過去記事一覧
AASJホームページ > 2020年

11月12日 抗原特異的T細胞を標識する(11月12日号 Cell 掲載論文)

2020年11月12日
SNSシェア

免疫反応モニタリングの難しさは、元々極端に頻度の低い抗原特異的細胞の反応を見なければならない点だ。例えばツベルクリン反応を考えてみよう。私たちの世代は、何らかの形で結核菌やBCGの感染経験があるため、結核菌濾液から生成したPPDを注射されると、24時間で皮膚に発疹が現れる。すなわち、抗原特異的反応を24時間以内にモニターできることになる。しかし、私たちの体がPPD反応性T細胞で満たされているわけではなく、注射した抗原に特異的に反応するT細胞はあっても数個程度だろう(実際、一個の特異的T細胞が発疹を誘導できるという研究も見たことがある)。とすると、反応局所のT細胞のほとんどは、抗原に反応しないバイスタンダーと呼ばれるものだ。抗原がはっきりしないとき、その中から抗原特異的T細胞だけを取り出すための技術開発は重要だ。

今日紹介する米国スクリップス研究所からの論文は、糖転移酵素を用いて相互作用している細胞を標識して、抗原特異的T細胞を生成できないか調べた研究で、まだまだ実験モデル段階だが面白い方向性の研究だ。タイトルは「Detecting Tumor Antigen-Specific T Cells via Interaction-Dependent Fucosyl-Biotinylation (抗原特異的T細胞を相互作用依存的fucosyl-biotinylationを用いて検出する)」だ。

この研究のポイントはヘリコバクターの持つ強力なフコース転移酵素(FT)を、その酵素活性を利用してまず細胞上の糖タンパク質に結合させ、大体10時間ぐらいは安定に細胞表面上に維持されるFTを使って、今度はその細胞と相互作用する相手の細胞を標識する方法の開発に尽きる。

あとはこの方法で、抗原をロードされた樹状細胞と反応するT細胞を補足できるか、簡単な条件から始めて、徐々に実際のガン免疫反応の起こる条件に合わせて調べている。原理は一緒なので、最後の最も複雑な条件での実験だけを紹介すると以下の様になる。

メラノーマを移植してできた腫瘍組織をすりつぶして溶解物を調整、それを樹状細胞にロードしたあと、FTを樹状細胞表面に結合させる。次に、腫瘍組織に存在する細胞と、FTと腫瘍抗原がロードされた樹状細胞を今日培養し、そこにビオチン標識したフコースを加えると、FTを発現した細胞と、それと反応していたT細胞がビオチンでラベルされるため、ガン抗原をロードしたT細胞がビオチンで標識される。

この実験では、ガン抗原としてガンに発現させた卵白アルブミンを使ってわかりやすくした系にしており、抗原刺激により発現されるPD-1と組み合わせることで、卵白アルブミン由来ペプチドに対するCD8T細胞を精製することができ、また精製した細胞を移植すると、より強いガン抑制活性が見られることを明らかにしている。

他にも、精製TしたT細胞の遺伝子発現や、さらにはCD4ヘルパーT細胞も標識できるかなどについてもデータを示しているが、結論としては、ガン抗原特異的T細胞をある程度濃縮することは可能であることが示された。

実際の臨床現場で使うには、まだまだ改良や新しい方法と組み合わせることが必要だと思うが、遺伝子操作を用いずに特異的細胞を標識する方法は、今後の研究にとって貴重だと思う。

カテゴリ:論文ウォッチ

11月11日 SARS-CoV1, SARS-Cov2, MERSを多面的に比較する(10月15日号 Science オンライン掲載論文)

2020年11月11日
SNSシェア

今日の時点で、Covid-19をキーワードにPubMedをサーチすると、72578編の論文がリストされる。一部は無関係な論文も含まれるだろうが、間違いなく7万は突破しており、科学者がはっきりとこの病気を知ってからまだ10ヶ月であることを考えると、驚異的な数字だ。この科学が、急速に進むワクチンや抗体薬など、Covid-19に対する迅速な治療法開発の背景にある。要するに世界の研究者が連合してCovid-19を研究しているのだが、そのことがよくわかる、しかもこれまで見たこともないようなスタイルで書かれた論文がScienceにオンライン掲載された。どのようにして集まったのか想像もつかない9つのグループが英米仏独伊の5カ国から集まり(なにか第二次世界大戦の連合国と枢軸国が集まった感があるが、残念ながら我が国の参加はない)、それぞれが専門を生かして3種類のウイルス、特にそのnon-structural proteinとホスト側の分子との相互作用について比較して、結果をコンパクトにまとめて一つの論文に仕上げた、これまで見たこともないような論文だ。もちろんそれぞれの結論の一部は、別の論文として目にしているが、しかし、Covid-19が他のコロナウイルスとどう違うのかよく聞かれることがあるので、大変役に立つ論文になっている。タイトルは「Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms (ホストとコロナウイルスとの相互作用ネットワークの比較によりウイルス共通の疾患メカニズムが明らかになる)」だ。

それぞれの節について、面白い点のみ抜き出して紹介する。

  1. コードされているタンパク質:3種類のウイルスのタンパク質は予想通りよく似ているが、Orfと呼ばれるアクセサリー分子は大きく異なり、これがウイルス間の違いに大きく寄与している。
  2. コロナウイルス分子の細胞内局在:Nsp13のように、MERSと2種類のSARS と大きく変化しているタンパク質があることは、ウイルスとホストの相互作用の様式が変化し続けていることを示唆する。ただ、3種類のウイルス分子で細胞局在の差は極めて小さい。
  3. 相互作用するホスト分子のオミックス:ウイルス分子と相互作用するホスト側の分子を網羅的にリストして、それぞれのウイルスの共通性と差異を調べると、当然ながらMERSと2種類のSARSの間の差ははっきりとしており、基本的にウイルス分子の配列の差異が、ホスト分子との相互作用に反映していることがわかる。面白いのは、MERSとCov-1の間で似ていて、Cov-2では異なるホスト分子だが、これらは翻訳開始とミオシン関連分子に集中しており、Cov-2研究にとっては重要なポイントになるように思える。
  4. Differential interaction scoring: このようなホストタンパク質との相互作用を量的に表現することが可能だが、これで見るとCov-1とCov-2の差はほとんどない。一方SARSとMERSは大きく異なることが確認できる。この違いを生み出すホスト側の分子は興味深いが、ここでは割愛する。
  5. 機能的遺伝学を用いた解析:ノックダウンやクリスパーを用いて、遺伝的にウイルス機能に関わるホスト分子の探索が可能だが、この研究からいくつかの面白いホスト側の分子が発見され、これらについてさらに解析が以下に示すようにさらに進められた。
  6. Orf9とTom70: Tom70はミトコンドリアに存在するホスト分子で、ウイルス感染により細胞をアポトーシスに誘導してウイルス増殖を防ぐ働きがある。このTom70にCov-1、Cov-2のOrf9は結合するが、MERSのOrf9は結合しない。ウイルス側から考えると、細胞は生かさず殺さずが最も都合がいいので、2種類のSARSはTom70まで標的にしてこれを実現している。
  7. Tom70/Orf9の構造解析:Tom70についてはクライオ電顕を用いた構造学的解析を行っている。この結果、Tom70のインターフェロン誘導に関わる機能やミトコンドリアへのPTENなどの輸送への関与が示唆され、今後これらの可能性を機能的に調べる必要性が示唆された。いずれにせよ、「生かさず殺さず」のための重要な相互作用であることは明らかだ。
  8. Orf8とIL-17RA: IL-17は言わずと知れた、炎症性サイトカインの親玉だ。その受容体IL-17Aも一部は分泌型として、IL-17と結合して炎症を抑える。このIL-17RAとCov-2のOrf8だけが結合することも、サイトカインストームのタイプを考える上で極めて興味深い。じっさい、Orf8が欠損したウイルスが単離され、炎症の程度が弱いことが知られている。また、IL-17RAが高い患者さんは、軽症で終わることも知られている。個人的には、最も面白い現象だった。
  9. プロスタグランジンE2合成酵素とSigma1:3種類のウイルス共通に相互作用する分子としてタイプ2プロスタグランジンE合成酵素とSigma-1受容体が発見された。これらの分子は既に阻害剤が存在し、治療に使われている。そこで、タイプ2プロスタグランジンE合成経路阻害剤インドメタシンを処方された外来患者さんとそうでない患者さんを比較しており、インドメタシンが重症化を抑える効果があることが確認された。また、Sigma-1阻害剤は精神科の患者さんで使われており、この阻害剤の使用と入院率との関係も調べている。結果はインドメタシンと同じで、sigma-1を投与されている患者さんでは、Covid-19にかかっても入院する率が半分以下に減っている。

以上、ウイルスとホストのタンパク質の相互作用の包括的解析から、面白い分子相互作用を抜き出し、治療可能性に至るまで示した、大変勉強になる論文だ。当分座右において、折に触れ見てみたいと思う。

カテゴリ:論文ウォッチ

Zoom勉強会 「ALS患者さんたちと学ぶ最新研究動向~研究者に直接聞こう」 のお知らせ。

2020年11月10日
SNSシェア

今週14日、夜8時から「ALS患者さんたちと学ぶ最新研究動向~研究者に直接聞こう」を開催します。ご存知の様に、最近FDAは田辺三菱製薬のラジカヴァを含む二種類の薬剤をALSの治療薬として認可しました。そこで、さくら会理事で、『逝かない身体――ALS的日常を生きる』の著者川口有美子さんと、これらの薬剤への期待度とともに、ALS治療薬開発の現状について、zoom勉強会を企画しました。 我が国のこの分野の第一人者、iPS研究所の井上先生が講義を快諾いただきましたので、当日は、まず井上先生に自らの研究の現状にお話しいただき、西川がALS に対する治療可能性について総説を紹介します。  参加希望の方は、 nishikawa@aasj.jp  まで連絡いただければ、zoomアカウントを送ります。

カテゴリ:ワークショップ

11月10日 甘い誘惑の危険性(10月28日号 Science Translational Medicine 掲載論文)

2020年11月10日
SNSシェア

昨年のちょうど今頃、Nature Communicationにちょっと面白い論文が古代ゲノム研究では先頭を走るコペンハーゲン大学から発表された。

5700年前のスカンジナビア狩猟採取民は、白樺の樹皮から抽出された一種のタールをチューインガムの様に噛んでいたことが知られている。このタールを遺跡から回収して、そこに存在するゲノムを調べることで、当時の口内細菌叢を知ることができる。この論文を読んでわかるのは、当時の口内細菌叢には、歯周病菌は存在するが、虫歯菌が存在しないことだ。すなわち、虫歯というのは甘いものを食べる様になった結果の、一種の文明病と言える。

今日紹介するテキサス・サウスウェスタン大学からの論文は、砂糖の甘い誘惑が腸内の細菌叢を通して、腸管を守る粘膜を減少させるという、単純だが恐ろしい話で、10月28日号のScience Translational Medicineに掲載された。タイトルは「Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice (食事中の単純な糖は腸内細菌叢の生態系を変化させマウス腸炎を悪化させる)」だ。

研究自体は単純で、10%グルコース(一応甘いソフトドリンクを想定している)を7日間摂取させたあと、硫酸デキストラン投与による腸管上皮障害による腸炎がどう変化するか見て、グルコース投与により腸炎が悪化することをまず確認している。グルコースと比べると程度は少し改善するが、ショ糖や果糖を同程度食べさせた場合も、同じ様に硫酸デキストランによる腸炎が悪化する。

この変化が、免疫系炎症を介した変化でないことを確認したあと、砂糖単独の腸管への影響を調べ、砂糖自体は腸管上皮細胞に対してほとんど影響はないが、腸内細菌叢を変化させて、腸管上皮を覆う粘液層が減少してしまうことを明らかにする。

この砂糖摂取で変化した細菌叢を移植すると、同じ様に粘膜層の厚みが低下し、また砂糖投与による腸炎は抗生物質投与で改善することから、砂糖を摂取すると腸内でAkkermansia Muciniphilaなどの細菌を増加させることで、粘膜層形成が抑えられ、最終的に腸炎になりやすいと結論している。

話はこれだけの単純な結論だが、要するに虫歯と同じ様なことが腸内でも起こっていることになる。とはいえ、甘い誘惑には逆らい難い。

カテゴリ:論文ウォッチ

11月9日 見れば見るほど新しい発見がある新型コロナウイルス・スパイク分子  (11月6日 Science 掲載論文)

2020年11月9日
SNSシェア

新型コロナウイルス(Cov2)のスパイク分子の構造に関する論文は、もはや専門家でないと読み切れないほど多く発表されていると思う。ほんの一部については以前紹介したが(https://aasj.jp/news/watch/13811)、決まった一つの構造というより、分解されたあと相手側と相互作用しながらトライマーを形成し、伸びたり縮んだりしながら最終的に細胞膜同士の融合を誘導する。不謹慎を許してもらえれば、惚れ惚れする。

しかしこれほど寄ってたかって同じタンパク質を見ても、まだまだ新しい発見がある様で、今日紹介する英国ブリストル大学からの論文は、スパイク分子にリノレイン酸が食い込んで構造を調節しているという発見で11月6日号のScienceに掲載された。タイトルは「Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein (SARS-CoV-2スパイクタンパク質の閉じられた構造には脂肪酸が結合している)」だ。

この研究では昆虫細胞に遺伝子を発現させて、最初からトライマー型のスパイク分子が分泌される様にし、ここから精製したタンパク質の構造をクライオ電顕を用いて観察している。約6万個のタンパク粒子を調べ、こうして用意したスパイク分子の7割が閉鎖型の構造を持ち、閉鎖型ではリノレイン酸が受容体結合部位に存在する小さな裂け目に食い込んでいることを発見する。

生成したタンパク質を質量分析にかけて、リノレイン酸の存在が確認できるので、合成途中で脂肪酸を取り込んだ構造が分泌されていたことがわかる。もともと閉鎖型はACE2への結合が低いことが知られているので、まずリノレイン酸が遊離する処理すると、ACE2への結合力が高まることを明らかにしている。すなわち、リノレイン酸結合は感染性を低下させる。

最後に試験管内で上皮細胞への感染実験を行い、リノレイン酸の抑制効果を調べているが、単独ではうまくいかないのか、実際にはレムデシビル処理によるウイルス増殖阻害と組み合わせることで、ウイルス増殖を抑えることができることを示している。。

これだけ聞くと、リノレイン酸で感染が抑えられるという話になるが、実際は開放型と閉鎖型の移行はダイナミックなので、このダイナミズムを壊して完全にロックできる様なリガンドを探索する方向に研究が進むと思う。いずれにせよ、この裂け目構造はSARS, MERSなど病原性の高いコロナウイルスには存在し、狙い目としては有望だと思う。

最後の問題は、どうしてわざわざロックがかかって感染性が低下する鍵穴を持っているのかだが、リノレイン酸と結合して感染組織のリノレイン酸濃度を低下させることで、アラキドン酸経路を抑えて、免疫や炎症から逃れる機能があるのでは考えている様だ。

おそらくプロの手にかかれば、安定的に感染性を低下させるリガンドが見つかると期待できる。体内での再感染を抑えることができなくても、鼻粘膜や気道への感染を抑える目的の予防薬を是非開発してほしい。

カテゴリ:論文ウォッチ

11月8日 ガンに対する免疫トレーニング (10月29日号 Cell 掲載論文)

2020年11月8日
SNSシェア

今年3月、新型コロナウイルス感染症(Covid-19)の感染をBCG摂取で抑制する、いわゆる免疫トレーニングについて紹介した(https://aasj.jp/news/watch/12665)。その後、我が国でも過去のBCG接種が感染予防に効果があるか議論が行われた様だ。ただ、この免疫トレーニングがどの程度持続するかについては明確なデータはなく、基本的には接種後数ヶ月単位の予防効果を期待して使われているのではないだろうか。

よく考えてみると、我が国も免疫トレーニングについてはもともと関心が高い。例えば、BCGや結核菌の細胞膜成分、あるいは有名なところではサルノコシカケといった菌類がガンに効果があると実際の臨床に使われていたことは、年配の方なら記憶にあると思う。ただ、ほとんど根治につながらないことから、結局標準治療にはなり得なかった。

今日紹介する英国ヨーク大学とドイツ・ドレスデン大学からの論文は、タイムスリップした様な気になるガンに対する免疫トレーニングのメカニズムを扱った研究で、10月29日Cellに掲載された。タイトルは「Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity(顆粒白血球の自然免疫トレーニングにより抗ガン作用を高めることができる)」だ。

タイムスリップしたと言ったが、新しいテクノロジーが駆使されているとはいえ、Cellによく採択されたなというのが正直な感想だ。この研究ではBCGの様な複雑な刺激剤ではなく、グルコースが結合した多糖類βグルカンを刺激に用いている。

実験では、βグルカンを注射後腫瘍を摂取して、腫瘍の増殖を調べると、これまで広く認められている様に様々な腫瘍モデルでβグルカンは腫瘍の増殖を抑える(ただ、増殖自体は続くので根治はできない)。さらに、この抵抗性をトレーニングした好中球移植で、他の個体に移すことができることを明らかにする。

βグルカンの場合の主役を好中球と特定した上で、トレーニングとは何か、まず遺伝子発現を調べ、自然免疫や炎症に関わる様々な分子の発現が上昇して、ガン攻撃型の好中球にプログラムされ直していることが示唆された。

ここまでなら古典的な研究だが、この研究では次にこのプログラムの書き換えが骨髄の好中球の前駆細胞レベルで起こっており、2ヶ月程度活性が維持されていることを明らかにし、持続的エピジェネティックな変化がトレーニングにより誘導される可能性を示した。その上で、このエピジェネティックな変化を調べるために、バーコードを用いるsingle cellレベルのATACseqで染色体の状態をsingle cell levelで調べている。これは、可能であることはわかっているが、情報処理も含めて利用できたという点で、新しいと言える。

実際のデータを見ると、single cell RNA seqと比べてまだまだ使いにくいのではと感じるところもあるが、染色体の構造の違いで、βグルカン処理好中球が全く新しいクラスターとして分類できることは印象深い。RNAseqと異なり、詳しく見れば遺伝子発現のリプログラム以上のことがわかると思うので、これは期待したい。

わざわざscATACseqと違っても同じ結論は得られたと思うが、βグルカンにより誘導される1型インターフェロンにより、白血球の幹細胞がエピジェネティックにリプログラムされ、活性酸素の産生などを通して、ガンの増殖を抑制すると、常識的な結論になっている。

この研究では、最初からリンパ球のないマウスを用いてこの効果を調べていることから、自然免疫トレーニングは、獲得免疫からは独立していることはわかるが、なぜ腫瘍増殖が抑制できるのかなど、まだまだわからないことは多い。とすると、免疫トレーニングが臨床現場に復活するには、時間がかかりそうだ。

カテゴリ:論文ウォッチ

11月7日 心房細動とカルシトニン (11月4日  Nature オンライン掲載論文)

2020年11月7日
SNSシェア

心房細動は、高齢とともに急上昇する病気の一つで、70歳を超えると3%近くに有病率が上昇する。事実、歳とともに、私も友人から相談を受ける回数が増えている。以前は、チャンネル阻害剤など完治には程遠い薬剤治療しかなかったが、現在ではカテーテルによる様々なアブレーション法が開発され、異常興奮部位を除去することで、治療可能性は一変している。しかしこれらは心房細動の分子メカニズムに基づく治療ではない。

今日紹介する英国オックスフォード大学を中心とする研究グループからの論文はカルシトニンという意外なペプチドホルモンが心房細動に関わる可能性を示し、新しい治療法開発に道を開く重要な研究で、11月4日Natureにオンライン掲載された。タイトルは「Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia(心臓由来のカルシトニン・シグナルは心房の線維形成と不整脈を調節する)」だ。

カルシトニンは通常甲状腺由来で、カルシウム代謝に関わると考えられているが、この研究では最初からこのカルシトニンシグナルの異常が心房細動の犯人だと考え研究を行なっている。というのも、カルシトニンノックアウトマウスで心房細動が誘導され、また心房細動とカルシトニンとの相関がゲノム解析から示されていたからだ。

そこでまずカルシトニン(CT)が心房で合成されるか調べ、CTが心房の筋肉細胞で造られ、そしてその受容体が心房の線維芽細胞で発現することを明らかにする。

次にヒト心房線維芽細胞にCTを点火する実験を行い、線維芽細胞の増殖や移動などの活性が低下し、さらにコラーゲンを分解するBMP1の発現が低下し、コラーゲンなどのマトリックス量が低下することを示している。心房細動では心房に線維化が見られ、これが異常興奮を誘導すると考えられており、この結果はこの可能性にフィットする。ただ、全体の効果が転写より、タンパク質の特異的な変化によることから、さらにメカニズムの解明が必要だと思う。

いずれにせよ、CTにより、心房細動の原因と考えられてきた心房の線維化を抑制できる可能性が示されたので、次に心房細動の患者さんでこのシグナル経路がどうなっているか調べ、心房細動の患者さんの線維芽細胞では受容体の細胞表面への移行が阻害され、CT シグナルが機能しないことを示している。

最後に、マウス心房細動モデルを用いて、CTシグナルを増減させ、CTが十分に機能すると、心房細動を防げることを明らかにしている。

もちろん心房細動の原因には様々あると思うが、多くの患者さんでCT受容体の細胞膜への移行が阻害されることで、線維化が進み、心房細動が起こるとすると、CTに対する反応性も含めた、心房の線維芽細胞の変化を止める方法の開発が重要になる。まだまだ、詳しいメカニズムが示されたわけではないが、心房細動理解の大きなブレークスルーになる様な気がする。

カテゴリ:論文ウォッチ

11月6日 犬のゲノムから人間の歴史がわかるか?(10月30日 Science 掲載論文)

2020年11月6日
SNSシェア

犬のゲノムの研究はかなり盛んに行われている様に思う。これはペットとして人間にとって大事な動物であるというだけでなく、犬の多様性が人間による交配で行われてきたため、犬のゲノム多様性から、人間自体の好みや生活がわかるからと言える。とはいえ人の手による交配の結果、現在世界に存在する犬のほとんどはヨーロッパ種で席巻され、過去の歴史がわかりにくくなってており、有史以前のゲノムを調べないと、狼から分かれた後の人間との関係の歴史は明らかにならない。

今日紹介する英国Francis Crick研究所からの論文は、犬の家畜化・ペット化が始まった時代に近い1万年前から、1千年前まで、世界各地、様々な時代の犬の骨からDNAを抽出し、ゲノム解析した研究で、現存の犬ゲノムを理解するための重要なデータを提供している。タイトルは「Origins and genetic legacy of prehistoric dogs (有史以前の犬の起源と遺伝的遺産)」だ。

27個体の骨の時代推定を行い、ゲノムを解析する努力を考えると、執念を感じる研究だ。その結果、期待していた様に犬の起源だけでなく、人間と犬の関係も明らかにした面白い研究になっている。そこで、いくつかの問題に分けて結論のみ紹介する。

  1. 古代ゲノムを知ることで、西型から東型まで、はっきりとゲノムが区別できる5種類の犬の原型を特定できる。ただ、全ての原型は一つの起源とつながており、おそらく犬は一種類の今は絶滅した灰色狼から別れ、その後東型、西型の間で限られた回数の交雑が繰り返され、最終的に七種類の原型が形成された。
  2. 面白いことに一旦狼から分離すると、犬に狼のゲノムは流入した痕跡がない。一方、犬から狼に対しては何回かの交雑が起こっており、現存の狼には犬由来のゲノムが多く見られる。他の家畜では双方向の交雑が知られているので、犬がいかに人間に近いところで管理されていたかを伺わせる。
  3. 人類の交雑の歴史に、完全でなくても犬の交雑の歴史はオーバーラップする。これも犬が人間と密接につながって生活していることを示す。
  4. 新石器時代に入って人間が定着し、農耕を始めると、人間と同じで犬のゲノムもそれまでの狩猟採取民型から農耕民型に変化し、例えばデンプンの分解に関わるアミラーゼ遺伝子などが増幅する。
  5. 新石器時代後期から青銅器時代、ヨーロッパはインドヨーロッパ語起源となる言語を持つヤムナ文化に征服されるが、当時の犬にも原住犬とヤムナ犬の交雑が見られる。面白いことに、人間と異なり、ヤムナ犬に置き換わるのではなく、ヨーロッパ原住犬のゲノムがしっかりと維持された。おそらくヤムナ文化をもたらした新しい人たちのお眼鏡にかなった犬は逆に尊重されたのだろう。

以上が結果で、犬ゲノムから人間の歴史の新しい側面を十分掘り起こせることがよくわかった。

カテゴリ:論文ウォッチ

11月5日 ワクチン接種ルートと臨床効果(11月2日 Nature Immunology オンライン掲載論文)

2020年11月5日
SNSシェア

今年の1月3日、新型コロナウイルス感染がまだ密かに広がり始めていた時期、生菌ワクチンの典型と言えるBCGを静脈注射すると、通常の皮下注射や吸入摂取と比べ、遥かに感染予防効果が高いことを示す米国衛生研究所からの論文を紹介した(https://aasj.jp/news/watch/12053)。これほど差が生まれることを知ると、同じワクチンでも臨床目的に合わせて最適な投与ルートを決めることの重要性がわかる。

今日紹介するやはり米国国立衛生研究所からの論文は、ガンの免疫治療というセッティングでペプチドワクチンの投与ルートを比べた研究で11月2日Nature Immunologyにオンライン掲載された。タイトルは「Intravenous nanoparticle vaccination generates stem-like TCF1 + neoantigen-specific CD8 + T cells (ナノ粒子型ワクチンを静脈注射することで幹細胞型TCF1陽性CD8T細胞が誘導できる)。

全てマウスモデルの研究で、ガン特異的抗原ペプチドは最初から分かっているという設定で研究が行われている。このペプチドと自然免疫を活性化するアジュバントをリポソームに包んでワクチンとし、皮下投与と静脈投与を比べている。基本的に皮下投与では、リンパ管を通して局所リンパ節に取り込まれる一方、静脈投与ではほとんどが脾臓に入る。

さて、まずワクチン摂取をしてからガンを植えるという予防的セッティングで実験を行うと、皮下注射では効果が見られ、またチェックポイント治療(CPI)と組み合わせるとさらに高い効果が得られるが、静脈注射では効果は極めて限られている。

この差は、皮下注射ではガンを殺すエフェクター細胞が誘導されるためで、静脈注射では増殖力が高い幹細胞型のT細胞は誘導できるが、それだけではキラーエフェクター細胞の誘導が弱いことがわかった。

そこで、既にガンが存在し、抗原がガン局所で持続的に発現しているセッティング、すなわちワクチンの治療効果を調べる実験を行うと、今度は皮下投与ではほとんど効果がないが、静脈投与とCPIを組み合わせると、既に存在しているガンをほぼ完璧に治療できることを示している。

臨床的には十分面白い論文だが、トランスレーションのためにはある程度メカニズムの解析が必要となるため、この差の原因をsingle cell RNA解析などの方法を駆使して検討している。

  1. 静脈投与では投与抗原がすぐに消失する一方、皮下投与では長期間抗原が残ること。この結果、皮下投与の場合記憶キラー細胞より、エフェクターキラー細胞が選択的に誘導され、ガンをアタックした後疲弊してしまう。これに対して、抗原パルスにより脾臓で記憶細胞が優先的に発生して、それがガン局所にリクルートされ、ガンを拒絶する。
  2. キラー細胞誘導に関わるDC1は静脈投与後速やかに脾臓外へ移動するが、普通の単球由来DC1が脾臓に流れ込む。このバトンタッチが、記憶成立に重要かもしれない。
  3. キラー記憶誘導の環境として1型インターフェロンは必須だが、これまで考えられてきたIL-12は必要ない。一方、アジュバントによる自然免疫刺激は必須。

以上が結果で、既に担ガン状態にある患者さんの治療という面では、示唆に富む研究だと思う。同じ様に、感染が成立していないときの予防ワクチンも、ルートを変えて投与することも重要で、インフルエンザについては、吸入が効果が高いことが既に示されている(https://aasj.jp/news/watch/12433)。新型コロナウイルスについても、焦らず、安全で最も効果の高いルートを探して欲しい。

カテゴリ:論文ウォッチ

11月4日 新型コロナウイルス感染の血栓症を誘導する連鎖(11月2日 Science Translational Medicine オンライン掲載論文)

2020年11月4日
SNSシェア

新型コロナウイルス(Cov2)に対する抗体反応は、例えばインフルエンザウイルスに対する反応とかなり違っていることは、速い段階から気づかれていた。まず、IgMとIgG抗体がほぼ同時に現れる(https://aasj.jp/news/lifescience-easily/13057)。さらに、抗体のレパートリーを調べると、生まれついて持っているgerm line V遺伝子が中心で、一般的な感染症に見られる様な突然変異蓄積による抗体の成熟が見られない(https://aasj.jp/news/watch/13476)。さらに驚くのは、モノクローナル抗体として分離した抗Cov2抗体はかなりの割合で自己組織反応性を持っている(https://aasj.jp/news/watch/13963)。これらの謎は、Cov2に対する抗体反応では、サイトカインストームなどの影響を受けて免疫記憶が通常のように胚中心で形成されず、濾胞外でB細胞の成熟がおこる、自己免疫型であるという発見で(https://aasj.jp/news/watch/14072)、かなり謎が解けた様な気がする。

今日紹介するミシガン大学からの論文は、この異常な抗体反応が血栓形成に深く関わる可能性を示唆し、Covid-19の病態の一端を説明する面白い論文で11月2日Science Translational Medicineに掲載された。タイトルは「Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19 (血栓形成を促進する自己抗体がCovid-19で入院した患者さんに見られる)」だ。

濾胞外抗体反応で誘導される自己抗体の中には、様々なphospholipidやそれと結合したタンパク質に対する自己抗体が存在し、これが血栓症の原因となることが知られていた。このグループは、Covid-19で血栓症の頻度が多い原因の一つが、このPhospholipids(PL)に対する自己抗体のせいではないかと疑い、入院した172名の患者さん(そのうち19%が死亡、8%は長期入院を余儀なくされており、重傷者が多い)の血清を調べている。

すると期待通り、約半数の患者さんで様々なPL抗体が検出され、この値は血栓と相関する血小板数やD-dimerとともに、以前紹介した白血球が血管内で死ぬことにより炎症と血栓が進むNetosis(https://aasj.jp/news/watch/12972)の指標と相関していることを明らかにした。

ここまでならなるほどで終わるのかもしれないが、このグループは自己抗体を持つ患者さんのIgGを使って、自己抗体が試験管内で顆粒球の細胞死が誘導され、Netosisが誘導されること、さらに活性酸素を発生させて血栓形成の条件を整えた大静脈で実際の血栓形成を高めることなど、たしかにこの自己抗体がCovid-19の病態を説明できることを示している。

残念ながらPLに対する抗体がCov2結合能を持っているのか、あるいはバイスタンダートして誘導されたのかなど、詰められていないが、多くの現象をうまく説明してくれる論文だと評価する。

カテゴリ:論文ウォッチ
2024年12月
 1
2345678
9101112131415
16171819202122
23242526272829
3031