2024年8月10日
骨髄幹細胞は骨髄にとどまって様々な血液細胞を作り続けるが、一部は骨髄を離れて血液に流れてくる。これを利用したのが末梢血幹細胞移植で、動員される幹細胞の数を増やすために、G-CSFを前もって投与する。この末梢血幹細胞でも十分造血系再建が可能なため、何故ある幹細胞は骨髄にとどまり、同じ能力のある幹細胞が骨髄から離れるのか、明確な答えはなかった。
今日紹介するアルバートアインシュタイン医科大学からの論文は、マクロファージから骨髄局在のための分子を、膜の断片が移行する Trogocytosis により獲得した幹細胞が骨髄に残りやすくなるという、意外な事実を示した研究で、8月6日 Science に掲載された。
元々このグループは骨髄内のマクロファージが血液幹細胞の骨髄局在を決める重要な要因であることを研究していた。その中で、血液幹細胞をマクロファージのマーカー F4/80 でさらに2群に分けることができることを見いだしていた。各群を移植して幹細胞の機能を調べると、F4/80 陰性群の方が再建能は高いが、分化能ではほ同じといえた。
次にG-CSFを投与したときの動員を調べると、動員されるのはほとんど F4/80 陰性幹細胞で、F4/80 陽性群は骨髄から動員されにくいことがわかる。面白いことに、老化マウスでは F4/80陽性 の細胞が低下する。
表面マーカーを用いて血液幹細胞をさらに分別するのは血液学の王道で、遺伝子発現の違いを調べた普通の仕事になるのだが、この研究では F4/80 だけでなく、いくつかのマクロファージマーカーが同時に発現していることなどから、遺伝子発現の違いではなく、マクロファージの膜成分が膜ごと幹細胞に移行する Trogocytosis により分子が移行するのではと着想し、これを確認するための様々な実験を行っている。
決め手になるのは、ドナーとレシピエントの血液を区別できるようにして、幹細胞移植を CD169 / 蛍光分子を発現しているレシピエントに移植すると、ドナーの血液幹細胞の中に、レシピエント由来の蛍光分子を取り込んでいる細胞が存在することを示した実験で、これによりマクロファージから何らかの機構で様々な分子を取り込んだ幹細胞が、骨髄に局在する能力を付与されている可能性が示唆された。
マクロファージから幹細胞へと分子が移行するするメカニズムとして、一番ポピュラーなのはエクソゾームを介する伝搬だが、エクソゾーム形成を阻害しても、分子移行が起こること、さらに培養実験から、細胞と細胞が接着することが移行に必須であることを示し、エクソゾームではなく、Trogocytosis によりマクロファージ分子が幹細胞に移行すると結論している。
この移行により、骨髄内局在を決めることが知られている CXCR4 が幹細胞に移ってくると、より骨髄への局在化が促進されると結論している。そして、Trogocytosis には c-Kit の発現とシグナルが関わっており、シグナルを薬剤で阻害すると分子移行は低下する。すなわち、幹細胞の中でも c-Kit 発現の高い幹細胞ほど Trogocytosis が高まり、マクロファージ由来分子を獲得しやすくなると結論している。
以上は全てマウスの話なので、最後に人間の骨髄でも同じ現象が見られるのかを調べており、c-Kit の発現が高い集団ほど、マクロファージマーカーを発現していること、また末梢に流れてきた幹細胞にはマクロファージマーカーの発現が低いことを示し、人でも同じことが起こっていると結論している。
結果は以上で、転写の違いでないという点についてはさらに実験が必要だと思うが、Trogocytosis のような意外なメカニズムが骨髄局在を決めているとすると、骨髄幹細胞の動態を一から見直す必要がある。
2024年8月9日
今月のジャーナルクラブは、8月16日夜7時半から、人間の脳と大規模言語モデルを比較した研究論文を紹介します。個人的意見ですが、おそらく最も重要な科学の分野に発展すると思います。Zoom開催したあとYoutube配信しますが、zoomに直接参加したい方は連絡ください。
2024年8月9日
昨日は脳内にできた腫瘍とセロトニン神経との相互作用を研究した論文を紹介したが、これに続いて今日紹介するロックフェラー大学からの論文は、乳ガンに脊髄後根から投射している感覚神経が分布すると悪性度が増して転移することを示した研究で、8月7日 Nature にオンライン掲載された。タイトルは「Neuronal substance P drives metastasis through an extracellular RNA–TLR7 axis(神経由来サブスタンス P が細胞外 RNA による TLR7 刺激を誘導し転移を促進する)」だ。
このグループは、神経投射を誘導する SLIT2 分子が乳ガンの発生した血管内皮から分泌され、これが乳ガンへの神経投射を促し、これが乳ガンの転移を促進する可能性を明らかにしていた。この研究では、血管内皮から SLIT2 遺伝子をノックアウトする実験で、SLIT2 がないと脊髄後根からの感覚神経投射が阻害されることを確認し、あとは神経と乳ガンの相互作用について研究を進めている。
まず、転移性が異なる乳ガンをマウスに移植する実験から、転移性が高い悪性の乳ガンほど感覚神経投射の程度が高く、しかも乳ガン自体も神経細胞が発現する分子を発現して神経の様に振る舞うことを発見する。
次に乳ガン細胞のオルガノイド培養実験で、感覚神経と共培養することで転移性が低い乳ガンも転移性の高い乳ガンへと転換することを示し、神経細胞自体がガン細胞の悪性化を誘導していることを明らかにする。
逆に転移性の高いガン細胞を移植する実験で、移植組織の感覚神経を除去していこうと、転移が起こらないことも確認している。
次は、乳ガンと感覚神経の相互作用のメカニズムになるが、
乳ガンと感覚神経が共培養されると、神経細胞の興奮が高まり、その結果様々な神経ペプチドが分泌される。
これらペプチドのうち、サブスタンス P (SP) は培養に加えると、乳ガンに発現している受容体を介して、悪性度を高める。また、SP を分泌できないマウスに移植すると、転移が強く抑制される。
人間の乳ガンでもリンパ節転移が例では、組織内の SP 発現が高い。
を明らかにする。
次は SP による悪性化のメカニズムだが、SP が直接悪性化分子を誘導するのではないため、わかりにくいところだが次の様になる。
まず SP に対する受容体の発現量が高いと、細胞死を誘導する。このため、強い刺激を受けた一部の細胞で細胞死が誘導される。こう聞くと、SP は乳ガンを殺してくれる良いシグナルに見えるが、細胞死した一部の細胞から RNA がリリースされると、これが乳ガンの TLR7 分子を介する自然免疫刺激シグナルを誘導し、その結果 PI3K-AKT という重要なシグナル経路を介してガンを悪性化させる。
細胞死なら神経投射がなくても常に起こっているのではと思われ、無理があるシナリオに見えるが、SP の刺激を抑えることが知られる、吐き気を抑える目的で使われている薬剤アプレピタントを乳ガンを移植したマウスに投与すると、乳ガンの増殖が抑えられることを示して、このシナリオに沿った乳ガンの治療可能性を示しており、乳ガンの場合末梢での神経投射がガンの悪性化に重要であると結論している。
アプレピタントは抗ガン剤による吐き気を抑えるために利用されていると思うので、ネオアジュバント治療時にアプレピタントを使用したかどうかでガンの再発を調べる調査は重要な気がする。
2024年8月8日
グリオーマや転移乳ガンが、グルタミン酸受容体を介するシナプスを形成し、自己の増殖に利用することはこのブログでも紹介してきた(https://aasj.jp/news/watch/11421)(https://aasj.jp/news/watch/11416 )。このように、神経とガンの相互作用を調べて、治療の糸口を見つけたいと研究が進められているが、なかなか治療法開発にまでは至らない。
今日紹介するテキサス・ベイラー医科大学からの論文もこのラインの研究で、小児に多く発生するependymoma(上衣腫)のうち、ZFTA 遺伝子と RELA 遺伝子が融合した、最も悪性タイプの上衣腫と神経 系の相互作用を調べ、セロトニン神経との相互作用により、ヒストンのセロトニン化を介する遺伝子発現抑制により腫瘍を抑制できることを示した研究で、神経とガンの相互作用の複雑性を示す研究だ。タイトルは「Histone serotonylation regulates ependymoma tumorigenesis(ヒストンセロトニン化が上衣腫の発ガン性を調節する)」だ。
この研究では ZFTA 遺伝子融合を持つ上衣腫(融合型)と、持たない良性の上衣腫の遺伝子発現を比べ、しシナプス結合に関わる様々な分子が融合型で特に発現していることを見いだし、神経との相互作用が増殖に関わる可能性を着想する。
そこで、子宮内での遺伝子操作で融合型の腫瘍を発生させ、生後上衣腫が発生するタイミングで、様々な神経を光遺伝学的に興奮させ、腫瘍増殖への影響を見ている。これまでの研究と同じで、興奮神経の活動は上衣腫の増殖を助ける。一方介在神経の興奮は増殖を抑える。
そこでさらに詳しく神経伝達因子ごとに上衣腫増殖を調べると、セロトニン神経を興奮させると、上衣腫増殖が抑えられることを発見する。あとは、セロトニン神経と上衣腫との相互作用を詳しく検討している。
これまで紹介した様に(https://aasj.jp/news/watch/22353 )、セロトニンはヒストン修飾に用いられるので、この研究でもセロトニン化されたヒストンに焦点を当て、上衣腫ではセロトニン化が強く促進され、セロトニン化が起こらないヒストンを発現させると増殖が抑えられることを確認している。そして、ヒストンセロトニン化で活性化される遺伝子と探索し、上衣腫発生のマスター遺伝子ともいえる ETV5 がヒストンセロトニン化により活性化され、これが抑制型ヒストンコードを活性化させることで、上衣腫の悪性化に関わることを明らかにする。すなわち、セロトニンは上衣腫発生に必須といえる。
とすると、セロトニン神経の刺激は上衣腫のヒストンセロトニン化を促進するのに、なぜ上衣腫の増殖を抑えるのか、この辺のメカニズムはなかなか理解できない。上衣腫はセロトニンを外部から摂取するので、常識的にはセロトニン神経の活動は ETV5 を活性化してしまうはずだ。ただ、腫瘍発生後の段階では、セロトニン神経細胞によるセロトニン取り込みの競合の結果も考えられる。ただ、局所での生化学的バランスがはっきりしないので、これが働いているかははっきりしない。
代わりに、この研究ではセロトニン神経からセロトニンが供給され、それにより活性化される ETV5 が、神経ペプチドの一つ NPY の分泌を高め、これが脳全体の興奮を抑えることで、最終的に上衣腫の増殖を抑えるというシナリオを提案している。
結果は以上で、ヒストンのセロトニン化が上衣腫の発生を促進するのに、セロトニン神経興奮が上衣腫を抑えるという矛盾する現象を完全に説明できているとは思わないが、神経とガンとの複雑な相互作用が垣間見られる面白い研究だと思う。
2024年8月7日
たばこの中に含まれる様々な物質の中で、ニトロソアミンは膀胱ガンを誘導することが疫学的に知られており、試験管内発ガン実験、あるいはマウスを用いた慢性投与実験からも発ガンが確かめられている。
今日紹介するクロアチア・スプリット医科大学と、ドイツ・ハイデルベルグにあるヨーロッパ分子生物学研究所から共同で発表された論文は、発ガン実験に使われる N-butyl-N(4-hydroxybutyl)-nitrosamine (BBN) が、主に腸内細菌の作用で DNA と直接結合する N-butyl-N-(3-carboxypropyl)-nitrosamine (BCPN) に転換され、膀胱ガンを誘導することを示した研究で、7月31日 Nature にオンライン掲載された。タイトルは「Gut microbiota carcinogen metabolism causes distal tissue tumours(腸内細菌叢による発ガン物質の代謝が遠位組織の発ガンの原因になる)」だ。
このグループは元々細菌叢による分子てんかんの研究を続けてきた。従って、今回の研究も最初から化学物質による発ガンに細菌叢が関わると狙いを定めて研究を始めている。しかしこれまで BBN は腸内で吸収されたあと肝臓で代謝された結果、DNA 結合性の分子へと転換すると考えられてきた。
この研究は BBN を12週間飲ませる発ガン実験の際、抗生物質を投与すると、膀胱ガン発生を8割から2割以下に抑えられることを示し、発ガン性物質への転換のほとんどが腸内細菌叢により行われている可能性を明らかにした。
この実験が研究のハイライトで、後は実際に BBN が腸内細菌叢により BCPN へと転換されていることを確かめる実験が続く。例えば、抗生物質を投与すると大腸での BCPN 濃度がほとんど0になる。一方で、その前の段階の gBNN 濃度は代謝を受けず上昇する。
また、マウス細菌叢を培養してこれに BNN を加えると、24時間で BCNP へと転換される。この実験系で、実際にこの転換に関わる細菌を調べており、564種類調べた中で12種類だけがこの能力を持つことがわかった。また、これらの細菌が占める割合は0.5%程度なので、かなり少ない細菌によって、危険な BCPN への転換が行われていることがわかる。
次に、人間の腸内細菌叢に同じ能力があるのか、大便を培養する実験系に BNN を加えて BCNP への転換を調べると、個人差は大きいが、人間の細菌叢も BCPN へ転換できる能力を持つ細菌叢は存在する。しかし、大腸菌を除くと、この能力を持つマウス細菌とは種が異なっている。
そこで、人間の細菌叢でもマウスの体内で同じように働くか、無菌マウスに移植した上で、BNN 投与実験を行い、大腸内の BCNP が確かに上昇すること、この上昇を抗生物質で抑えられることを示している。
以上が結果で、他の化合物でも同じような発ガン物質への転換が細菌叢により誘導される可能性も示し、特に発ガン物質を経口摂取させる実験の中には細菌叢が強く関わるかの性があると結論している。
最初こんなこともあるのかと驚いたが、冷静に考えてみるともっともなことで、しかもこの結果が正しいからと言って、抗生物質を飲み続けることはできないことから、結局は今まで通り環境の化合物を摂取しない、すなわち禁煙することが一番重要になる。
2024年8月6日
マスト細胞は IgE 産生システムとともに、アナフィラキシーを媒介する中心的細胞で、細胞表面上に結合している IgE が抗原により活性化されると、細胞内にためていたヒスタミンなどの様々なメディエーターを放出し、アナフィラキシー反応を起こす。この細胞の発生には現役時代研究していた c-Kit が必須で、関係のミーティングでは必ずセッションが設けられていたので、普通の細胞よりはよく知っていると思っていた。
ところが今日紹介するミュンスター大学からの論文は、これまでのイメージからは想像できない、なんとマスト細胞が白血球を取り込んで、自分のために再利用するメカニズムを備えていることを示した驚きの研究で、8月2日 Cell にオンライン掲載された。タイトルは「Neutrophil trapping and nexocytosis, mast cell mediated processes for inflammatory signal relay(好中球をトラップしてそれを吐き出すマスト細胞の機能が炎症シグナルを伝える過程に関わる)」だ。
白血球は様々な炎症現場でその機能が研究されているが、IgE により媒介されるアナフィラキシー現場ではあまり研究されていない。反応も早く、ほとんど機能していないと考えられてきた。これに対してこのグループは、ともかくアナフィラキシー現場で白血球の動態を見てみようと考え、ビデオ観察した。普通は気にもならない問題を、しかもじっと観察してみようと考えたのがこの研究のハイライトだ。その結果、抗原注射によるアナフィラキシー反応で、マスト細胞が顆粒を吐き出した直後から、マスト細胞の方向に白血球が集まり、30分するとほとんどの白血球が離れていくが、残ったマスト細胞の中には生きた白血球が細胞内に取り込まれているという、予想外の現象を発見する。
この現象はコラーゲンゲルを用いる試験管内でも同じように観察され、また人間のマスト細胞と白血球の培養系でも観察できる。
マスト細胞の周りに白血球が集まり出すのは、脱顆粒によるメディエーターの分泌直後からで、このとき同時に分泌される分子が白血球を呼び寄せていると考え、最終的にロイコトリエンB4(LB4)の濃度勾配に沿って白血球がマスト細胞と接触することを突き止める。
その後、互いの膜を沿うように細胞骨格が変化して、最終的に細胞内に白血球が取り込まれるケースが多いが、白血球がより積極的に増すと細胞内に突き刺さるように取り込まれる場合もある。いずれにせよ、取り込まれたあとは数時間白血球は生きているが、その後エンドゾームが酸性化するにつれ、白血球は死ぬ。
面白いのは、白血球を取り込んだ細胞と、取り込まなかった細胞を比べると、脱顆粒後の回復が早く、周りの栄養環境が悪化しても、取り込んだ細胞の成分を、オートファジーのように利用して、代謝活性を上昇させ、高い活動性を維持できる。
ただ、白血球の取り込みによるベネフィットはこれだけではない。マスト細胞は細胞を取り込んでも、元々様々な分解酵素を使う能力は低い。そのため、白血球が死んだ後、多くの分子が完全に分解されないまま残る。その結果、次に刺激されたとき、完全にメディエーターが合成できていなくても、白血球が発現していたロイコトリエンやプロスタグランジンを分泌するとともに、完全に消化されないDNAを回りに分泌することで、組織中のマクロファージを刺激、炎症反応を持続させる。
以上が結果で、マスト細胞が白血球を取り込むだけでも驚きだが、これが自己活性化と炎症誘導のための戦略であるとする仮説は、さらに検証が必要だが、面白い可能性だと思う。シナリオをこれでもかと押しつけてくる論文の書き様はちょっと心配にはなるが、面白い論文だと思う。
2024年8月5日
人間で調べてみないとわからないことは多い。中でも脳や免疫系のように複雑なネットワークを形成しているシステムでは、その重要性は一段と高い。そこで、この1週間で目にした人間についての研究を2編紹介する。
まず最初のワシントン大学からの論文は、様々な理由で生まれつき視力が失われた8人の成人(23歳から54歳まで)の、本来なら視覚に使われる一時視覚野 (V1) が、全盲の方ではどのように使われているのか、MRI による機能的結合性検査で調べた研究で、7月30日 米国アカデミー紀要にオンライン掲載された。
この研究では視覚情報を伝える文章を聞かせたとき、V1 と機能的に結合している領域を FC と定義し、各個人の FC を測定している。そして、それぞれの個人については、最初の検査から3年間にわたって1年ごと検査を繰り返し、V1 との FC の変化を追跡している。
これまで、視覚野として使わなくなった V1 は、様々な感覚情報の処理にフレキシブルに使うようになるという考えと、成長過程で様々な領域と安定な FC を形成しているとする考えが存在しており、最初の考えが正しければ、同じ個人で V1 の FC は変化するし、逆にあとの考えが正しいとすると、V1 との FC は個人ごとに異なり、また3年間同じパターンが維持されることになる。
結果は後者で、V1 との FC を個人の特定のデコーダーとして使え(90%の正確性)、しかもそのパターンは個人ごと、3年間ほぼ安定に維持されていることが明らかになった。
それぞれの個人でどのように使われるのか、などはほとんど解析されていないが、ずいぶん昔、生理研の定藤さんの、点字は V1 領域を活性化すると言った研究をはじめとして、多くの研究があるので、そちらを参考にしてほしい。ともかく、成長過程で全盲の方は V1 を個人個人で新しい領域として開発し、それを維持していることがわかった。今後は、いつ頃このパターンが固定されるのか、また成人に達してからの可塑性はないのかなど、この研究を基礎に新しい研究が進むと期待される。
ガラッと変わって次の論文は、条件を整えれば病原体の人間への感染実験は可能かどうかを調べた英国ヨーク大学を中心とする治験研究で、8月2日 Nature Medicine にオンライン掲載された。タイトルは「Safety and reactogenicity of a controlled human infection model of sand fly-transmitted cutaneous leishmaniasis(コントロールされたサシチョウバエにより媒介される皮膚リーシュマニア菌感染実験の安全性と反応性)」だ。
リーシュマニアは細胞内寄生原虫による感染症で、ほとんどは皮膚でとどまるが、瘢痕化による様々な障害を引き起こす。また、中には治りにくい、あるいは先進に広がるリスクを持つ原虫の種類も存在する。面白いことに、中東やソビエトでは感染創からリーシュマニア原虫を採取し、ワクチンとして使われ、効果が示されており、現在ワクチン開発が進んでいる。
このワクチンのテストを、感染地域で大規模治験として行うことも可能だが、患者数や費用のことを考えると、限られた治験でワクチン効果を確かめたい。そのためには、比較的全身症状をほぼ起こさない種類の原虫を、極めて限られた皮膚領域に感染させ、発症や免疫反応を調べる人体を用いたシステムが必要になる。
この研究では、14人の健康ボランティアを募り、サシチョウバエで植え継いできたリーシュマニア原虫を、3mm強の大きさの部分に感染させたその後の経過を調べている。2例では全く変化が見られなかったが、残りの12人では、典型的皮膚症状が誘導され、バイオプシーでリーシュマニア原虫陽性が確認されている。以上の結果から、皮膚感染による皮膚症状発症は、82%の確率で起こることを確認している。
発症後、10例の患者さんは感染場所を治療目的で除去しているが、3例で4−8ヶ月後に再発が見られ、リーシュマニアが確認されている。ただ、これらも部分的に低温にするクライオ治療で完治しており、慢性感染へ移行した例はないが、しかしコントロールされた感染実験でも完全に経過を把握することは難しい。また、この10例全てで瘢痕形成が見られた。
とはいえ、重症の皮膚症状はほとんど見られず、軽度な潰瘍を示した1例だけだった。ただ、かゆみが強く、ひっかいた結果の感染症は3例に見られている。
あとは組織上で多くの遺伝子発現を同時に調べる方法を用いて、バイオプシー領域の解析を行っているが、感染症の形成にケモカインが重要な働きをしていることや、皮膚ケラチノサイトのリモデリング分子と潰瘍の関係などを除くと、特殊な感染症としての明確なメカニズムにつながる結果ではない。
以上、リーシュマニア感染症実験が可能になると、限られた人数のボランティアでワクチンの効果が確かめられる可能性がある。しかし、感染を完全にコントロールする難しさもよくわかる論文だった。
2024年8月4日
CRISPR など、遺伝子編集を担うシステムは極めて多様だが、多くの細菌種が独自のシステムを開発していることだ。従って、解読された細菌のゲノムを探索するだけでも、多くの新しい遺伝子編集システムが見つかる。最近紹介した IS110 トランスポゾンを用いる系はその典型で(https://aasj.jp/news/watch/24732 )、細菌ゲノムデータは宝の山であることは間違いない。
今日紹介するカリフォルニア大学バークレイ校、Doudnaさんの研究室からの論文は、この宝の山から、分子構造を指標に相同遺伝子を探索する方法を開発し、これまで Cas13 として知られている RNA を標的にした編集システムの先祖型を特定し、それが Cas13 とほぼ同じような活性を、試験管内及び細菌の中で示し、ファージウイルスに対する防御機構になっていることを示した研究で、8月2日号の Science に掲載された。タイトルは「Structure-guided discovery of ancestral CRISPR-Cas13 ribonucleases(構造の比較により発見された先祖型 CRISPR-Cas13 リボ核酸分解システム)」だ。
Doudnaさんの論文はいつもアイデアに満ちている。この研究では、アミノ酸やDNA配列からだけではなかなか関連が見つからない場合でも、構造を見ると相同性が見えることを利用する新しいタンパク質比較方法を用いて、Cas13 と同じ機能を持った分子をまず探索している。
具体的にはタンパク質の立体構造比較 LLM、α フォールドを用いて構造を決めた分子のデータベースを用いて、Cas13 と相同な分子を探索し、Cas13 と比べるとかなり小さな新しい Cas13 相同分子クラスターを発見する。そして、遺伝子配列の相同性から、新しく見つかった Cas13 が、Cas13 系統樹の最初に分岐した先祖型(Cas13an)であることを特定する。そして、Cas13 が Swit1 のような核酸分解酵素から進化してきたことも明らかにしている。このように、構造の比較から入ることで、配列比較からはわからなかった先祖型分子が発見でき、新しい分子系統理解が可能になる。
次に遺伝子構成を調べると今回特定された13種類の Cas13an のうち10種類では CRISPR アレーが3‘側に存在するが、ゲノムの解析から独立して存在していた RNA 分解システムが Cas9 のような2型CRISPRシステムの標的検出システムを拝借して進化していることも明らかになった。
その上で、Cas13 の機能と比較しながら、Cas13an の機能を調べると、スペーサーの特異性は低いものの、あとは現在の Cas13 とほぼ同じ機能を持つことを示している。すなわち、Cas13an とスペーサーと標的配列を一体化させたプラスミドを大腸菌に導入すると、配列特異的に外来の RNA を分解する。実際、ファージ標的認識配列を組み合わせると、そのファージに対する抵抗力が1000倍に増える。
この活性は、CRISPR アレーから転写される Pre-CRISPR と呼ばれる RNA から標的の配列を切り出し、この切り出した RNA 配列が認識する外来 RNA に結合して切断すると同時に、周りに存在する無関係な RNA もトランスに切断する Cas13 とほぼ同じだが、それぞれの機能を担う分子構造を調べると、Cas13an では全てが一つの分子領域にまとまっており、それぞれの機能が違うドメインに分かれた現在使われている Cas13 とくらべ、小型のタンパク質で同じ機能が発揮でき、将来様々なベクターに組み込んで利用できることを示している。
以上が結果で、構造ベースの分子比較により、我々が見落としてきた多くの新しい分子機能を発見できること、その結果これまで以上に使いやすい遺伝子編集システムが開発できる可能性を示したさすがと思わせる研究だ。
個人的には、進化によりせっかくコンパクトにまとめられていた機能が、異なるドメインへと分裂していくのも面白い。構造をベースにした分子系統学は、配列情報と自然選択という選択アルゴリズムをつなぐことができる。
2024年8月3日
腸は第二の脳と呼ぶ人がいるぐらい神経ネットワークが張り巡らされている。この神経が、腸管で血液系細胞と直接、間接に相互作用をするという論文が最近数多く発表されており、論文ウォッチでも一つの例を紹介した(https://aasj.jp/news/watch/12553 )。問題は、腸内には複雑な細菌叢が存在し、細菌叢と腸管神経との相互作用も存在することから(https://aasj.jp/news/watch/14134 )、腸管内の神経と血液細胞の相互作用が直接的な関係かを調べることは簡単ではない。
今日紹介するハーバード大学からの論文は、腸管内に存在する様々な神経細胞を、光遺伝学的に活動させて起こる血液、リンパ系細胞の変化を調べ、直接的神経血液相互作用を探ろうとした研究で、8月2日号の Science に掲載された。タイトルは「A chemogenetic screen reveals that Trpv1-expressing neurons control regulatory T cells in the gut(遺伝子操作と化合物を用いる神経興奮スクリーニングにより Trpv1 発現神経が腸管の制御T細胞をコントロールすることを明らかにした)」だ。
この研究のハイライトは、クロザピンNオキシド(CNO)で刺激可能なデザイン受容体を、腸管に存在する神経群の種類ごとに(例えば感覚神経、運動神経、自律神経)遺伝子操作で発現させ、CNOを注射してそれぞれの神経を興奮させたときに起こる腸管の血液細胞の変化を調べている。
これまで発表されてきたように、確かに腸管神経細胞の興奮は、神経の種類特異的に血液細胞の変化を誘導する。例えばNOを分泌する腸管神経細胞は蠕動運動を抑えると同時に、炎症を誘導するTh17細胞を抑える。
逆にコリン作動性の運動神経が興奮する腸管内の白血球が低下する。またマスト細胞にも発現するMrgprd受容体を発現した神経細胞が興奮するとクラスIIを発現した単球が上昇する。ただ、それぞれの現象のメカニズムを明らかにするには時間がかかる。
そのため、この研究では興奮させたとき最も大きな変化を誘導した痛み受容体TrpV1を発現する感覚神経と、最も変化が大きかった制御性T細胞(Treg)の相互作用のメカニズムを探っている。
実際にはTrpv1神経を興奮させると、自然免疫に関わる細胞やCD8T細胞など、Th17以外のほとんどの細胞数が低下する。この研究では、最も変化が大きいTregに絞って、詳しく調べている。その結果、
TrpV1陽性細胞のうち、脊髄後根を通る感覚神経がTreg細胞数を低下させる。これまで指摘されていた内臓感覚に関わる迷走神経求心路の興奮は血液細胞に影響がない。
TrpV1感覚神経の興奮は、Tregにヒートショックタンパク質などストレス反応を誘導し、増殖を低下させる。おそらくこれにより、腸の免疫防御が高められる。
TrpV1が興奮するとカルシトニン関連タンパク質(CGRP)が分泌され、これが一部のTregに発現しているCGRP受容体に直接働き、増殖を止める。
TrpV1感覚神経とTregは定常状態で近接して存在し、腸内での刺激に応じて免疫系を調節している。
その結果TrpV1の興奮により腸の炎症反応が高まり、腸管上皮のバリア機能が低下し、細菌が組織に侵入する。
以上が結果の主なもので、確かに神経興奮により腸内の血液細胞群がダイナミックに変化しているおかげで、腸が守られていることがわかる面白い研究だ。いずれにせよ、刺激物は控えるというのは生活の知恵だ。気になってTrpV1がアルコールにも反応するか調べたところ、閾値を変えるような作用がアルコールにはあるようで、とすると私の腸も基本的には炎症に傾いていると考えた方が良さそうだ。
2024年8月2日
これまで薬剤の開発が難しかった Ras に対する阻害剤の開発が、アムジェン社の K-Ras(G12C) 阻害剤ソトラシブを皮切りに加速している。しかしソトラシブの使用が始まってすぐ、ほとんどの症例で K-Ras 阻害を乗り越える耐性が発生し、効果が長続きしないことがわかった。ただ、これは K-Ras 阻害に限らず、多くのガンのドライバーを標的にする治療に共通の問題で、最も重要な課題だ。
この克服の一つの方法は、標的薬に全くメカニズムの異なる免疫チェックポイント治療を組み合わせる治療で、標的薬がガン抗原の免疫系への提示を促進してくれるのではと期待され、多くの治験が行われている。
一方で、耐性の原因を調べ、標的薬を組み合わせる方法の開発も重要だ。幸い、多くのキナーゼ阻害剤に対する耐性が、EGFR と PI3K の活性化によることがわかってきたため、これらに対する標的薬を組み合わせる治療が模索されているが、副作用の問題などで標準治療に到達できていない。
今日紹介するミシガン大学からの論文は、EGFR と PI3K の両方をうまい具合に標的にする薬剤が開発できることを示した研究で、7月11日 Nature Medicine にオンライン掲載された。タイトルは「A first-in-class selective inhibitor of EGFR and PI3K offers a single-molecule approach to targeting adaptive resistance(EGFR と PI3K 両方に選択的な全く新しい阻害剤はガンの適応的耐性に対する解決法になる)」だ。
この研究では EGFR 阻害剤 NVP-AEE788、及び PI3K 阻害剤 omipalisib がそれぞれの標的に結合する様態の構造解析からスタートして、最終的に両方の分子にほぼ同じような親和性で結合できる化合物 MTX-531 をデザイン、合成している。
こんなうまい話があるかと思うが、実際に EGFR 及び様々な PI3K サブタイプにナノモルレベルの親和性で結合する。もちろん、それぞれの分子に特異的な阻害剤と比べると、標的への親和性は低いが、合わせ技一本の効果を期待して、詳しい生化学的解析の後、ガン抑制効果を様々な細胞株や、患者さんから切除したガン細胞を用いて調べている。
まず、EGFR と PI3K の増幅や変異が発ガンのドライバーになっている頭頸部ガンを標的に効果を調べると、期待通り両方の分子を阻害できる MTX-531 は単独で高い効果を示す。驚くのは、マウスに患者さんのガンを植えた実験で、MTX-531 の方が、単独ではそれぞれの分子に高い親和性を示す2種類の薬剤を組み合わせたより高い効果を示すことだ。ただ、この原因については明確ではないが、後で出てくるように糖代謝への影響によるものかもしれない。
次に、多くのガンに用いられている MEK 阻害剤との併用療法で調べると、MTX-531 を加えた方が高い効果を示す。さらに、K-Ras (G12C) 阻害剤ソトラシブとの併用でも圧倒的効果が見られ、ガンによっては MTX-531 単独でもソトラシブに勝る例も示されている。
通常併用は他の標的薬が効かなくなった後で開始されると考えられるが、すでにソトラシブ治療で耐性を獲得した患者さんのガンについても効果を調べ、MTX-531 単独でも強い抑制効果がえられるが、ソトラシブ耐性になった後も併用するとさらに高い効果が得られることも示している。
この様に EGFR/PI3K 両方に効く阻害剤は期待通りの効果を示すが、しかし研究の最大の驚きは、他の PI3K 阻害剤と比べ MTX-531 がほとんど高血糖症状を示さないことだ。PI3K はインシュリン受容体の下流の重要因子で、PI3K を阻害すると当然インシュリン感受性が損なわれ、高血糖、及び代償的インシュリン上昇を示す。このため、一般の PI3K 阻害剤はケトン食と組み合わせて使わないと、効果が半減していた。ところが、MTX-531 ではインシュリン抵抗性が発生しない。
通常理解できないが、この研究ではなんと MTX-531 が弱くではあるが PPARγ に結合して、インシュリン感受性を挙げることで、PI3K が内在的に持つ問題を解決していることを示している。すでにピオグリタゾンなど、PPARγ アゴニストは糖尿病剤として開発されていることを思うと、納得するが、しかしこれほどうまい話があるのかにわかには信じがたい。
以上が結果で、一石二鳥どころか一石三鳥という話でこれから様々な Ras 阻害剤が臨床に使われるようになることを考えると、早く臨床研究を進めてほしいと思う。今回はうまい話に乗りたいと思う。