2020年11月3日
腸内細菌叢の影響は様々な生体機能に及び、まさにもう一つの自己として私たちの多様性を決めていることはよくわかっている。しかし今日紹介するノースカロライナ大学からの論文を読んで、放射線への抵抗性までが腸内細菌層の違いで決まるのかと驚いた。 タイトルは「Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites(複数のオミックス解析による放射線生存個体の解析から放射線抵抗性に関わる細菌叢とその代謝物が明らかになった)」で、10月30日号のScienceに掲載された。
この研究の始まりはSPFで飼育している純系マウスに致死量放射線を照射したとき、600日以上生き残る集団が約10%程度存在するという発見に始まる。実際には、多くの研究者が同じ様な経験をしていたと思うが、一種の確率問題の様に考えて、その原因を探ろうとはしてこなかった様だ。
このグループは、ひょっとしてこの原因が腸内細菌叢の違いにあるのではと着想して、長期生存を果たしたマウスの細菌叢を調べると、正常と大きく異なっていることがわかった。さらに、長期生存したマウスのケージで正常マウスを飼育することで、生存マウスの細菌叢を移植する実験を行い、細菌叢が放射線抵抗性の原因であると結論している。
次は、細菌叢の違いを分析し、抵抗性につながるLachnospiraceae, enterococcus faecalis, Lactobacillus rhamnosus, Bacterioides fragilisの、それぞれ二十種類前後の種を含む属 を特定し、それぞれを正常マウスに移植して抵抗性を調べると、Lachnospiraceae属が一番高い活性があることを示している。
次に、これらの細菌により抵抗性が付与されるメカニズムを調べ、一番大きな要素は血液幹細胞の自己再生能力が守られること、特に放射線照射による活性酸素の産生が幹細胞で抑えられることにより、放射線抵抗性が生まれることを示している。
同じ様な現象が人間でも見られるのかを調べるため、白血病治療で放射線療法を受けた患者さんの副作用の程度と、腸内細菌叢が相関するかどうかも調べ、先に特定した四種類の属が高い患者さんほど、下痢などの副作用が軽く終わることを示している。
最後に、細菌の代わりに、細菌の代謝物で同じ様な効果を得られないか調べ、細菌が分泌する短鎖脂肪酸、特にプロピオン酸が高い効果を持つこと、またトリプトファン代謝物のIndole 3 carboxaldehiydeやキヌレイン酸にも同様の効果があることを確認している。
この様にここの代謝物になってくると、出てくる役者は代わり映えがせず、また結果の解釈も複雑になってしまうが、これら代謝物をバランスよく合成する細菌を選んで投与しておけば、放射線による抵抗性が高まり、治療による副作用が低下する可能性を示唆しており、臨床的にも重要な発見だと思う。
2020年11月2日
「新型コロナウイルス」Cov2)は変異し易く、ワクチンも効かないのでは」とよく聞かれるが、インフルエンザなどと比べてCov2はゲノムが大きく、多くの機能を兼ね備えているので、変異は死活問題になる可能性が高く、これを克服するためにゲノムを正しく複製できたか調べるプルーフリーディングの機構を持っており、変異の頻度は他のRNAウイルスと比べると低いと考えられる。
Cov2は変異が速いという心配が一般に広まっている最大の理由は、ウイルス感染に重要なスパイクタンパク質に起こった変異が、3月以降世界中を席巻したというおそらく米国ロスアラモス研究所からCellの8月号に掲載された論文のせいではないかと思う。
さらにD614G変異はfurinによるスパイク処理を高め(https://aasj.jp/news/watch/13302 )、感染性も高まるという論文がメディアで紹介され、高い変異性というイメージが一般にも広く行き渡った様に思う。
ただ、このD614G変異の臨床的意味を明確にするためには、既に示されたデータに素直に納得しないで、できる限り臨床条件に合わせた感染実験が必要になる。今日紹介するテキサス大学ガルベストン校からの論文はこの課題にチャレンジした研究で、実験をやり直すことで多くの発見があることがよくわかる研究だ。タイトルは「Spike mutation D614G alters SARS-CoV-2 fitness(D614Gスパイク突然変異の適合性)」で、10月26日Natureにオンライン掲載された。
感染性を調べるために、他の安全なウイルスにスパイクだけを導入した実験系がよく使われるが、この研究では最初からスパイクだけで異なる二種類のCov2(D624とG614)を準備して完全を目指している。
次に、感染実験によく使われるVeroE6(猿の腎臓細胞由来)細胞の代わりに、ヒト肺胞上皮由来細胞を用いて感染実験を行ない、確かに変異型ウイルスの方が細胞を殺すプラーク法で2倍程度感染性が高まっていることを確認している。この実験の過程でVeroE6で増殖させたウイルスは、ヒト肺上皮細胞で増殖させたウイルスと比べると、2つのペプチドに切断される効率が3割ほど下がっており、ウイルス回収量が多いからといって、VeroE6をウイルス回収に使っていいのか疑問を投げかけている。
さらに、スパイク分子の切断効率が変異型で上昇しているという考えが広く受け入れられる様になっていたが、ヒト肺上皮細胞から回収したウイルスでは、このサイトの違いで差はほとんど見られていない。
ただウイルス感染は極めて複雑な過程で、ウイルスを別々に感染させる実験では正確にウイルスの優劣をつけにくい。この研究では、正常の肺上皮細胞培養に、1:1に混合した2種類のウイルスを感染させ、その後細胞から回収できるウイルスの種類を調べる実験を行って、この問題にチャレンジしている。別々に感染させる実験では高々2倍程度の差が見られるだけだが、この様な実験条件では、なんと感染後5日目には変異型のウイルスの比が13倍以上なっていることを確認し、このウイルスがヒト肺上皮に関しては、遥かに適合していることを明確に示している。
さすがに人間を使った感染実験はできないので、ハムスターを用いた感染実験も行っているが、感染初期の上部気道から多くのウイルスが回収される以外に、症状など大きな差を認めていない。感染性がそのまま病原性につながったわけではないこともわかる。
最後に、現在用意されている多くのワクチンはD614型を抗原に使っているので、誘導された抗体が変異型にも効果があるかどうかを調べている。面白いことに、感染ハムスターの血清の中和活性で見ると、変異型は確かに中和されにくい。一方、人間のモノクローナル抗体による中和活性を調べると、両者にほとんど差はなかった。
以上、モデル実験システムを実際の臨床の条件に近づけることの重要性がよくわかる論文だ。実際、中和抗体の実験や、感染性ウイルス回収実験など、スーパースプレッダーも含めて、臨床的な多くの課題を説明できるヒントが多く含まれている様に思う。ぜひ現場の医師たちにも読んで欲しい論文の一つだ。
2020年11月1日
新型コロナウイルス感染は、様々な専門的言葉がメディアにより一般向けの言葉として使われるきっかけになった。その最たるものがサイトカインストームという言葉で、重症化の代名詞にすらなっている。しかし、サイトカインストームは自然・獲得免疫の暴走状態で、Covid-19特異的でもなんでもない。また、末梢血の指標から判断できるサイトカインストームの程度は、他の病気と比べて特に高いわけではないとする論文が米国医師会雑誌にも発表されている。
ただ、サイトカインストームは感染症の重症化を決める重要な要因であることは間違いない。この重症化への境目を知るためにとれる一つの方法は、様々なステージのCovid-19患者さんについて、予断を排して徹底的に調べることだが、いわゆる中等度への移行過程で代謝や免疫指標の最も大きな変化が起こっていることが最近Cell に発表された。
このことは、肺へ感染が広がった時に起こる変化の解明の重要性を示している。しかし、いかに多くの患者さんが発生しているとはいえ、これを人間の組織で調べるのは難しい。そこで動物実験の出番になる。
今日紹介する米国St.Jude病院からの論文は肺炎の重症化を決めるメカニズムをマウスの重症インフルエンザ感染モデルで検討した研究で、最終的に治療のヒントにまで到達できている面白い論文で、インフルエンザ感染が中心とはいえコロナ関連の論文として紹介する。タイトルは「Exuberant fibroblast activity compromises lung function via ADAMTS4(線維芽細胞の高い活動性がADAMTS4を介して肺機能を傷つける)」で、10月28日Natureにオンライン出版されている。
インフルエンザであれコロナウイルスであれ、感染するのは上皮細胞が中心になるが、そこから発せられるシグナルを組織化しているのは上皮を裏打ちしている間質細胞になる。
この研究では致死量のインフルエンザウイルスを感染させた肺組織の間質細胞、特に線維芽細胞に焦点を当て、個々の細胞の遺伝子発現を網羅的に調べるscRNA seq法を用いて調べ、インターフェロン反応性の線維芽細胞が感染後期に上昇してくる一方、組織障害に反応する線維芽細胞(Dfib)は感染初期に急増することを発見する。また、両者を表面抗原で分別できることも示している。
この研究の特徴は、臨床応用可能だと思えるデータは必ずCovid-19も含むヒト感染症のデータベースと照合している点で、このDfibと同じ形質を持った細胞が、重症肺炎による死亡例で多いことを確かめている。
このDfibの遺伝子発現プロファイルから、サイトカインだけでなく、組織のマトリックスを分解する酵素、特にADAMTS4の発現が高まっていること、さらに人間の線維化を伴う肺疾患でも同じ様にADAMTS4が高まっていることを明らかにしている。そこで、この分子の肺炎重症化への関与を調べるために、遺伝子ノックアウトしたマウスでインフルエンザウイルス感染実験を行い、死亡例が半減すること、また肺の炎症での線維化がかなり抑えられること、ウイルスに対するキラー細胞の浸潤は変わらないが、T細胞全体の浸潤とサイトカインん分泌は低下すること、そしてこの変化はマトリックスの中のVersicanの分解の程度で決まることを明らかにしている。
最後に人間の季節性インフルエンザ及び鳥インフルエンザへの感染による重症化との相関をやはりデータベースを掘り起こして調べると、線維芽細胞が活性化し、ADAMTS4の発現が高いと、重症化率がオッズ比で2倍になることを示している。
以上が結果で、マウスの実験も、蓄積されたデータベースを使うことで、人間にも参照できることを示した面白い研究だと思う。ADAMTS4はノックアウトしてもマウスが生きていること、プロテアーゼであることなどから阻害剤で介入する可能性がある。もちろん線維化の指標としても重要になるだろう。
Covid-19が診断されてすぐ、症状が強まる前からCT上の間質肺炎初見が強いことが示され、さらに中等度で回復しても後遺症が残ることも知られている。その意味で、今日紹介したCellとNatureの論文は、肺に感染が進展した時が病気を制御する最も重要なポイントで、間髪を入れず早期治療を行うことの重要性を示唆する様に感じた。
2020年10月31日
新型コロナウイルス(Cov2)を含むコロナウイルスは、その生活サイクルを通して、細胞内オルガネラを上手に再構成することで、安全に複製する仕組みを持っており、これに関わるのがnon-structural proteinだ。これまでもコロナウイルスの細胞生物学として多くの研究が蓄積している面白い分野だ。私が読んできた中では、今年の7月UC BerkeleyのグループによってJBCに発表された総説が最もわかりやすくお勧めだ。
ウイルスタンパク質と協力するホスト因子を探すためにはいくつかの方法がある。例えば、Cov2タンパク質と結合するホスト分子を網羅的に調べる方法は早くから利用され、最近でもScienceに掲載されたが、この方法では、それぞれの分子が本当に機能しているのか、結合しているだけなのか、改めて調べる必要がある。
この問題を解決するのが、今年のノーベル化学賞に輝いたCRISPR/Cas9を用いる方法で、細胞機能に重要な遺伝子全てをカバーする何万ものガイドRNAを別々に挿入されたレトロウイルスを用いて、万のオーダーの遺伝子がそれぞれ欠損した細胞ライブラリーを作成し、これにウイルスを感染させて残った細胞のガイドRNAから、欠損するとウイルス抵抗性が生じる遺伝子を特定するという方法だ(この逆も可能で、導入したライブラリーの中で感染後すぐに消失する遺伝子はウイルスに対する抵抗性に必要と言える)。
今日紹介するニューヨーク大学からの論文はCov2の感染と増殖に必要なホスト側の遺伝子の機能を、何万種類のガイドRNAを導入してノックアウトして探索した研究で10月20日号Cellにオンライン出版された。
実際には、この論文がオンライン掲載される少し前にイェール大学のグループも同じ方法を用いたホスト因子の探索を発表している。
同じ様に見えても、2つの論文は手のかけ方が大きく違う。Yale大学の方は、ウイルス自体の代わりに、感染に絞って調べるためのVSVウイルスにCov2スパイクを導入する感染重視の方法を用い、さらにインターフェロンが欠損したVero-E6細胞を用いて感染実験をしやすくしている。この結果、ほとんど感染時に必要な分子とその転写だけに関わる分子がリストされ、ウイルスのライフサイクル全体を見渡した研究にはなっていない。
一方NY大学のグループは、CRISPR/Casと数万のガイドRNAを用いる点では同じだが、感染にはウイルス自体を用い、細胞は肺胞細胞ガン株を用い、ウイルス感染による細胞の生存を指標としている点で、手間がかかっており、ウイルスライフサイクル全体をカバーして、ウイルス分子と強調するホスト分子を特定できる。そこで、今回はこの論文について紹介する。
生き残った細胞に濃縮しているガイドRNAによりノックアウトされる分子Top50をリストし、あとはこのリストされた分子がウイルス分子と結合して、ウイルスのライフサイクルに機能的に関わるかを確かめるための実験を、よくまあここまでと思えるぐらいに行なっている。これらを全て紹介するのは大変なので、個人的に面白いと思った結果だけを以下にリストする。
当然ウイルス感染の入り口になるACE2分子はいずれの研究でも、ホスト因子の筆頭だが、驚くことにカモスタットやなフモスタットのターゲットTMPRSS2やFurinなどがリストされなかった。この代わりにカテプシンLがリストに入り、ウイルス融合に関わる分子の階層性を再検討する必要を感じた。臨床的には検討が必要だ。 リストされた分子の多くはウイルス分子と結合しこれまでのnspの理解を大きく前進させた。例えばnsp7はウイルス複製複合体のなかでプライマーゼとして働いていることが知られているが、昨日紹介したRab7aと結合している。今後の研究が期待される。 ウイルスのエンドゾームへの侵入からdouble membrane vesicleの形成とその中での複製、そして排出と、ウイルスにとって小胞輸送のコントロールは必須だが、期待通り多くの分子はこの過程に関わることが示された。ただ、この論文もリソゾームまでは考えていなかった様で、扱いが少ない。ただ、細胞の生存を見る方法は、ウイルス排出自体が結果に影響しないスクリーニングかも知れない。昨日紹介したRab7aはリストに上がっているので、今後新しい目で、このリストを調べ直すと面白い。 意外にも、ノックアウトされた細胞の遺伝子遺伝子発現を調べる実験から、エンドゾーム形成に関わる遺伝子が、細胞内のコレステロール合成に関わり、ノックアウトされると細胞内のコレステロールが上昇することがわかった。また、Cov2感染で細胞内コレステロール合成が阻害されることも知られている。そこで、この研究ではカルシウムチャンネル阻害剤として知られるアムロディピンで処理して、細胞内コレステロール合成を高める実験を行い、ウイルス抵抗性が高まることも示している。 事実、アムロジピンを降圧剤として服用している患者さんではcov2感染が少ないという報告がある。 この論文と直接関係がないが、最近膜上のコレステロールを障害するとCov2の感染が抑えられ、またSTATINの服用がCovid-19の回復を早めるという論文があった。この論文の結論からどう考えるか、臨床的には重要な問題だ。
以上、昨日と同じで多くのことを学ぶことができ、頭の整理ができるだけでなく、新たなインスピレーションが生まれる論文だと思う。新型コロナウイルス感染の生物学は着実に進展している。
2020年10月30日
新型コロナウイルス(Cov2)に限らず、コロナウイルスや、ウイルスによる肺炎とその重症化などまだまだわからないことは多い。でも科学者OBとして言えることは、着実にコロナウイルスの科学は進んでおり、この延長に必ずウイルス制圧が約束されていることだ。ただ、新しいエキサイティングな発見を、科学者がわかりやすく発信するのが難しいこともよくわかったが、AASJでは新型コロナウイルスについても、これまで通り誠実に研究内容の面白さを伝えていくつもりだ。幸い、今週発表された論文は、少なくとも私の中の新型コロナウイルスについての理解を大きく前進させてくれた論文が多かった様に思うので、連続的にコロナ関係の論文を紹介することにした。
最初は米国国立衛生研究所からの論文で細胞の中で複製したウイルスが細胞外に排出される過程を調べた研究で10月22日Cellにオンライン掲載された。タイトルは「β-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway(βコロナウイルスは生合成―分泌経路ではなくリソゾームを使って細胞外へ排出される)」だ。
Cov2に限らずコロナウイルスの生活サイクルを見ると、ホスト細胞の膜やオルガネラを上手にコントロールして、自己を守りながら複製していることがわかる。このあたりの生物学については、梅田北ヤード再開発に関連して阪急阪神不動産株式会社と一緒に準備中の「参加型ヘルスケアプロジェクト」の事業として改めて紹介していきたいと思っている。生活サイクルの中で研究が遅れており、頭の整理がついていないのが、小胞体内で形成されたウイルス粒子が細胞外へ排出される過程だ。ほとんどの総説では、エキソサイトーシス(exocytosis)とぼかして表現しているが、基本的にはノーベル賞を受賞したシェックマンが解明した生合成―分泌経路を使う様に描かれていた。
この様な輸送経路が重要な研究課題になる理由だが、私たちの細胞の中で作られた分子は、単純に細胞外へ滲み出すのではなく、違う行き先を持つ小胞に乗せられて、正確に目的地に輸送される。どのトラックに乗せられ、どの輸送基地に集積するかなど、見事なシステムが出来上がっているので、どの経路を使うかは、ウイルスにとって死活問題になる。
この研究は、実験のしやすいマウス肝炎ウイルスをコロナウイルスとして使っているが、重要なポイントではCov2感染実験も加えて研究を行なっている。まず最初に、本当に生合成―分泌経路がウイルス粒子の排出に使われているか、この経路だけ阻害するBrefeldinという阻害剤を用いて調べ、この輸送経路が遮断されてもウイルスが排出されることを発見している。
そこでもう一度細胞内のウイルス粒子の動きと、細胞内の小胞の動きを比べ、最初小胞体で合成され、核周辺のゴルジネットワークに集まったウイルス粒子が、後期には分解に関わるライソゾームに集まることを発見する。この辺りは、細胞生物学のプロの研究で、それぞれの輸送システムの分子機構に関わる分子に熟知し、最も適した阻害剤を用いた研究を行ったあと、小胞体からライソゾームへの輸送経路については研究が必要だが、確かにライソゾーム経路を使って細胞外へ排出されると結論している。
詳細を省いてしまうと以上が結論になるが、この結論から見えてくる重要なポイントだけまとめておく。
明日紹介する、コロナウイルス感染に必要なホスト因子の研究論文でも指摘されている様に、オートファジーでも有名なRab7シグナルの関与が示され、阻害剤による排出の抑制も示されており、今後の治療戦略の一つとなるかもしれない。 小胞体からリソゾーム、そして細胞外へ排出される過程で、タンパク質を守る分子シャペロンが常に結合しており、この結果排出直後から高い感染性を発揮できる。 コロナウイルスはリソゾームに局在するORF3a分子を持っているが、これがリソゾーム内のタンパク分解に適したpHを上昇させて、ウイルスを守る役割をしている。 ORF3の作用でpHが上昇すると、内部のタンパク分解活性が低下することで、免疫系へ提示するペプチド合成は低下する。これはウイルス免疫成立を阻害するが、逆にペプチドの結合しない組織抗原が表面に増え、NK細胞の標的になる。事実、コロナウイルス感染細胞表面の組織適合性抗原はペプチドが結合していないオープン型が多い。
以上、本当に多くのことが学べ、新しいアイデアを刺激する素晴らしい研究だと思う。免疫についても、コロナに対する免疫の不思議さを知る手がかりがありそうだし、これまで、NK機能の低い人ではcovid-19が重症化する可能性が示唆されていたが、この様な臨床観察も説明ができる様な気がした。
2020年10月29日
臨床データを集めて疾患のメカニズムを探る優れた論文は、断片的な証拠から犯人を導き出す探偵小説の様な面白さがある。特に、複数の犯人が絡む場合、それらの共通性を把握した時に、シナリオが見えてくる。
今日紹介するチューリッヒ大学からの論文はまさにその好例で、多発性硬化症という複雑な病態について新しい視点を示してくれた。タイトルは「HLA-DR15 Molecules Jointly Shape an Autoreactive T Cell Repertoire in Multiple Sclerosis(HLA-DR15分子は協調して多発性硬化症の自己反応性T細胞レパートリーを形成する)」で、11月25日号のCellに掲載予定だ。
自己免疫病の中でも多発性硬化症は、動物モデルも存在し、遺伝的背景、自己抗原、疾患の引き金を引く自己抗原と交差性を持つウイルスや病原菌の特定など、多くの断片が集まってきている。おそらく、ウイルスや細菌の感染が引き金になり、ミエリンをアタックするT細胞が誘導され、それが何らかのきっかけで中枢神経系に進入して病気になるというシナリオはできていたが、発症から病気の維持に至るまでの長い経過を説明するための手がかりが必要といった段階にあったと思う。
この研究では、白人の多発性硬化症のほとんどがDR2aとDR2bクラスII組織適合性抗原を持つことに着目し、DR2a/bが発症までの全ての段階共通の基盤となっていると考え、DR2/bと結合しているペプチドを探索して、特にB細胞ではDR2a/b自身に由来するペプチドが結合していることを発見する。すなわち、DR2自身が抗原ペプチドでもあり、それを提示するMHCでもあるという不思議な関係ができている。
この結果から、著者らは多発性硬化症患者さんの自己反応性T細胞は、このDR2由来ペプチドにも反応し、長期間維持されているのではと着想する。そして、期待通り、多発性硬化症の患者さんのCD4T細胞がDR2由来ペプチドに弱いが反応することを発見する。すなわち、感染により誘導される自己ミエリン反応性のT細胞は、このDR2由来ペプチドとも交差反応を起こして、病気の維持に関わるのではないかと着想し、この可能性を追求する。
結果は予想通りで、ミエリン由来ペプチドに反応するCD4T細胞は、反応は弱いもののDR2由来ペプチドにも反応する。また、おなじCD4T細胞は、EBウイルスやAkkemansia菌由来のペプチドにも反応する。
すなわち、これまで多発性硬化症の責任細胞として特定されていたCD4T細胞は、ミエリン由来ペプチドだけではなく、EBウイルスやAkkemansia菌にも強い反応性を示すとともに、自己DR2由来ペプチドにも弱いがはっきりした反応性を示すことが明らかになった。
これらの結果は、全てのペプチドが同じT細胞と反応するとも考えられるが、著者らは反応性の違いから、自己DR2由来のペプチドがDR2自体と結合することで、病原体由来のペプチドやミエリン由来のペプチドの反応性の閾値を下げているのではと考えているが、これについてはさらにクライオ電顕などを用いた検討が必要だろう。
この論文のおかげで、多発性硬化症という極めて長い経過について、自分なりに頭の整理ができた。面白かった。
2020年10月28日
骨髄異形成症候群や骨髄性白血病を皮切りに、5AZAなどのメチル化阻害剤が抗癌剤として用いられる様になっているが、5AZAの様な非特異的薬剤が、ある程度ガン特異的な効果があるのか、完全に理解できたわけではない。個人的には、発癌により変化したメチル化パターンによって抑制されたガン抑制遺伝子などを、もう一度活性化させるのかななどと考えているが、メチル化が外れたレトロトランスポゾンが活性化したことにより誘導される二重鎖RNAが、ウイルスと同じ働きをして自然免疫を活性化、最終的にガン免疫を活性化してガンを抑える可能性も存在する。
今日紹介するトロント大学からの論文は、Virus Mimicryと呼ばれるこの可能性を人間のガン細胞で詳しく調べた研究で、学ぶところの多い論文だった。タイトルは「Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency(エピジェネティック治療はSINEの逆向きSINEとADAR1酵素を誘導する)」で、10月21日号Natureにオンライン掲載された。
内在性のレトロトランスポゾンの転写が活性化し、Virus Mimicryが誘導されることがメチル化阻害剤治療効果の一端を担うことは広く認められているが、どのレトロトランスポゾンがvirus mimicryに関わるかについては解析は進んでいない。
この研究ではメチル化阻害剤で処理した大腸癌のRNAのうち、自然免疫のRNAセンサーになっているMDA5と結合しているRNAに焦点を当てて網羅的に解析し、メチル化阻害剤で誘導されるのは、SINEと呼ばれる短い繰り返し配列由来の、逆向き反復配列(inverted repeat)(Alu-IR)であることを発見する。
次に、なぜメチル化阻害剤でこのAlu-IRが選択的に誘導され、自然免疫型を刺激するのか、Ali-IRをコードするゲノムを調べ、誘導されるAlu-IRは主にイントロンに存在し、上流に高い密度のCpGクラスターが存在し、閉じたクロマチン構造内に存在する、ゲノムに統合された時期が比較的若いトランスぽゾン由来であることを明らかにしている。
また、転写されたAlu-IRはpolyA付加のシグナル配列を持っており、これにより細胞質へと移行し蓄積され、MAD5と結合して自然免疫を誘導できることを示している。
ただ、いくらガンだからといってIRが細胞内に大量に出回って自然免疫を刺激するのは細胞にとっては迷惑で、当然それを不活化する機構がある。これがRNA編集酵素ADAR1で、実際自然免疫系が刺激を受けるとADAR1が誘導され、アデノシンをイノシンに変換することで、免疫を誘導する二重鎖の形成を阻害する。
そこで、この防御機構を外すため、ADAR1をノックダウンした細胞をメチル化阻害剤で処理すると、細胞内の二重鎖RNA量が上昇し、その結果インターフェロン反応に関わる遺伝子の発現が高まることを示している。
最後に、ADAR1ノックダウンとメチル化阻害剤処理が癌細胞にどの様な影響があるのか、処理細胞を移植する実験系で調べると、ガン腫の形成できる細胞数が強く抑えられることを示している。
以上が結果で、メチル化阻害剤によるvirus mimicryで何が起こるのか、頭の中を整理するためには大変まとまった面白い研究だと思う。おそらくADAR1阻害剤も開発できるはずで、将来メチル化阻害剤と組み合わせる治療も夢ではないと期待する。
2020年10月27日
まだ現役の頃、FK506の開発者後藤先生率いる理研の創薬チームのお手伝いをしたことがある。薬剤の開発と言うと、多くの化合物をスクリーニングするハイスループットスクリーニングしか知らなかった私も、コンピュータを使ったデザインや、小さなデザインされたペプチドを使う方法など、様々な方法を学ぶことができた。これらの方法は、タンパク質の高次構造決定方法の進歩に支えられているが、最近のクライオ電顕を使った方法の開発により、デザイン創薬の可能性はさらに高まっている様に思う。
今日紹介するワシントン大学からの論文はウイルスの受容体結合ドメイン(RBD)と相手型のACE2との結合を阻害する小さなペプチドを2種類の方法でデザインして、大腸菌で合成できる阻害剤を開発しようとする研究で10月23日号のScienceに掲載された。タイトルは「De novo design of picomolar SARS-CoV-2 miniprotein inhibitors(新型コロナウイルスにピコモルレベルで結合する阻害剤を新たにデザインする)」だ。
既に新型コロナウイルスCov2のスパイク分子についての詳細な構造解析ができており、これに基づきRBDが結合するACE2の結合部位のαヘリックスをお手本として、RBDと高い親和性で結合すると思われる20merペプチドをコンピュータで設計している。これと並行して、既にコンピュータ上に蓄積されているライブラリーをin silicoでスクリーニングする方法を用いて、手本なしに結合ペプチドを探索している。
それぞれの探索から得られたペプチド配列を大腸菌で発現させ、酵母の表面上に発現させたRBDとの結合を指標に選び出し、得られたアミノ酸配列をベースに、各部位のアミノ酸を置換させてより高いペプチドを探索、最終的にナノモルレベルの結合親和性を持つペプチドを数種類選んでいる。
こうして選んだペプチドを結合したRBDを最後にクライオ電顕で解析し、RBDと密接に絡み合うことを確認し、最終的にウイルス感染阻害実験で、得られたペプチドの感染阻害能を確かめている。その結果、ピコモルレベルで感染阻害が可能なペプチド2種類分離するのに成功している。
以上が結果で、実際にはこのグループだけでなく、他にも同じ様な試みが行われているのを目にした覚えがある。しかしこの論文を読んでもっとも感心したのは、最初のゴールを、ジェルに混ぜて鼻に塗って、鼻粘膜への感染を予防する製品の開発に絞っている点だ。
高いウイルス感染抑制活性があるとなると、すぐに抗体の代わりに治療という話になる。しかし、循環を通して薬剤をデリバーするとなると、薬剤としての他の条件を満たすために、試験管実験からさらに長い道のりが待っている。しかし、外用薬に限ると、今回開発されたペプチドでも、少し改善すれば使える可能性は高い。さらに、このペプチドは全て大腸菌で生産できるため、生産コストもかなり安上がりに作れる。そのことを明確に意識した提案になっており、感心した。
同じことは、ラマの抗体遺伝子をベースにした一本鎖抗体でも言えるが、これら安上がりに作れる薬剤は、積極的にジェルによる鼻粘膜塗布や、吸入薬、口内タブレットなど、感染の第一線での予防目的で使うことは、完全に感染を防げなくても、感染量を減らし、また社会に流通するウイルス量を減らす意味で、かなり重要な手段になるのでは個人的には大きな期待を寄せている。
2020年10月26日
ガンに対する様々な治療の効果を確実に高める一つの手段として、TGFβシグナルの抑制が考えられている。例えばチェックポイント治療に使われる抗PD-L1抗体にTGFβを吸収してくれる受容体を合体させた治療法(M7824) が開発され治験が行われていることを紹介した(https://aasj.jp/news/watch/7964 )。既に二年経っているので現在の状況をClinicalTrial.Govで確かめると、治験の範囲は広がり、39のトライアルが進んでいる。
ただ、TGFβの作用は多岐に及ぶため、効果の作用機序が解明できているかというと、そう簡単な話ではない。今日紹介する米国、スローンケッタリングガンセンターからの論文はこのTGFβ作用の複雑さの一端を教えてくれた。タイトルは「TGF-β suppresses type 2 immunity to cancer (TGFβはガンに対する2型免疫反応を抑制する)」だ。
おそらくこの研究は、ガン免疫T細胞に対するTGFβの作用を調べようと始められたものだと思う。遺伝子操作でCD4T細胞のみでTGFβ受容体がノックアウトされたマウスに、ウイルスによる乳ガンを誘導すると、正常では20週ごろから急速に癌が発生し大きくなるのに対し、CD4T細胞のTGFβ受容体が存在しないと、ガンの発生を強く抑えることができる。驚くことに、この時キラー活性に必要なCD8αをノックアウトしたマウスでも同じ様にガンが抑制されることから、この効果はガンのキラー活性を高めた結果ではないことが明らかになった。
逆から見ると、CD4T細胞はTGFβの作用を受けると、ガンを助ける方向に働くことが明らかになった。そこで、ガン組織でのCD4T細胞を、TGFβ受容体の有無で比べてみると、TGFβの作用が抑えられると、CD4T細胞が。ガンの周りの間質に数多く浸潤するとともに、腫瘍に向かう異常血管の成長が阻害され、腫瘍が強い低酸素状態に陥ること、そしてその結果腫瘍が細胞死を起こすことを明らかにする。
CD4T細胞は、インターフェロン型の1型とIL-4型の2型免疫反応に関わることが知られているので、ノックアウトマウスと掛け合わせたとき、TGFβ受容体ノックアウトの効果が変化するか調べ、TGFβの作用を受けないCD4T細胞の抗腫瘍効果はIL-4がノックアウトされていると消失することを示し、TGFβがCD4T細胞の2型免疫反応を抑えていることを明らかにする。
以上が結果で、最終的なエフェクターは特定されていないが、CD4T 細胞はIL-4を介して2型免疫反応に関わるT細胞の維持増殖に関わり、最終的にガンによる異常血管新生を抑えるが、TGFβはこれを抑えることでガンの増殖を助けるというシナリオだ。
2020年10月25日
70歳を越すと、身体的にも、精神的にも自分が老化してきたことを否応なしに感じさされる。身体的な衰えはいうまでもなく、例えば付き合う人の数もずいぶん少なくなったように感じる。ただ、今でも内外の学生さんや、顧問先の若手と話をするときは楽しいし、結局様々な精神的変化も、老化を自覚して自分で選んだというより、チャンスの問題だとも感じる。
いずれにせよ、高齢になると、付き合う人間の数が減り、相手も気心の通った、あまりストレスのない仲間に限られてくるのは、一般的な傾向として存在し、心理学ではこれをsocial ageing phenotypeと呼んでいるらしい。
今日紹介するミシガン大学からの論文は、昨年私も見に出かけたウガンダ・キバレ自然保護区に住む高齢のチンパンジーの行動を克明に観察し、人間の高齢者と比べることで、人間の高齢者の社会性の起源を探ろうとした研究で、10月23日号のScienceに掲載された。タイトルは「Social selectivity in aging wild chimpanzees(高齢の野生チンパンジーに見られる社会的選択制)」だ。
研究は単純だが、長期的視野に立った大変な観察研究で、1955年から2016年まで、20年にわたって15歳から58歳までの雄チンパンジーを観察し続け、老化に伴い起こる変化を調べている。
結果をまとめると、
高齢になると、毛繕いなどから判断される、相互の友情を重視する関係が増加し、相手に対して一方的にアクションするような関係は減少する。 高齢になると、付き合う相手が決まってきて、相手とはお互いに毛繕いなど、強い相互の友情を持つようになる。 しかし、高齢になる程、大きな雄の群れに属するようになり、社会的適合性が高まっている。 これを反映して、高齢になる程アグレッシブな行動が減り、他個体との協調性の高い行動が中心になる。
要するに、人間の高齢者と、行動の一般的傾向は同じであるというのが結論になる。以上のことから、多くの種で老化した動物は社会から離脱することが普通に見られるが、チンパンジーでは、身体的衰えを、感情的な社会性の向上で補う結果、人間の高齢者に見られるのと同じ行動パターンが獲得されたと結論している。勝手な想像を働かせると、物分かりの良い説教好きの横丁の爺さんがチンパンジーにも存在することになる。ということは、おそらくチンパンジーは「自分の将来に残された時間が短くなっている」などと考えることはないだろうから(と私が勝手に思っている)、人間、チンパンジーに共通に見られる、高齢者に典型的な行動のほとんどは、老化に伴う感情の変化が社会化されただけの行動で、自分の将来を見越して意識的に選んだ行動ではないことになる。
当然といえば当然だが、昨年ウガンダにチンパンジーとゴリラを見に行ったとき、それぞれの群れに、私のような素人が見てもわかる高齢の個体が、群の一員として行動しているのを見て感動した理由がよくわかった。