になってきた。そんな例がないかと探していたら、少し古いが今年の6月、アフリカのチンパンジーの歴史をゲノムから調べたスペイン・バルセロナ進化研究所からの論文を見つけた。著者の中にはペーボさんの進化人類学研究所も入っており、多くの研究者が集まって発表した力作だ。タイトルは「Population dynamics and genetic connectivity in recent chimpanzee history(最近のチンパンジーの歴史で起こった人口動態と遺伝的関係性)」だ。

アフリカのチンパンジーの国際的研究となると、当然、京大の霊長類研究所も加わって当然だと思っていたが、残念ながらこのようなゲノム研究には参加できていない。一つのスキャンダルの後始末と称して21世紀に最も重要な研究分野の芽が我が国では摘み取られたのではと心配になる。

この研究では、ガーナやコートジボアールといった西地域と、コンゴからウガンダにかけての東地域の828に上るチンパンジーのゲノムを特定し、それらの由来と地域間の交雑を調べている。

といっても、チンパンジーを捕獲して血液を抜くと行った介入ではなく、ひたすら個体の糞を集め、その中に腸から落ちてきたゲノムを集めて解析している。勿論十分なゲノムを集められる可能性は低いので、小さい染色体である21番染色体ゲノムに絞って解読している。

糞から DNA を採取する方法は既に行われているが、チンパンジーの場合サルを襲って食べるため、その DNA の量が、自分の細胞の量を凌駕する可能性がある。このため、チンパンジー21番染色体ゲノムだけをキャプチャーする方法を用いている(これも古代人ゲノム解析では馴染みの方法だ)。

こうして、それぞれの地域で暮らすチンパンジーのゲノムが解読されると、それぞれの歴史や人口動態などが明らかになってくる。その結果、

  1. 人類と同じで、60万年から20万年にかけてアフリカのチンパンジーは大きく東西に分離し、ギニアやガーナ地域の西部地域(W)、カメルーンナイジェリア地域(CN)、コンゴ、ガボンを含む中央地域(CT)、そしてウガンダ、ルアンダ、タンザニアの東地域(E)に分離している。
  2. 歴史を探ると、コンゴ地域でボノボと別れた後、西へ移動したグループが W と CN へと分離、ボノボとの交雑はこの時期に起こっている。東の集団は100万年以降、CT が東へ移動して E が形成されている。それぞれの地域での交雑は少なく、特に W 集団は完全に分離している。以上のことから、基本的には地理的な距離によって種の固定が進んでいると言える。
  3. この動態は、それぞれの地域を代表する希な変異を用いても解析できる。この方法を用いると、各国の動物園のチンパンジーの由来も、体毛の DNA から特定できる。
  4. 象と比べるとチンパンジーの移動距離は200km以下と少ない。これが人類との大きな違いで、文化の交換に基づく多様性が生まれなかった。その中でも、西地域では地域内での交雑頻度が高く、この地域のチンパンジーの文化の多様性の基礎となっている。

結果は以上だが、ここで語られたチンパンジーの歴史は、まさにネアンデルタール人と現生人類が分かれてからの歴史と重なる。この研究で始まった交流の歴史解析を人類と比べることがいかに我々自身の理解に貢献するかは、語るまでもないだろう。ゲノムの21世紀的意義がよくわかる。

カテゴリ:論文ウォッチ

10月5日 細胞内コレステロール感知システム(9月16日 Science 掲載論文)

2022年10月5日
SNSシェア

Sonic hedgehog(shh) は、発生学に関わる人なら馴染みのシグナルだが、この作用機序はちょっと複雑だ。一般にリガンド(この場合shh)は受容体を介してシグナルを誘導するのだが、shh の結合する Patched は、それ自身でシグナルを出さない。代わりに、smoothened と称される膜分子の活性化を抑えている。この抑制が、shh に patched が結合することで外れる。では smoothened を活性化するメカニズムは何か?私の現役時代はわからなかったが、2016年、ハーバード大学のグループがコレステロールが smoothened を活性化していることを明らかにし、コレステロール自体が発生に関わるのかと大きな反響を呼んだ。

今日紹介するカリフォルニア大学バークレイ校からの論文は、smoothen活性化に似たメカニズムがコレステロールセンサーとして働いて、代謝のマスターシグナル mTOR を活性化することを示した研究で、9月16日号の Science に掲載された。タイトルは「Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1(リソゾームの GPCR様蛋白質LYCHOS がコレステロールの量を mTORC1 に伝える)」だ。

スタチンの作用に関わるコレステロール合成経路や、LDL、HDLによるコレステロール循環システムはある程度フォローしているが、コレステロールの細胞内センサーの論文をこれまで読んだことはなかった。しかし、shhシグナルもそうだが、細胞が増殖するためには、十分量のコレステロールが存在しないと、分裂は破綻する。逆さまから見ると、コレステロールが少ないときに、分裂などのシグナルに反応しないようにしておく必要がある。

この細胞内栄養状態の情報をまとめて転写を変化させるのが mTOR分子で、アミノ酸やグルコース量と mTORシグナルとに関係は詳しく研究されている。最も有名どころでは、インシュリンシグナル-AKT-mTORで、医学生なら必ず知っている。

これまでの研究でコレステロールセンサーがあるとすると、リソゾーム膜上で mTORC1 を活性化している分子があるはずだと仮説を立てて分子捜しを始めている。まさに細胞生物学のプロの仕事とは何かが堪能できる。

まずリソゾーム局在分子リストの中から、コレステロールセンサーとして設定した条件を満たすシグナル分子 LYCHOS を特定している。これがコレステロールセンサーとして働くことをノックダウンで確認した後、後はこの分子がコレステロールの量に応じて mTORC1 を活性化する分子カスケードを徹底的に調べている。膨大なデータなので、明らかになった最終的な結果だけをまとめると次のようになる。

  1. コレステロールが LYCHOS の N末端部分に結合すると、mTORC1 のリソゾームの局在を促す過程に、GATOR1、KICKSTART、mTORC をリソゾームに局在させる RAGコンプレックスが役者として関わっている。
  2. GATOR1 は通常 KICKSTART分子と結合しており、mTORC1 のリソゾーム局在に必要な分子コンプレックスの活性を抑える機能を持っている。
  3. LYCHOS にコレステロールが結合すると、C末の LEDドメインと GATOR1 が結合してしまうために、RAGコンプレックスの抑制が取れ、mTORC1 がリソゾーム膜に局在し、活性化される。

結果は以上で、smoothenと同じように、LYCHOS がコレステロールで活性化されることが、センサーとして働いていることを示している。コレステロールは、ステロイドホルモンをはじめ様々なシグナル分子の原料になっているが、コレステロール自体でも間違いなく様々な分子に関わっている。こんな論文を読むと、もう少し LDL を下げておこうと思う。

カテゴリ:論文ウォッチ

10月4日 ダニ唾液のパワー(9月27日 The Journal of Clinical Investigation オンライン掲載論文)

2022年10月4日
SNSシェア

昨年、ダニの唾液内の19成分を抗原としてワクチンを作成すると、ダニに刺される頻度が減り、ダニも早期にその動物から退散するという論文を紹介した(https://aasj.jp/news/watch/18346)。さらについ先日、ニキビダニがホスト自然免疫システムにより生息場所を制限されていることを示した研究(https://aasj.jp/news/watch/20615)も紹介した。このように、体外にいて内部免疫系の影響を受けないと思われる害虫でも、様々な形で免疫系と相互作用しているのは面白い。

一般にダニに刺されると、かゆみを伴う炎症が起こることから、免疫を高める効果があると思うが、今日紹介するウィーン大学からの論文は、ダニの唾液が局所や全身の免疫を抑えて、スピロヘータの感染を助けることを示した研究で、9月27日 The Journal of Clinical Investigation にオンライン掲載された。タイトルは「Tick feeding modulates the human skin immune landscape to facilitate tick-borne pathogen transmission(ダニ刺されは人間の皮膚の免疫状態を変化させダニの媒介する病原菌の感染を高める)」だ。

このような虫刺されと免疫システムの相互作用の研究は、皮膚組織を調べる必要からなかなか人間では研究できないのだが、この研究の最大の特徴は、全ての実験を人間のバイオプシーサンプルを用いて行った点で、このような研究に応じる人を集めたことだけでも驚く研究だ。

人間の組織を採取するとは言え、4mmのバイオプシーなので、やれることは限られている。また、本当に再現性があるのかなど、懸念も多いが、重要な点をまとめると以下のようになる。

  1. 一人の人から、刺された皮膚と、刺されていない皮膚を採取して、免疫細胞を比べると、マクロファージや自然免疫リンパ球などが低下する一方、B細胞、T細胞が増えていることがわかる。すなわち、ダニの唾液が入ることで局所の免疫細胞の変化が起こる。また、皮膚で炎症に関わるインターフェロン、IL4、IL17 などを持つ細胞が減少する。すなわち、リンパ球は増えるが、炎症や免疫誘導が起こりにくい状態が出来ているのに驚く。
  2. 局所の免疫系が変化するのは、ダニ刺されの症状を考えると納得できるが、なんと末梢血でも好中球が増加し、T細胞、NKT細胞、NK細胞、そして自然免疫細胞が低下するという、全身の変化が起こるのは驚く。
  3. 後はこの効果を調べる実験系が必要になるが、これも腹部手術時に大きな皮膚サンプルを採取し、皮膚全体を用いた実験システムをくみ上げている。おそらくこの皮膚をダニが刺すことはないので、まずダニの唾液腺抽出液がダニ刺されと同じ効果があることを確認した後、採取皮膚組織に抽出液を注射、これにより同じ免疫系の変化が起こること、そしてそのパターンから想像されるように、ダニの媒介するスピロヘータの感染をダニの唾液腺抽出液が助けることを明らかにしている。

以上が結果で、全てを人間でやりきった点が最も大きな特徴だが、この話が正しいとすると、わざわざダニがスピロヘータを助けることになり、人間、ダニ、スピロヘータの複雑な三角関係が何故出来たのか、最終的に納得感の低い論文だった。

カテゴリ:論文ウォッチ

10月3日 嗅神経の軸索投射をストレス反応が調節する(9月26日 Cell オンライン掲載論文)

2022年10月3日
SNSシェア

視覚や触覚と違って、嗅覚細胞は、一定の期間働いたあと、細胞はアポトーシスで死ぬが、これに伴い幹細胞が活性化して、新たな嗅覚細胞で置き換えられる。神経でも新陳代謝が出来ることはありがたいことだが、嗅覚細胞の問題は、新しい細胞が同じ嗅覚受容体を発現しているとは限らない点だ。嗅覚受容体遺伝子は何百種類もあるが、どれを選ぶかは確率的に決まる。このため、嗅覚の安定性を保つためには、受容体の種類に応じて一時投射場所を決める必要があると考えられ、これを支持する多くの研究が行われた。これに、東大の坂野さんをはじめとして、日本の研究者が大きな貢献をしてきた。

とはいえ、嗅覚受容体(OR)は何百もあるのに、同じ場所に投射できるのはにわかには信じがたいのも確かだ。

今日紹介するコロンビア大学からの論文は、投射の調節機構が、OR(臭覚受容体)とリンクしたER(小胞体)ストレスを積極的に取り込むことで、階層的に進み、最終的にOR依存的シグナルで微調整され完成することを示した面白い研究で、9月26日 Cell にオンライン掲載された。タイトルは「ER stress transforms random olfactory receptor choice into axon targeting precision(ERストレスはランダムな嗅覚受容体の選択を軸索を正確に投射する選択へと変化させる)」だ。

このグループは、OR が折りたたまれるとき ERストレスが発生するが、何百もある OR ごとに ERストレスの強さが異なっており、この差を OR とリンクした転写調節に利用できるのではと考えた。すなわち、OR に応じて ERストレス強度が異なり、この差が神経軸索投射分子の転写の発現パターンを変えているのではと着想した。

これを確認するため、ERストレス直下で転写が高まる分子 Atf5 をリポーターとして、それぞれの OR と Atf5 発現量を調べると、OR の種類に応じて見事に Atf5発現量、すなわち ERストレスの強度が変化することを明らかにした。また、このストレス強度は完全に OR の配列依存性で、OR の分子構造を変えると全く異なるストレス強度が発生することも示している。

次に、ストレス強度の違いで起こる遺伝子発現の差を調べると、これも期待通り、軸索投射をガイドする様々な分子の発現パターンが見事にストレス強度と相関していることを示している。

後は、同じ OR を選んだ細胞で、ストレスシグナル分子の発現が異なるように細工したマウス(OR遺伝子は一細胞一分子なので、対立遺伝子座の片方にノックアウトのための Cre を挿入することで可能になる)、同じ OR を発現していても、同じ場所へ投射できなくなることを示し、ERストレスの差が投射の大きな枠決めに関わることを示している。

後は、single cell RNA sequencing などを用いて、ストレスを軸索投射のための遺伝子発現へと転換する Ddit3 を特定し、これにより嗅球の各領域への大きな方向付けが決まることを明らかにしている。

この頃ほとんどこの分野をフォローしていなかったが、面白い論文で、これまで気になっていた疑問をかなり解消してくれた。しかし、ERストレスをわざわざ取り込むことは、危険も大きい。というのも最終的には細胞死に陥る。例えば、ウイルスが感染してしまうとすぐ細胞が死にやすいのもこのせいかもしれない。いずれにせよ、幹細胞生物学としても面白い課題が生まれたと思う。

カテゴリ:論文ウォッチ

10月2日 次のパンデミックを予想し、備えることは可能か(9月30日 Cell オンライン掲載論文)

2022年10月2日
SNSシェア

今回のCovid-19もふくめ、21世紀に問題になるエンデミックやパンデミックのほぼ全ては、なんらかの脊髄動物に感染が拡がっているウイルスが、様々な原因で人間に感染し、それが変異を重ねて感染性のウイルスへと変化することで起こっている。このことから、動物に感染しているウイルスの中から、次のパンデミックの原因となるウイルスを特定するための研究の重要性が強く認識された。すなわち、次のパンデミックの芽を動物感染の間に摘み取る、あるいは、感染が始まってもすぐに診断治療体制がとれるよう準備しておくことの重要性だ。人的資源と多くの研究投資が必要になるが、Covid-19で失われた経済的損失と比べると、おそらく微々たる額だろう。

このような取り組みのまさに好例となる論文が、米国国立衛生研究所とコロラド大学から、9月30日、Cell にオンライン掲載された。タイトルは「Primate hemorrhagic fever-causing arteriviruses are poised for spillover to humans (サル出血熱アルテリウイルスは人間へと拡がる準備が整っている)」だ。

サル出血熱は実験用に輸入されたマカクザルから研究施設に拡がるウイルスとして知られており、致死性は高い。ウイルスはアルテリウイルスと称される RNAウイルスによる感染で、これまで人間に感染したという報告がないため、ほとんど研究が進んでいなかった。しかし、最近になってサル出血熱ウイルス(SHFV)が霊長類に感染することが明らかになり、virus of concern となってきている。

SHFVの場合、まず感染過程を明らかにしなければならない。これまでの研究でヘモグロビンのスキャベンジャー分子 CD163 が受容体として働いている可能性が示唆されていたので、CD163 のノックアウト、あるいは遺伝子導入実験より、CD163 がウイルスの受容体として働いていることを確認している。

ただ Covid-19 に対する ACE2 といった関係でないこともわかってきた。というのも、CD163 は表面蛋白質だが、細胞表面に出ずに細胞内小胞にとどまっている細胞でも、ウイルスは感染する。Covid-19 でも指摘されているが、マクロファージでは例えばマクロピノサイトーシスなどを介して細胞内へウイルスが取り込まれ、そこで CD163 と結合して、RNA が細胞内に侵入すると考えられる。

いずれにせよ、CD163 との結合が、種を超えた感染のバリアーになることは確認された。そこで、CD163 の配列を様々な種に変えて感染実験を行うと、たしかにマカク由来SFHV は新世界ザルには感染しないが、チンパンジーや、ゴリラ、そしてなんと人間の CD163 とも結合して感染することがわかった。

CD163結合性があっても、幸い血液から分離した白血球ではウイルスの増殖は見られない。従って、人間での感染事例がないのは、この抵抗性のおかげだと考えられる。ただ、細胞株を用いた実験を行うと、SU-DHL-1細胞ではウイルス増殖が見られ、CD163陰性の腎臓細胞でも CD163 を導入することで、感染し、ウイルスを増殖させることが明らかになった。

以上が結果で、現在アフリカをはじめ様々な地域で拡がっている SFHV は、まだ突き止められていないほんの少しの障害のおかげで人間には感染できていないが、この障害が取り除かれた細胞では簡単に感染増殖することがわかった。

やっかいなことに、ウイルスの CD163結合部位に対する抗体は、細胞内で効果を持つ必要があり、Covid-19 のようなワクチン設計でいいのかなど、解析しなければならないことは多い。

いずれにせよ、パンデミックの前に対策を用意するための研究は可能で、例えば企業コンソーシアムなども参加して、対策研究を進めることが大事だと思う。重要なのは、国に全ての対策を任すことがいかに危険かを認識することだろう。

カテゴリ:論文ウォッチ

10月1日 ガン免疫と糖代謝(9月30日 Science 掲載論文)

2022年10月1日
SNSシェア

ガンに頻発する変異を眺めて改めて認識させられるのが、ガン増殖に代謝プログラムが深く関わっていることだ。中でも、悪性のグリオーマで頻発する isocitrate dehydrogenase (IDH) の変異で、代謝の基礎とも言える TCAサイクルに関わる酵素が関わっているので、エネルギー代謝が大きくシフトすることが、ガンの増殖を助けるのかなと考えていた。しかしその後の研究で、IDH変異は単純な機能低下変異ではなく、新しい機能が生まれて、IDH1、IDH2変異とも、最終的に 2-hydroxyglutarate(2HG) が細胞内に合成、蓄積され、これが TET やヒストン脱メチル化酵素を阻害、ガンのエピジェネティックスを大きく変化させるとともに、HIF1 を活性化して、低酸素転写プログラムを誘導することが、発ガンに大きく関わることが明らかになった。

今日紹介するハーバード大学からの論文は、IDH変異を持つガンにより合成される 2HG が、ガンだけでなく周りの免疫系に影響を持つのではと着想し、作用メカニズムを調べた研究で、9月30日 Science に掲載された。タイトルは「Oncometabolite D-2HG alters T cell metabolism to impair CD8 + T cell function(ガン由来代謝物 d-2HG はT細胞代謝を変化させて CD8T細胞機能を抑制する)」だ。

IDH変異では高レベルの 2HG が合成されるので、少なくともガン局所は mMレベルの濃度になる。しかし、ガンの増殖を助ける代謝物は免疫細胞も活性化するのかと思っていた。

ところが、キラー細胞を 2HG で処理すると、T細胞の活性化は起こっても、キラー活性に必要なグランザイム分泌や、さらにはインターフェロンγ の分泌が強く抑制されている。また、IDH変異を持つガン患者さんでは、CD8T細胞の浸潤が低下している。ただ、ガンのように、2HG によって、エピジェネティックな変化や、HIF1転写が大きく変わるわけではなく、この効果は 2HG に触れたときだけの急性効果であることがわかる。

そこで、2HG により何が起こっているのかを調べると、2HG がピルビン酸から乳酸を合成する LDH-A を阻害すること、そしてこの結果、糖分解経路が低下し、この結果 NAD/NADH バランスがミトコンドリア呼吸複合体を介して、ミトコンドリア膜の過分極を誘導、T細胞はミトコンドリア依存性のエネルギー代謝が高まり、活性酸素が高まることで、急性の機能不全に陥ることを示している。簡単に述べたが、実際には代謝経路を、阻害剤やトレーサー実験を用いて詳しく調べている。

以上、ガンから発生する 2HG が急性効果ではあるが、グリコリシスを抑え、ミトコンドリア呼吸を高め、この変化がインターフェロン分泌と、キラー活性に必要なグランザイム分泌が低下させる原因であることを明らかにしている。とすると、現在行われている IDH を阻害する治療は、ガンの増殖を大きく変化させられなくても、十分治療に使う可能性はあると思う。

カテゴリ:論文ウォッチ

9月30日 PD1 分子を標的にした異次元免疫治療(9月29日 Nature オンライン掲載論文)

2022年9月30日
SNSシェア

抗原刺激を受けたT細胞は PD1 分子を発現し、それが刺激されることで反応が抑えられるチェックポイントを持っている。これをブロックして、抗原特異的T細胞が消耗するのを防ぐのがチェックポイント治療で、ガン治療に導入され大きな成功を収めた。ただ、チェックポイント機能を抑えるだけでは、T細胞を刺激しているわけではないので、患者さんのT細胞が持続的に活性化出来るかどうかは他の因子にかかっている。

この不確定性を克服するため、PD1 を発現した細胞をさらに IL2 などで刺激し、他のルートから細胞を活性化する試みが行われ、一定の成功を収めている。これまで紹介したように、IL2 では、CD25 に結合性のない、変異型のサイトカインが設計され、CD8T細胞だけを増やすことも出来るようになり、新しい方向の治療として期待されている。

今日紹介するスイス・チューリッヒにあるロッシュイノベーションセンターからの論文は、IL2 刺激を PD1 を発現して消耗が始まった T細胞特異的に提供することで、チェックポイント治療とは質的に異なる治療が可能になることを示した研究で、9月29日 Nature にオンライン掲載された。タイトルは「PD-1-cis IL-2R agonism yields better effectors from stem-like CD8 + T cells(PD1陽性細胞のIL2受容体を刺激することで幹細胞様CD8T細胞から優れたエフェクター細胞を誘導できる)」だ。

論文では膨大なデータをこれでもか、これでもかと示す、さすが製薬企業と思わせる研究で、しかも使っているモデルや材料を見ると、おそらく膵臓ガンに狙いを定めていることがよくわかる論文だ。

この研究では、IL1 刺激とチェックポイントを別々に行う方法で、CD25 結合のない IL2βγ 受容体結合リガンド( IL2V)の免疫増強効果を調べ、通常の IL2 より効果が低く、IL2V の効果を利用するためには、PD1 を発現した細胞に選択的に IL2V を提供することが重要だと結論し、この目的のために、PD1 に対する抗体に IL2V を結合させたキメラ分子を開発している。

立て付けとしては、PD1 を抑制するとともに、同じ細胞の IL2βγ 受容体からシグナルをいれる方法といえるが、LCMウイルスを用いた慢性感染実験で調べると、PD1 抑制では得られない、異次元の細胞が誘導でき、高いキラー活性が維持できることがわかる。

メカニズムを解析すると、PD1- IL2VはPD1TCF1の幹細胞様として知られる CD8T細胞に働いて、増殖を維持して幹細胞の働きを助けるとともに、キラー効果を発揮するエフェクター細胞への分化をバランス良く維持する効果を持つことがわかった。さらに、PD1- IL2V は IL2Rβγ受容体とともに細胞内に取り込まれ、IL2V の効果を持続させる働きまである。

基礎的な検討の紹介は全て省くが、基本的には免疫を下げる遺伝子の発現を抑え、エフェクター機能を高めている。

最後に満を持して、膵臓ガンモデルへの投与実験を行い、チェックポイント治療では到底到達できなかったレベルの治療効果が存在すること、さらには PD-L1 に対する抗体を組みあわせて、チェックポイント機能を完全に抑えると、効果がさらに高まることを示している。そして、増殖している T細胞受容体遺伝子も調べ、これが腫瘍内で腫瘍特異的T細胞が選択的に増殖している結果であることを示し、期待を持たせて終わっている。

以上が結果で、論文全体から膵臓ガンを治すぞという気持ちが伝わる論文だ。この技術は、ガン浸潤細胞の増幅などにも利用できるため、期待したいと思う。ただ、ガンに対して異次元の反応を誘導できることは、間違うと異次元の自己免疫副作用が出るのではと心配する。おそらく、これに抗原刺激ワクチンを組みあわせると、ついに免疫治療のゴールに入れるのかもしれない。

カテゴリ:論文ウォッチ
2024年4月
« 3月  
1234567
891011121314
15161718192021
22232425262728
2930