12月29日 補体成分による自然免疫刺激とTau(12月19日号Neuron掲載論文)
AASJホームページ > 新着情報

12月29日 補体成分による自然免疫刺激とTau(12月19日号Neuron掲載論文)

2018年12月29日
Tauとアルツハイマー病(AD)の最後は自然免疫の活性化によりTauの病理過程が促進させることを報告したヒューストンHuffington老化研究センターからの論文で12月19日号のNeuronに掲載された。タイトルは「Complement C3aR Inactivation Attenuates Tau Pathology and Reverses an Immune Network Deregulated in Tauopathy Models and Alzheimer’s Disease (補体C3a受容体の不活性化によりTauの病理作用が軽減され、Tau異常症アルツハイマーモデルで異常になっていた免疫ネットワークを元に戻す)」だ。

この研究では、自然免疫刺激因子としてのC3とTau異常症の関係に最初から焦点を当てて研究を進めている。まずAD患者さんの症状と脳内でのC3、C3aRの発現を調べ、痴呆を示すADをはじめとする編成性疾患で、両方の発現が高まっていることを確認する。

その上で、今度はマウスのTau異常症へと舞台を移し、C3とその受容体がTau異常症でも上昇していることを確認する。そして、この変化にC3とその受容体シグナルが関わるかどうか、受容体遺伝子ノックアウトマウスを用いて調べ、 Tau異常症での脳内の炎症が、C3a受容体シグナルにより誘導されていることを明らかにする。

そして受容体ノックアウトにより炎症が収まることで、Tauの異常発現により起る病理学的、神経学的な異常が改善し、シナプスが回復し、神経細胞の変性を止めることができることを明らかにしている。

その上でC3により誘導される炎症の細胞学的、分子生物学的過程を解析し、この炎症反応が、C3を発現するアストロサイトと、その受容体を発現するミクログリアを主役として起こる過程で、この炎症によりTauの異常沈着が促進されると結論している。そして、C3受容体の下流シグナルとしてSTAT3を特定している。最後にマウスモデルでSTAT3の作用を阻害することで、Tau異常症を抑えられることも示している。

以上が結果で、もともとADの背景には自然免疫による炎症があると考える、比較的ポピュラーな考え方に基づく研究だが、これがTauタンパク質の沈殿などの異常に特異的に働いていると考える点と、この自然免疫の主役がC3とその受容体であるという点が新しいようだ。ただ、最初の現象論を除いて、すべての実験がマウスで行われており、実際にもっと長い期間をかけて起こってくる人間のADにどこまで当てはまるのかはわからない。

3日にわたってTauの異常発現がADの主役と考える論文を3編紹介した。重要なのは、アミロイドにせよ、Tauにせよ、私たちがADの成り立ちについて理解できていない点で、まだまだ様々な方向からこの病気にチャレンジできる可能性がある点だ。昨日、今日と紹介した2編の論文では、炎症抑制、およびシャペロン抑制など新しい治療標的についても示されているが、新しい発想で眺めることで、治療のための何らかの糸口が示されていたが、新しい標的も続々見つかる。

昨日紹介した論文から分かるように、80歳を越すと脳の病理組織学的にはADと診断できる人の方が多くなってくる。すなわち、ADが高齢化社会の最大の課題になっている点だ。にも関わらず、これまで多くのAD治療薬が最終段階で引き返されてきた。ただ、諦める必要はない。12月14日号のScienceには、アミロイド仮説に基づく薬剤にしても、現在のように症状が出てからその効果を試す治験にこだわらず、また様ざまなバイオマーカーを組み合わせて新たにチャレンジする可能性は十分あることを強調していた。

さらに、今回紹介したように新しい標的を探すことも重要だ。これについては1月8日に発行のNeurologyにアルツハイマー病創薬財団から、現在治験が進行中の薬剤についてのまとめが出ていた。これによると、1)炎症を標的とする薬剤12種類(2種類は第3相)、2)ミトコンドリアや代謝異常を標的にした薬剤が14種類(3種類は第3相)、3)血管障害を標的にする薬剤が11種類(2種類は第3相)、4)神経細胞の保護を標的にした薬剤および細胞移植19種類(2種類が間質細胞移植、第3相はなし)、5)そして例えばうまくいかなかったBACE阻害剤と抗アミロイド抗体と組み合わせた治療などの併用療法が11種類(第3相4種類)と、多くの治験が現在進行中で、多くの研究機関、創薬企業、そしてベンチャー企業が粘り強くAD治療に挑戦している。多くの患者さんも、諦めることなく、朗報を待って欲しいと思う。
カテゴリ:論文ウォッチ

12月28日 Tauにより誘導される染色体構造の変化 (Nature Neuroscience 1月号掲載論文)

2018年12月28日
昨日に続いて、Tauとアミロイドの脳神経に対する影響についての論文を紹介する。今日は、Tauがアミロイドよりはるかに強く神経細胞の染色体構造を変化させることを示した研究で来年1月号のNature Neuroscienceに掲載予定だ。タイトルは「Epigenome-wide study uncovers large-scale changes in histone acetylation driven by tau pathology in and Alzheimer’s human brains(エピゲノムをゲノム全体で調べることでTauにより誘導される老化やアルツハイマー病の脳に引き起こす大きなスケールのヒストンのアセチル化の変化が明らかになる)」だ。

この研究では認知症が認められない82歳の高齢者を89歳まで追跡し、その間に亡くなった669例について脳を調べ、アルツハイマー病(AD)と、それ以外に分けている。驚くことに、その内実は412人がアルツハイマー病と診断され、アルツハイマーでないと診断できるのは257例に過ぎない点だ。80歳を超えると、基本的にはある程度覚悟がいることがよくわかる。

この研究ではADと診断された脳の染色体構造をヒストンの9番目のリジンのアセチル化(H4K9ac)を指標に全ゲノムレベルで調べた後、アルツハイマー病による染色体の構造変化がTauの蓄積か、アミロイドの蓄積のどちらに強く相関するか調べ、Tauの蓄積が6000箇所のH3K9acマークが変化する一方、アミロイドの蓄積はほとんど変化に関係ないことを発見する。すなわち脳の染色体構造の変化は、圧倒的にTauの影響が強い。

次にゲノムのどの部位でH3K49acマークがTauにより変化するかを調べ、染色体が開いた箇所ほどTauによる変化が大きいことを明らかにしている。また、この染色体構造を反映して、DNAのメチル化や、さらにRNAの転写も並行して変化する。以上のことから、アミロイドの蓄積よりTauの蓄積の方が神経細胞の染色体構造の変化を誘導して、神経細胞の遺伝子発現を変化させることがわかった。

同じことがマウスでも見られるかについても、アミロイドが沈着するマウスと、Tauが沈殿するマウスで比べている。著者らは、ヒトの脳での結果と同じだと結論しているが、この場合はH3K9acマークの変化が、アミロイドでより強く認められているようで、結果は単純ではないと思う。ただ、Tauに注目すると、やはりH3K9acのマークが変化する場所はLADと呼ばれるクロマチんが閉じた場所ではなく、開いた場所である点で、人間の結果と同じであると結論している。

そして最後に、Tauを発現しているヒトiPSから神経細胞を分化させ、クロマチンの状態を様々な方法で調べ、Tauが染色体をオープンする強い力を持っているのではないかと結論している。

この研究のハイライトは、このTauによるクロマチンの開きを抑える可能性があるかどうかを、データベースでTauによる変化の逆を起こす分子を探索し、シャペロンHsp90を抑制することでTauによる変化を元に戻せることを明らかにしている。

以上、この染色体の変化が細胞レベルのどの変化に対応するのかについてはわかっていないが、昨日に続き、神経細胞への効果でいうと、Tauの方がはるかに強い作用を持っていることがわかり、さらには創薬標的分子まで明らかにした、点で、力作だと思う。
カテゴリ:論文ウォッチ

12月27日 アルツハイマー病モデルにおけるTauタンパク質の役割(Naute Neuroscience1月号掲載論文)

2018年12月27日
昨日紹介した、Nature Medicineによる2018年の注目治療法の中で最も印象に残ったのが、アルツハイマー病に対する創薬各社の取り組みがほとんど撤退を余儀なくされたという点だ。今年はBACE阻害剤についてだったが、昨年はアミロイドに対するワクチンを含む免疫療法が同じように撤退に追い込まれていた。いずれもβアミロイドを標的にしており、このような結果から確かにアミロイドプラークはアルツハイマー病の重要な病理所見だが、神経変性の直接の原因ではないと考える人も多くなっている。そして、このように考える多くの人が重要な原因と考えるのが、細胞内での沈殿物を作るTauタンパク質だ。そこで、ごく最近に発表されたTauタンパク質に関する研究を今日から紹介し、最後にアルツハイマー病に対する創薬の方向性について書かれた総説を年末特集として紹介することにした。

第一回目は、マサチューセッツ総合病院のグループがマウスモデルで行ったTauとアミロイドの神経変性に関する機能についての研究を紹介する。タイトルは「Tau impairs neural circuits, dominating amyloid-β effects, in Alzheimer models in vivo (アルツハイマー病モデルでTauタンパク質はアミロイドβの作用を支配して神経回路を障害する)」で、Nature Neuroscience 1月号に掲載予定だ。

この研究の売りは、変異型のAβやTauを強発現させたモデルマウスの脳を直接顕微鏡で観察して、Ca流入を指標に神経活動を見たという点だ。そして、変異型アミロイドを過剰発言したモデルマウスで、アミロイドプラークが形成される時期の脳の皮質(6層のうち2/3層に焦点を当てている)では、神経の活動が抑えられるどころか逆に高まっていることを観察する。ところが、異常Tauを発現させたマウスの同じ部位では神経活動が強く抑制されていることがわかった。すなわち、一つ一つの遺伝子の異常では、AβとTauは神経活動に逆の効果があることがわかった。

この結果からTauの沈殿が神経活動を抑えているのではと考えるが、予想に反して、Tauの過剰発現による神経活動の抑制は、細胞内での線維性の沈殿とは無関係で、変異Tau自体の作用であることが明らかになった。

そこで、神経活動を高めるAβとTauの両方同時に発現したらどうなるかマウスを作成して調べると、Aβによる神経活動の更新は完全に抑えられ、さらに皮質全体の活動がTau単独の時よりさらに強く抑えられることがわかった。すなわち、両方が作用しあって今度は強い神経抑制がかかることになる。

最後に、Tauの沈着が起こった時点で、細胞内のTauの発現を抑える実験を行い、新たなTauの発現が抑制されると、Tauの細胞内沈殿が起こった後でも神経活動の抑制が元に戻ることを示している。

結果は以上で、変異Tauの発現自体が神経活動を抑える主要因で、Aβの細胞外への沈着は細胞の活動性を高める。しかし、Tauが組み合わさると、Aβも一緒になって神経の活動を抑える方向に働くという結果だ。この結果は従来考えられてきたメカニズムの説明を真っ向から否定するもので、認知障害に最も関わるのは可溶性のTauの発現そのもので、他の条件はそれを修飾するのではないかと結論している。

この研究が正しいとすると、AβやTauの沈殿を除去するという治療法は効果がないのは当たり前で、Tauのレベルを低下させることが治療につながることになるが、さて専門家はどう評価しているのだろうか。
カテゴリ:論文ウォッチ

12月26日 2018年に注目された治療(Nature Medicine 12月号掲載論文)

2018年12月26日
毎年紹介しているが、今年もNature Medicineが、2018年に注目された新しい治療法についてまとめているので紹介する。残念ながら、大型新薬というのはないような気がする。( )内に個人的感想を書いておいた。

期待が持てる治療法

Onpattro
突然変異型のtransthyretinによるアミロイドーシスを治療するためのRNAi薬Onpattroの神経症状を持つ人への適用がFDAにより許可された。同じ標的に対するTegsediも2ヶ月後に認可を受けた。さらに、3番目の治療薬がTafamidsの治療成績が発表されようとしている。その上にファイザーがさらに広い範囲の適用を目指して治験を進めている。(アミロイドーシスでの競争というより、RNAi薬開発競争が反映されていると思う。)
Tybar TCV
腸チフスに対するワクチンで、WHOにより認可された。インドのハイデラバードの企業Bharat Biotechにより開発され、強い抗原と弱い抗原が組み合わせられたワクチンで、接種により87%の人が発病を予防できる。
Aimovig
アムジェンにより開発された、CGRPの機能を抑制することで偏頭痛を抑える抗体薬。同じ趣旨の抗体薬についてはこのカラムでも紹介した(http://aasj.jp/news/watch/9198
Lucemyra
麻薬からの離脱治療時に禁断症状を改善するために開発された化合物(lofexidine hydrochloride)。作用機序は、ノルエピネフリン分泌阻害。
Epidioex
マリファナから抽出されたcannabidiolで、FDAの認可を受けた最初のマリファナ由来薬剤。Lennox-Gastaut症候群、およびDravet症候群という希少疾患の子供のてんかん治療にFDAの許可が出た。(これについては他の小児のてんかんに適用を拡大していってほしいと思う)
Oriliaa
子宮内膜症に対する最初の内服薬としてFDAに許可された。ゴナドトロピン放出ホルモンの阻害剤作用を持つ最初の内服薬。Abbvieにより開発された。(Abbvie社は結構頑張っているようだ)
CD19 CAR-T
長期効果の結果が発表され、ALLの患者さんで2年半では83%の患者さんで、病気を抑えることができることがわかった。(これも3社も参入し、大きなお金が動いているが、誰にでも使えるオフシェルフ型の開発が今後のキーになる)
Biktarvy
ギリアドサイエンスにより開発されたHIVに対する薬剤で、すでに認可されたemtricitabine とtenofovir alafenamideに、新しいインテグレース阻害剤bictegravirを合剤にしたもの。(抗ウイルス薬を着々と開発しているようだが、HIVは完治は可能か?)
人工瞳孔
遺伝的な原因で瞳孔が欠損した人に、外科的に装着する人工瞳孔がFDAにより認可された。光に対する過敏性を改善することができる。
乳がん遺伝子診断
個人遺伝子診断サービス23&MeがBRCA1とBRCA2の3種類の稀な変異について、乳癌リスクとしてレポートするサービスをFDAにより認められた。(すでに特許になっていなかったBRCA変異があるとは) Xtandi
我が国のアステラス製薬が上梓している前立腺治療薬で、アンドロゲン受容体拮抗薬。これまで、転移前立腺癌にのみ適用が認められていたが、今回FDAは転移のない患者さんへの適用を認めた。(これは大型として期待できる)
Emgality
アムジェンと同じで、CGRPを抑えて偏頭痛を軽減するモノクローナル抗体薬。Eli Lillyにより開発された。

(以上が効果が期待される新しい薬剤としてリストされたが、例年と比べるとその期待度やインパクトはかなり見劣りすると言わざるを得ない。大型買収のニュースが話題になった今年だが、新薬開発のペースは維持できているのだろうか?)

期待はあるが少し問題もある

Natural Cycles(避妊アプリ)
基礎体温により避妊サイクルを教えてくれるスマフォアプリで、FDAやEUの認可を受けている。しかし、スウェーデンで35例が避妊に失敗したことが明らかになり、避妊に失敗する率が7%にのぼることが明らかになった。結局完全ではないが、一定の信頼性はある。
アップルウォッチ
心拍を記録する装置としてFDAにより認められていたが、不整脈の不安を煽ってしまって、必要ない程度の不整脈で病院を受診する問題が起こる可能性が高いことがわかった。
バクテリオファージによる炎症性腸疾患治療
バクテリアを殺すバクテリオファージで大腸菌を殺菌し、クローン病を治す治療法の第I/II相治験がようやく許可された。(アイデアは気に入っている)
MGL-3196
非アルコール性肝炎の内服治療薬で、甲状腺ホルモン受容体刺激作用がある。第I/II相治験で肝臓脂肪を低下させ、また症状の軽減に成功した。第3相治験の結果が期待できる。(これは大型に育ってほしい)
ベータタラセミア治療薬
IIb型アクチビン受容体とヒトIgGキメラによるタラセミア治療薬は第3相治験で期待通りの成果をあげた。一方、CRISPR遺伝子編集を用いる期待の鎌形赤血球症を治療法は、FDAに治験開始を差し止められた。(CRISPRに関してはまだまだFDAも慎重のようだ)
BAN2401
我が国のエーザイによるアルツハイマー病に対する抗体薬で、900人を用いた第2相試験でアミロイドプラークを減少させたと報告された。ただ、認知症の症状を軽減するかについてはクエスチョンマークがつけられている。(我が国というだけでなく、世界レベルでアルツハイマー薬として持ちこたえている。)
SPK8011
アデノ随伴ウイルスベクターを用いた血友病Aに対する遺伝子治療は、血友病に対して高い効果を示したものの、アデノウイルスに対する免疫反応が見られ、ステロイドの治療が必要になった。

赤信号がついた治療法

Sildenafil
バイアグラのジェネリック薬。低体重児予防の目的で、180例の妊婦さんに投与され、死産が11例発生した。
Zinbryta
多発性硬化症に対する抗IL-2受容体モノクローナル抗体薬は、強い神経炎症に見舞われ、治験が中止された。
BACE阻害剤
アミロイドの切断を阻害する薬剤として最も期待され、多くの製薬会社により開発が続けられてきたが、メルク、ヤンセン、Eli Lilly, AstraZenecaが相次いで治験を中止した。(個人的には期待していたのに残念)

(全体的に見ると、まず核酸薬の品揃えが、希少疾患を中心に着実に増えており、より一般的な疾患にも拡大すると予想できる。最も期待されているアルツハイマー病に対するBACE阻害剤が現在のところ完全に失敗に終わり、エーザイのBAN2401が踏みとどまっているという、アルツハイマー薬の難しさが際立った記事だ。BACE阻害剤は動物実験レベルでアミロイドプラークを抑えることが示され、Natureにまで論文が発表されている。その意味で、失敗の原因をがアミロイドプラークを抑えられなかったのか、あるいはアミロイドが抑えられても、症状は進行するのか明確にしてほしい。 残念ながら今年は本当に小粒の話で終わってしまった印象が強い。)
カテゴリ:論文ウォッチ

「第1回ニーマン・ピック病(NPD)勉強会inひょうご」

2018年12月25日
開催日時:平成30年12月16日(日)14:00~17:00 
場所:起業プラザひょうごセミナールーム(サンパル6階)
主催:日本ニーマン・ピック病の会
後援:兵庫県&神戸市難病連、難病の子供支援全国ネットワーク

・特別基調講演 「NPDの最新の治療研究と世界の動向」慈恵医大名誉教授 衛藤義勝先生

ライソゾーム病臨床治療の最高権威者で、1910年のNP病発見、1930年代の各型分類など創世記からの歴史と診断法(遺伝子診断・バイオマーカー共に未完)の現状、症状発現の原理(LDL、コレステロールの転送異常、蓄積により神経細胞を阻害、マクロファージの異常出現によるサイトカインの異常発生)、遺伝子治療開発の現状と可能性)などNPCを中心に病の現状を幅広く且つ判り易く話された。

・基調講演(1) 「NPC治療におけるCDの適正使用に向けて」熊本大学薬学部教授 入江徹美先生

消臭剤「ファブリース」や一部の医薬品の添加剤(可溶化剤)として使われているが未医薬品のHPβCDについて、NPCにどのように効くのか(ライソゾーム中でのコレステロールの運搬役と洗い流し役)、海外での開発動向(各地の研究では体重や体内濃度など基礎データすら不明のまま。Vtesse社はNIHでPhIIb/IIIおよび二重盲検終了。適切な投与設計はまだ不十分)、オーファン薬の早期承認取得には、深い現場認識の下に産官学民の協働が必須など、分り易く話された。しかし、新臨床研究法が施行されると、大学での臨床研究が進行中を含め、実質的にSTOPすると危機感を表され、厚労省への強い働きかけが是非とも必要と訴えられた。

・基調講演(2) 「NPC病の特性について」大阪大学医学部付属病院教授(小児科) 酒井則夫先生

NP病の病態(A~D型共にゴーシェ病とは異なる)、臨床症状、診断(皮膚生検のFilipin染色と遺伝子検査によるNPC遺伝子の確認で確定)、ケア(神経症状は進行し、肝・脾腫大が見られるが、心・腎機能と脳血管の障害は心配しなくてよい)等をを平易に説明され、本病は頻度少ないが患者は増えており、治療推進には、医療者、製薬会社、患者会の協力は必須で、どのような状況においても、患者さんとその家族の幸せを目指す、と結ばれた。

・全講演者をパネリストに迎えてのディスカッションが持たれ、率直で親密な意見交換がなされた。特に、新臨床研究法の施行により、医師主導の治験は難しくなることを念頭に、治療法がない稀少難病患者救済のため、特区設定による医師主導の治験機会確保を提案された。難病連の米田さんから、稀少難病患者や家族への難病連の行動の現状を話され(無力を感ずる)、医療者の対応の現状を質問された。        (田中邦大)

12月25日:Scienceが掲載した今年のブレークスルー(12月21日号Science掲載)

2018年12月25日
今年も各紙が一年を振り返る年末がやってきた。クリスマスまでにまずNatureとScienceがそれぞれ記事を掲載している。とりあえず読んでみたが、Natureの方は最初からトランプをはじめとするポピュリズムが示した反科学的政策の問題から始め重苦しい調子の記事で、なんとなく暗い気持ちのまま、あまり科学が進歩したという実感のない記事だった。両紙ともおそらく今回の記事だけでは終わらないような気がするので、今週の木曜日までさらにNatureについては待つことにして、今日はScienceの方の記事を紹介することにした。

1:single cell RNA-seqのインパクト


このコラムでなんども紹介してきたが(例えば近いところでhttp://aasj.jp/news/watch/9143)、バーコーディング技術を用いたsingle cell RNA-seqが今年のブレークスルーのトップに選ばれている。特に、これまで細胞レベルだけでは解析が難しいとされてきた発生学で大成功を収めたことは、発生学自体のあり方を変えると強調している。これに、遺伝子編集、あるいは新しい顕微鏡、さらには無限にパラメーターを増やせるin situ hybridizationや免疫組織検出法が組み合わさって、今後細胞と構造という発生学の究極の課題についての研究が新しいレベルに到達することが予想される。このポテンシャルを受けて、多くの研究機関が協力する、人間の組織の成り立ちや発がんを解明しようとするコンソーシアム型の研究が加速している点も特徴的で、これまで難しかった人間の研究が加速すると予想している。私も、この技術から来年何が出てくるか、ワクワクしている。

2、氷河期に起こったディープインパクト


この発見については、個人的には全くフォローしていなかったが、グリーンランド北西部の氷の下に、31kmに及ぶ隕石の衝突によるクレーターが発見されたことが挙げられている。恐竜の絶滅の原因になったと考えられる、7千万年前にできたメキシコの200kmにおよぶクレーターと比べると小さいが、たかだか1万3千年前の出来事である可能性があることから、ホモ・サピエンスの歴史にどのような影響を持っていたのか、興味がそそられる。


3、ネアンデルタール人とデニソーワ人の間の子供の骨が発見された


。 この論文はこのコラムで紹介したが(http://aasj.jp/news/watch/8831)、アルタイの洞窟から発見された女の子の骨から得られたDNAが、なんとネアンデルタール人の母と、デニソーワ人の父の間に生まれた子供であることがわかった。しかも、この子の母は、同じ地域で見つかっていたネアンデルタール人とは違っているため、広範囲で交流交雑が起こっていることを示唆している。これもライプチッヒのマックスプランク研究所からの論文だが、この分野の進展には全く翳りが見られない。

4、たんぱく質の相分離


 特定のタンパク質の集まりが、ほかのタンパク質から分離して濃縮する相分離については、特定の場所に高濃度のタンパク質を集中させるメカニズムとしてスーパーエンハンサーの作用を支える化学的基盤ではないかとこのコラムでも紹介したが(http://aasj.jp/news/watch/8753)、同じような論文が、特にタンパク質と核酸との相互作用時のメカニズムとして相次いで発表されたようだ。さらに、この液相での分離がおかしくなると、今度はゲル化し、固まるという恐ろしい話も報告されているようで、これが細胞変性の原因ではないかと、治療法の開発が進んでいるらしい。生物学と化学の面白い融合だ。

5、ゲノムデータベースを用いた犯人探し


この論文を読んだときは(http://aasj.jp/news/watch/9109)私も本当に驚いた。わが国と異なり、5%以上の人が個人ゲノムサービスで自分のゲノムを調べているアメリカでは、なんと100万人を越す人が自分のゲノムデータを親戚探しウェッブサイトに自らアップロードし、それを用いて強姦犯人が相次いで逮捕されるという、全く新しい状況がこの世の中に起こっている。この論文はScienceの論文だったが、Natureでも今年のトピックスとして紹介されていた。個人が自然にネットワークを形成する、私には考えもつかなかった時代が来たことを実感する。一方、この分野で我が国の後進性は突出しており、何がこの原因になっているのか、真剣に考える時がきたと思う。間違いなく、政府の問題も大きい。

6、原始時代の分子の痕跡


この論文は完全に見落としていた。エディアカランの生物群はその化石に残された形から、研究者を魅了してきたが、今年に入ってこのような6億年以上前の化石から、コレステロールなどの脂質が分離された。その結果、Dickinsoniaと呼ばれる植物か動物かよくわからなかった化石が動物であることが明らかになった。

7、遺伝子抑制治療薬の認可


脊髄性筋萎縮症のRNAi治療についてはすでに昨年Science, Natureともに昨年のブレークスルーに選んでおり(http://aasj.jp/date/2017/12/24)、ほぼ同じ内容が今年もまた選ばれた理由はよくわからない。ただ今年2月にはThe New England Journal of Medicineで(http://aasj.jp/news/watch/808)成果が報告され、また一回の治療に5000万円、その後も継続して治療が必要であることが話題を呼んだ。 また、今後遺伝子デリバリーの方法が進むことでこの分野はますます発展し、来年も同じような遺伝子治療が続々臨床応用されると期待できること間違いない。

8、新しい分子構造決定法


もともと分子構造研究は私の最も苦手な分野で、このコラムでもあまり紹介できておらず、このトピックスについても全く見落としていた。最近タンパク質の薄層結晶に電子戦を照射して回折像を取ることが広く行われているが、この研究ではこの薄層を作る過程で間違ってできた3D結晶構造が、分子構造解析に利用できることを示した。驚くのは、これまでの結晶解析と異なり、ほんの少しの量の分子で、しかも短時間で解析が完了する点で、創薬分野から大きな期待が寄せられている。

9、新しい天文学


全くの門外漢で正しく紹介できるかわからない。カミオカンデでは大きな水タンクの周りにセンサーを並べてニュートリノを検出しているが、南極の氷で粒子を補足して、下に並べた多くのセンサーで検出するアイスキューブ・ニュートリノ観測所が稼働し、光だけでなく、さまざまな粒子線を用いた宇宙探索が今年始まったことを選んでいる。

10、Me Too


最後は、Me Tooとして知られるハラスメント告発運動を選んでいる。この記事によると、大きな大学では50%の女性研究員、および20ー50%の女生徒が、セクシャルハラスメントを耐えているという調査がでており、極めて深刻であることがよくわかった。いずれにせよ、公的、私的なさまざまな対策が進んでおり、多くの科学者がハラスメント容疑で職を追われている。実際コロンビア大学、ソーク研究所の私の知り合い2人も含まれており、追求が広範囲に渡っていることがわかる。
カテゴリ:論文ウォッチ

12月24日 新しい免疫チェックポイント(1月24日発行予定Cell掲載論文)

2018年12月24日
今年の我が国生命科学の最大イベントは、本庶先生の免疫チェックポイント研究でのノーベル賞受賞だろう。ただPD-1が発見される前後の10年は、我が国の免疫学は世界をリードしており、現在臨床になんらかの形で用いられているサイトカインの多くが我が国でクローニングされた時代で、日本での競争が、そのまま国際競争といった時代だったと思う。このように当時を知るものとしては、今回の受賞は我が国免疫学が最も輝いていた時代を代表して本庶先生がもらったような気がしている。

この時期世界でT細胞の反応を調節している分子の遺伝子クローニングが相次いだが、まだ機能の全貌がつかめていない分子の一つが、1990年に報告されたLAG3で、クラスIIMHC によって刺激され、T細胞の反応を抑えるとされてきた。もし本当だと、PD−1のようにチェックポイント治療標的として使えるので、最近になって再検討が始まっていた。今日紹介するエール大学からの論文は、LAG3の新たなリガンドFLP1を特定し、臨床応用の可能性を示唆した論文で1月24日発行予定のCellに掲載された。タイトルは「Fibrinogen-like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3(Fibrinogen-like protein 1はLAG3の主要な免疫抑制リガンド)」。

研究では6000種類のcDNAを細胞に導入してLAG3と結合する分子を探索し,LAG3がこれまで言われていたMHC IIだけでなく、肝臓で作られるfibirinogen like protein 1(FGL1)と結合することを発見する。基本的には、この発見が研究のハイライトで、あとはFLP1が免疫チェックポイント分子として働いているかを着実に調べている。

まずLAG3は活性化されたT細胞だけに発現し、FGL 1によってT細胞の増殖が低下する。すなわち、FGL 1はLAG3を介して免疫反応を抑えるチェックポイントリガンドになる。

さらにその機能をFGL 1ノックアウトマウスで探ると、免疫システムの異常はほとんど見られないが、時間がたつと抗DNA抗体が検出されるなど、自己免疫症状が見られるようになる。

そこでこの分子をノックアウトしたマウスにガンを移植すると、腫瘍の増殖は強く抑制され、それぞれに対する抗体を用いてがんの増殖を抑制することも可能であることがわかった。すなわち、新しいチェックポイント分子として治療に使える可能性が生まれた。

最後に、ヒトのガンデータベースをサーチして、肺がんやメラノーマの患者さんの予後と、血中FGL1の濃度を比べると、FGL 1が低い人は予後が極めて良いことが明らかになった。したがって、癌が発見された時点でFGL1が高い人を抗体で治療する可能性が生まれたという結果だ。

基本的には、新しいチェックポイント治療の可能性を示した研究で、本当に治療に使えるかは今後時間をかけた検討が必要だろう。ただ、このチェックポイントが他と全く違うのは、リガンドが分泌される点で、その意味で新しい標的としての期待は持てるような気がする。
カテゴリ:論文ウォッチ

12月23日 思考の飛躍を妨げる右側頭葉のα波(米国アカデミー紀要掲載論文)

2018年12月23日
考えるということは、脳内に記憶している別々の表象をあれこれ関連させる、連想を伴う過程だ。この時、たとえば私が今向かっているPCからバナナを連想することはまずない。しかし、アップルを連想し、その後果物一般へと連想が進んでバナナに思い至ることは当然ある。そんなことを考えているとDie Gedanken sind frei(考えるのは自由)というドイツ民謡を連想した(https://www.youtube.com/watch?v=MKSJ56odw5E)。とはいえもし連想が全く自由だと、病気になるが、逆に創造的な思考には連想が常識的になることを抑制する必要がある。

今日紹介する英国クイーンメリー大学からの論文は、この連想が飛びすぎないように抑えているのが側頭葉のα波の活動で代表される脳活動であることを証明しようとした研究で米国アカデミー紀要オンライン版に掲載された。タイトルは「Right temporal alpha oscillations as a neural mechanism for inhibiting obvious associations(右側頭葉のα振動は当たり前の連想を抑制する神経的メカニズムだ)」。

結論はすでにタイトルに書いてあるので、そうかで終わってもいいのだが、科学者からみると、これをどう証明するかが一番重要だ。当然、人間を使ってしかできない研究で、まずボランティアに連想してもらうことになるが、勝手に連想させたのでは研究にならない。

この研究ではMednick遠隔連想テストが用いられる。この論文で挙げられている例を示すと、walker/main/sweeperに共通に連想される単語としてstreet, すなわちstreetwalker, main street, street sweeperを思い出させる課題を繰り返させる。この時例えばear/tone/fingerの中から2つの単語を選んで、それにフィットする単語を選べという課題の場合、ringすなわちearing, ringfinger以外には無いようなのだが(確かめたわけではない)、この時earとtoneはもともと内容が近い単語なので、そちらに気が取られて正解が出にくい。すなわち、当たり前のear とtoneの連想を抑制する必要があり、この時の側頭葉の役割を調べることで、連想の自由さを阻むメカニズムがわかるというわけだ。実験としては、引っ掛けていない連想と、普通のつながりを抑制する必要のある引っ掛けのある連想を行なっている時の、脳活動を調べ、あるいは操作して連想テストの正解率を調べることになる。

前置きが長くなったが、この研究で一番驚いたのは、引っ掛けのある課題を解くとき、右側の側頭葉にα波の波長で脳波とは逆相の刺激を外からかけると、抑制が外れて、ひっかけ連想テストの正解率がグンと上昇する結果だ。これに相当して、ひっかけ問題では当然正解率が落ちており、その時には側頭葉のα派が高まっていることも確認している。

最後に、もう一度今度はひらめきをテストするalternative uses taskの結果に、側頭葉に流したα逆相電流の効果を調べ、側頭葉のα波を抑制した時に確かに閃きの程度が高まるという実験も行っている。

結果はタイトルで全て尽くされている研究だが、実際の実験は大変であることがわかってもらえればいいと思う。しかし、これが正しいとすると、何か創造的仕事に携わる時、側頭葉のα波を抑える電流を流してくれる、「閃きハット」の販売も近いような気がしてくる。
カテゴリ:論文ウォッチ

12月22日 スタチンがガンの増殖を抑えるわけ(1月27日Cell掲載予定論文)

2018年12月22日
高脂血症に用いられるスタチンがガンの増殖を抑える場合があることが報告されてきたが、その詳しいメカニズムについてはよくわかっていなかった。今日紹介するコロンビア大学とスローンケッタリング癌研究所からの論文は、この疑問を詳しく解析した論文で来年1月27日のCellに掲載予定の論文だ。タイトルは「p53 Represses the Mevalonate Pathway to Mediate Tumor Suppression (p53 はメバロン酸合成経路を抑制して腫瘍の増殖抑制に関わる)」。

このグループはスタチンの標的メバロン酸合成経路がp53が変異したガンで上昇していることを見出していた。すなわち、p53のガン増殖抑制効果はステロールの合成を抑制することも貢献している可能性がある。そこでまず ガン細胞株を用いてp53を活性化すると、期待通りガン細胞のメバロン酸合成経路に関わる15種類の酵素が抑制されることを明らかにする。また、ガンのデータベースを調べ、p53の欠損したガンではメバロン酸合成に関わる遺伝子発現が上昇していることを明らかにする。

次にp53がメバロン酸合成経路遺伝子を活性化するメカニズムを追求し、p53によってSREBP-2分子の成熟が抑制され、この結果この分子のプロモーターへの結合が抑えられることを明らかになった。これまでの研究でSREBP2の成熟がABCA1と呼ばれる分子によって調節を受けている事が知られているので、次にp53がABCA1の転写に関わるかどうかを調べ、p53の活性化により直接ABCA1の発現が調節を受けていることを明らかにした。

以上の結果から、p53はABCA1の転写を高め、ステロールが低下に対するSREBP1の成熟を抑え、メバロン酸合成過程の分子の発現を抑えていることがわかった。逆に言うと、p53が変異したガンでは、この経路が働かず、その結果ステロールが低下する環境では速やかにメバロン酸合成が始まりガンに兵糧を送っていることがわかった。

最後に、p53変異により上昇しているメバロン酸合成をスタチンで止めることで、ガンの増殖を抑えられるか肝臓ガン細胞移植モデルで調べ、アトロバスタチン投与でガンの増殖を半分程度に抑えられること、またABCA1遺伝子の転写を抑えることで、様々なガンの増殖を抑えることができることを明らかにしている。

以上、スタチンがガンの増殖をおさえるメカニズムの一端を納得することができた。もちろん効果は根治的ではないが、P53の機能欠損した肝臓癌では、スタチン投与は病気を安全に抑える薬剤として使えるのではと思う。さらにこの研究では、コレステロールの小胞体輸送に関わるトランスポーターABCA1が癌治療の標的になる可能性も示している。実際ABCA1の機能抑制化合物も知られており、今後治療が難しくなった肝臓癌などで利用されるのではと期待している。

いずれにせよ、ガンを兵糧攻めにする様々なルートが明らかになり、対症療法であっても、安全な治療法が出来上がることは素晴らしい。
カテゴリ:論文ウォッチ

12月21日 アミロイドβタンパク質は死体下垂体から調整した成長ホルモンを通して他人に感染る。(Natureオンライン版掲載論文)

2018年12月21日
私がヨーロッパに留学していた1980年代は、英国は狂牛病に汚染された地域とされており、帰国後もこの時期にヨーロッパで過ごしたという理由で、献血をするのは控えるように言われた。これはプリオンで汚染されたヨーロッパ産の肉や脳を食べた可能性がある限り、プリオンのキャリアになっているのではと疑うべしとされていたからだが、当時はその本態もわからず感染しているかどうかも検査することはできなかった。ただもっと深刻な問題は、その当時死体から取り出され、様々な医療に利用された材料で、硬膜や下垂体ホルモンの投与を受けた患者さんからクロイツフェルドヤコブ病(CJD)が発生し問題になった。例えば、死体の下垂体から調整した成長ホルモンの投与を受けた1883人の英国の子供達の中から80人のCJDが発生している。もちろん患者さんたちは複数のソースから得られた成長ホルモンを投与されているのだが、CJDを発症した全ての患者さんに投与されたホルモン製品も特定されており、しかも現在も残されて調べることができる。

今日紹介するロンドン大学プリオン病研究センターからの論文は、このCJDの原因となるプリオンに汚染されたホルモンの中に、アルツハイマー病の原因となるAβタンパク質も存在して、これが血管に沈着してアルツハイマー病ではなく、Aβアミロイド血管症(CAA)を発症させ、脳血管障害による認知症を引き起こす恐ろしい可能性を指摘した論文で昨日Natureにオンライン出版された。タイトルは「Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone (死体から調整された成長ホルモン投与でアミロイドβタンパク質による病変を移すことができる)」だ。

このグループは80人のCJDを発症した患者さんの中には、Aβの沈着による血管障害が存在することをすでに報告しており、今回はこの可能性を実験的に証明しようと行った研究になる。

まずCJDの発症原因となった成長ホルモンバイアルを調べると、アルツハイマー病の原因とされているAβ40やAβ42が、アルツハイマー病の患者さんの脳の半量程度存在している。実際には、このバイアルを投与してCAAが誘導できるか調べればいいのだが、貴重な資料なのでそう簡単に実験ができない。

そこでまず、予備実験としてヒトのアルツハイマー型Aβで病気を感染す条件を検討し、アルツハイマーモデルマウスの脳に、アルツハイマー病患者さんの脳抽出液を投与する実験系を用いることで、アルツハイマー病の脳抽出液を投与されたマウスだけに、Aβの沈着が血管や脳の実質の広い範囲に検出できることを見出している。そして、このようなマウスではアミロイドによる血管病変の頻度が上昇する。この病変は時間が経つごとに悪化していく。

この予備実験の後、最後にCDJの原因になった成長ホルモンバイアルを同じように投与する実験を行い、何十年も保存されてきた同じホルモンバイアルが、予想通りAβの沈着を誘導し、しかもCAAの原因になる可能性を強く示唆する病変を示すことも明らかにしている。

以上、まだプリオンやアルツハイマー病についての知識のなかった時代に作られ、残されていたたサンプルで、アルツハイマー型AβもCJDと同じようなプリオンとして増殖し、CAAを誘導するという事実を、公衆衛生学者の執念で証明したなかなか迫力のある研究だと思う。もちろん、CAAだけでなくアルツハイマー病自体も同じように誘導できる可能性は十分ある。とはいえ、このような不幸な医原事故のおかげで、死体からの医療材料を使う事はおそらくほとんど無くなっているので今は心配することはないだろう。ただ、医原病を引き起こす種は思わぬところに撒かれていることを思い知らされる論文だった。
カテゴリ:論文ウォッチ