6月25日:サルを用いた遺伝的発達障害モデル(5月20日号Nature掲載論文)
AASJホームページ > 新着情報

6月25日:サルを用いた遺伝的発達障害モデル(5月20日号Nature掲載論文)

2019年6月25日

先日もこのブログでNMDA型グルタミン受容体の機能異常が、自閉症を含む様々な発達障害の原因を示す論文を紹介したが(http://aasj.jp/news/watch/10416)、このタイプの異常の中で多い遺伝的発達障害が、グルタミン酸受容体が形成される時の基質となるSHANK3遺伝子が片方の染色体で機能を失う変異で、Phelan-McDermid症候群と呼ばれている。自閉症様症状だけでなく、筋力低下、睡眠障害、様々な程度の知能発達障害を示すが、同じ様な症状は多くの遺伝性発達障害でもみられる。

自閉症スペクトラム(ASD)全体から見ると、遺伝的な発達障害は一部に過ぎないが、原因となる機能分子がわかっているという意味で、遺伝的ASDは疾患メカニズムの研究に欠かせない。ただ、ほとんどのモデル動物はマウスを中心とするげっ歯類で止まっていた。たしかにSHANK3欠損マウスは社会性や学習異常を示すが、しかし人間と異なりヘテロではほとんど症状がない。したがって、もっとヒトに近いモデル動物が求められていた。

昨年はクリスパー遺伝子操作を行ったクリスパー遺伝子操作受精卵を移植、出産させたとして中国の研究が一躍注目を浴びたが、これからもわかる様に中国はこの技術の利用の幅広さでは世界一といってもいい。今日紹介する深圳先端科学研究所からの論文はSHANK3遺伝子変異サルを作成し、自閉症モデルとして使えることを示した研究で、先週号のNatureに掲載された。タイトルは「Atypical behaviour and connectivity in SHANK3-mutant macaques(SHANK3変異を持つカニクイザルは非典型的行動と神経結合の異常を示す)」だ。

この研究では受精卵のSHANK3遺伝子のエクソン21にCRISPR/Cas9を用いて機能欠損変異を導入し、最終的に5匹のSHANK3変異サルを得ている。それぞれゲノムレベルで起こっている変異は多様で、2匹は異なる変異が両方の染色体で起こったcompound ホモになっていた。さらに、2匹のサルから精子を採取し、同じ様にSHANK3変異のヘテロ個体を繰り返して作れることも示している。すなわち、金はかかるが、ASHNK3モデルサルを欲しいだけ作れる体制が整った。

さて、症状だが、個体ごとに多様な症状と、全ての個体で一様に存在する症状がある。例えば活動性は全ての個体で低下しており、睡眠障害でも、特に寝るまでに時間がかかる。

社会性で見ると、正常では多様だが、変異サルでは全ての項目で一様に低下している。

また筋肉の低緊張もヒトと同じで一様にみられる。

マウスではほとんど不可能な視線を追いかける実験も行える。この結果、視線が落ち着かないという特徴が一様に存在することがわかった。ただ、同じ様な症状はASDでは指摘されているが、SHANK3変異では調べられていないので、ヒトでも調べる必要があるだろう。

最後にテンソルMRIで各領域間の結合性を調べ、感情やモチベーションに関わる領域と前頭葉や運動野との結合が低下していることを示している。一方、やはりヒトで指摘されている様に、各領域内での結合性は高まっている。

まだ始まったばかりだが、ヒトの症例をかなり反映したモデルができたと言えるだろう。また、サルで初めて見つかる症状も存在することから、今後詳しい解析が進めばそのままヒトの症例へフィードバックできる可能性がある。

そして最も期待されるのが、発達過程の解析、そして介入実験だ。マウスSHANK3変異を用いた研究からロイテリキンの効果が示されている(http://aasj.jp/news/watch/9990)。ぜひ、サルを用いて組織レベルの変化まで詳しく調べ、新しい介入法の開発につなげて欲しい。

しかしこの分野の中国の実力はすごいと思う。

カテゴリ:論文ウォッチ

6月24日 顕微鏡を一切使わず、細胞の構造をDNAの配列データだけで画像化する(6月27日号Cell掲載論文)

2019年6月24日

チューリング以来、論理的情報は、機械の動きに変えられることが明らかになり、情報から現象を再構成する技術が急速に進んでいる。その結果、この分野に明るくない私は、AIに限らず、最近の多くの生命科学の論文を、隅々まで完全に理解することが極めて困難になった。しかし、そんなことにはお構いなく、情報科学を用いた思いも及ばなかった論文が相次いで発表される。

そんな論文の中でも今日紹介するハーバード大学からの論文には驚いた。細胞の構造を顕微鏡なしに観察する可能性を示した研究で、6月27日号のCellに掲載された。タイトルは刺激的な「DNA Microscopy: Optics-free Spatio-genetic Imaging by a Stand-Alone Chemical Reaction (DNA顕微鏡:光学機器の必要ない空間的遺伝的イメージングを化学反応だけで可能にする)」だ。

乱暴に言ってしまうとこの研究では、ある領域に分布する人間の数と、その中の個人同士の物理的距離がわかれば、その場所の地図が描けるという、最近利用され始めた情報処理技術を利用している。ただ、地図を描くことも、距離を測ることもこれまで全て視覚を通して行われてきた。ただ、最近だとスマフォ同士の距離は電波の強さでわかる。

この研究で場所にあたるのが組織で、人間にあたるのが任意に選んだ複数の遺伝子のmRNAだ。と言われてもよくわからないと思うので、実際に論文に使われている例で話を進める。

まずGFPとRFPを別々に導入した細胞を用意し、混合して培養する。こうして、GFP+細胞と、RFP+細胞が混合する一種の組織ができる。この組織でGFP、RFP、そしてアクチン、GAPDHの4種類のmRNA(個別の)の間の距離を調べ、それを情報処理して細胞の分布地図を作っている。

と聞いても。本当にできるのかにわかには信じられないが、例えば核内で染色体の各部の接触確率を調べるHiCを用いて核内の染色体地図を書く様なイメージで、ネットに繋がる携帯電話の分布地図を描くために開発された技術らしい。

では組織上で各mRNA間の距離を見るという過程なしにいかに測定するのか?この研究ではcDNAを結合させる反応の起こりやすさを距離の近さとして用いている。

まず末端を特異的配列でラベルしたプライマーを用いて、組織上でcDNAを合成し、次にそれぞれのcDNAを標識配列ごと増幅する。すると、増幅されたDNAはその場所からゆっくり拡散で広がり始め、距離に応じて他の場所から拡散してきたRNAと混じることになる。そこでOverlap-extension PCRを用いて、異なるcDNAが近くに来た時だけ一本のcDNAとして結合させると、距離に反比例してoverlap-extensionされたcDNAの数が増える。この時overlapしたcDNA同士の間に、個々のextension反応を示すユニークな標識がランダムに挿入される様にしておくと、個々のoverlap-extension反応の個別標識として解析できる。

こうして合成されたoverlap-extension DNAの配列を決定することで、最初にcDNA合成されたmRNA同士の距離が計算でき、この結果を処理すると地図がかけるというわけだ。原理はおわかりいただいただろうか?

残念ながら細胞内のmRNAの分布を示すだけの分解能はまだないが、もっとmRNAの種類を増やしていけば、原理的に解像度は上がる。しかし、全く顕微鏡なしに細胞を見る(?)ことができる日が来るとは想像しなかった。

しかし、自分が何かを見て認識しているという脳の過程を考えると、かなり近いことが行われている。とすると、脳と同じである程度トップダウンで形態の類型を加えてやれば、顕微鏡のいらない日が来るのかもしれない。

カテゴリ:論文ウォッチ

プラトン「テアイテトス」(生命科学の目で読む哲学書 第4回)

2019年6月23日

図1 プラトン著「テアイテトス」は光文社と岩波書店から出版されている。この機会に、両方を読んでみた。

これまで、フロイトの「モーセと一神教」を題材に普遍宗教の誕生、そして柄谷行人の「哲学の起源」を題材に、ユダヤ教誕生、およびほぼ同じ時期に起こったイオニア哲学誕生について見てきた。この2回で、哲学の誕生と普遍一神教の誕生の背景に見られる共通性や、両者の差異についてわかっていただいたのではないだろうか。またこの2回を通して、これから私が目指している長い道のりについても理解していただけたのではないだろうか。

さて、イオニアでの哲学誕生の次は、プラトンやアリストテレスに代表される、いわゆるギリシャ哲学の主流が続くことになる。この二人は、ギリシャ哲学にとどまらず、ローマ時代から近世まで、ヨーロッパの哲学にとっては最も影響力のある思想家として位置づけられてきた。当然私にとっても、生命科学の観点から見たとき、この主流とはなんだったのかを考えようと思っている。また、アリストテレスは特に生命科学と関係が深い。

しかし正直に告白すると、この二人の著作を読むのは気が進まない。というのも何十年も前、学生時代にたまたま読んだバートランドラッセルの西洋哲学史(図2)で述べられていたこの2人の大哲学者の印象が悪かった。

図2 ラッセルの西洋哲学史 ラッセルは数学者であり、西洋哲学の導入としては素晴らしい本だと思う。個人的には、最近出版されたロールズの哲学史講義よりはるかに学ぶところが多かった。

ラッセルはこの本のなかでデモクリトスなどの原子論者を、神や宗教に頼らず、自然の原理を説明しようとした哲学者と評価した上で、プラトンとアリストテレスについて、

「デモクリトス以後の最良の哲学でさえ犯していた過誤というのは、宇宙と比較して人間に不当な強調点が置かれた事である。・・・・・プラトンがもたらしたものは、感覚の世界を拒否して、自ら作り出した純粋な思惟の世界を優位に据える、という事であった。アリストテレスとともにやってきたものは、科学における根本概念としての目的というものに対する信仰であった」

と述べて、前回述べたイオニアに始まる自由な市民によるギリシャ哲学にも内在していた最終的には超自然的な説明を導入してもいいとする悪しき部分が、この二人により哲学の中心課題として正当化されたと嘆いている。ラッセルにかかれば、プラトンやアリストテレスはその後のヨーロッパのキリスト教支配の思想的基盤を提供し、科学的思想の誕生を阻む元凶になる。

ちなみに、今多くの人に読まれ、善や道徳について重点を置いて書かれたロールズの「哲学史講義」では、極めて短い言及とはいえプラトンやアリストテレスの道徳観を、

「私たちは正義の要求を拒否すれば私たち自身の善を失うことになる」

「有徳な行いを、良き性における他の書善と一緒に置かれるべき一種の善であるとみなし、そして理にかなう仕方でこの行をなしうる方法を判定するための基礎として役立つような最高善の概念を探し求めた」

「道徳哲学はつねに、自由でかつ規律された、理性の行使だけに尽きていた。それは宗教に基づかず、そして啓示には基づかなかった」

などと、かなり持ち上げて評価している。物は言いようになるが、ロールズが評価している最高善の考えは、その後キリスト教が支配するヨーロッパの思想に生き続ける。ただ超越的説明を排除しないプラトンの道徳哲学が宗教と無関係かは判断が分かれるところだろう。

それでもこの二人を無視して先に進むわけにはいかない。そこでこれまで真面目に向き合ってこなかったプラトンの著作を今回何冊か読んでみた。もともと悪い先入観を持っていたためか、新しく読んでみた結果も、ラッセルの西洋哲学史を読んで学んだ結論と全く変わることはなかった。結局プラトンの著作は、特定の絶対的唯一神こそ登場しないものの、宗教的な内容や例え話に満ちており、不死やあの世についての話が当たり前のように出てくる。その意味で、科学の対極にある思想である事が再確認できた。しかし実際に読んだおかげで、なぜプラトンが「自ら作り出した純粋な思惟の世界を優位に扱って」いるだけなのに、その後現代に至るまで多くの哲学者に評価されたのか、その騙しのテクニックとともに、哲学の主流の創始者としての能力についても直接感じることができた。

今回読んだ全ての著作を取り上げるのは無理なので私の選ぶ一冊として「テアイテトス」を取りあげることにした。通常、プラトンというと「国家」や「ソクラテスの弁明」「響宴」などが取り上げられ、科学より道徳や政治の話になることが多い(例えば民主制と哲人王など)。ただ私が読んだ中では、「テアイテトス」が結論が超越的ではなく、個人的にはプラトンの著作の中で最も好感が持て、「生命科学の目で読む哲学書」に最も適しているように思った。

さて、テアイテトスは冒頭の写真に示したように、渡辺邦夫訳の光文社版と田中美知太郎訳の岩波書店版が手に入る。今回両方とも読んでみたが、これから読まれる人には渡辺邦夫訳の光文社版を推す。文章が平明で、各セクションに訳者による説明を兼ねたタイトルが付いていて一般の人にもわかりやすい。また、プラトンに対する意見は私の印象とは大きく異なるが、巻末の解説も大変分かりやすい。この稿ではもっぱら光文社版を引用して説明する。

まずこの本の構成を簡単に説明しておこう。他の著作と同じで、登場人物の対話ですすむドラマ(劇)形式をとっている、というよりドラマそのものだ。まず冒頭に、知識にも徳にも優れた若者テアイテトスが赤痢で倒れてしまったことを嘆く、エウクレイデスとテルプシオンの会話から始まり、テアイテトスの思い出として、ソクラテスの言葉として記録されていた、ソクラテス、テアイテトスとその先生テオドロスの3人が繰り広げた白熱の議論を再現するという構成になっている。そして本の大半はソクラテスとテアイテトスによる「知識とは何か」についての対話問答集になっている。

この本では、「知識とは何か」と言う問題は、当時議論されていた3つの問題、

  • 知識と知覚の関係(知識は知覚か?)
  • 知識の客観性(「万物の尺度は人間である」と、知識は完全に個別的とするプロタゴラスの考え)
  • 知覚される世界の流動性(あらゆるものは常に変化しているというヘラクレイトスの考え)」

に分解され、アテネ随一の賢人ソクラテスにこの3つの問いの間を行きつ戻りつしながら批判させるという形式がとられている。もちろんソクラテスはプラトンの代わりで、これらプロタゴラスに代表される考えを論破する目的で書かれている。

プラトンの他の著作と同じで、この議論はドラマ仕立てになっているが、問題を設定した後続けられるこの対話形式のドラマ自体が、プラトンが自説を押し付けるための最大の騙しのテクニックになっている。このテクニックについてまとめると以下のようになる。

  • そもそもドラマ仕立てはフィクションという感覚を強く与える。事実、ドラマとして完成させるために、面白おかしい台詞やたとえ話が繰り返し現れ、これが課題に対する集中を妨げる。
  • 例え話を持ち出すことで、考えを検証せずに押し付ける。この最たるものが「国家」の中でイデアの存在を示すために持ち出される有名な洞窟の囚人の喩えだ(洞窟の囚人は壁に映った影しか見えない。そのためこの影が囚人にとっての実在になるが、洞窟から脱出して太陽の光を見ることで、本当の実在とは何か(イデア)がわかるようになるという話)。面白い例え話で、実在と仮象をうまく説明できているが、しかし話が面白いからと言って、イデア説が正しいことを示すわけでは無い。
  • 脱線を繰り返す中で、当時の常識とか、神様とかを持ち出すことで、本来なら検証を必要とする内容を、正しい概念と錯覚させ、判断をミスリードしてしまう(テアイテトスでも、ギリシャ人の魂とも言えるホメロスまで動員され、例えば「万物は動いている」ことを正しいことだと断じてしまう)。
  • 最悪は、ドラマの登場人物に階層性を持ち込んで、誰が正しく(ソクラテス)、誰が未熟で間違うのか(テアイテトス)を最初から決めてしまっている。対話を通して真理に至るという弁証法ではなく、常にソクラテスが真理を語る形式になっている。もちろん著作によっては、若い時代のソクラテスが他の意見を拝聴する形式も取られているが、登場人物の評価で答えを判断させるのは同じだ。
  • 特にテアイテトスでは本の最初と最後に、有名な産婆の例えを持ち出し、ソクラテス自身は何も持論を持ち合わせるわけではなく、対話している相手が正しい結論に到達するのを助けるだけだと、責任を放棄してしまっている。

こんなわけで、どうしても真面目に議論を追いかけようという意欲はすぐ失せるし、また正直言って内容も理解しづらい(もちろんプラトン哲学の人にとってはなんでも無いのだろうが)。

それでも我慢して読み進めると、テアイテトスの場合、他の著作とはちょっと異なるエンディングに出くわし、プラトンにもこんな一面があるのかと驚くことになる。そのあたりを見ていこう。

この本を読むと、先に挙げた3つの質問がアテネでのギリシャ哲学にとっては最重要問題だったことが伺える。おそらくイオニア以来アテネ時代まで、けんけんがくがく様々な議論が続いていたのだろう。プラトンがこの議論になんとか決着をつけようと思うことは十分理解できる。

しかしこの課題は、現代の哲学にとっては重要性が失せているようだ。自分で読んだ現代の哲学書に限って言うと、米国を除くと知識とは何かについて正面から議論されている著作にはまずお目にかからない。代わりに現在これらの問題は、脳科学の重要なテーマとして多くの研究者が取り組んでいる。米国の哲学でこれらのテーマをよく目にするのは、米国の哲学者が脳科学と常に対話を維持しているからだと思う。

プラトンに限らず、当時の哲学上の課題は、今から考えれば現在私たちが脳科学の課題として扱っているテーマが多い。例えば先に挙げた有名なプラトン独自の「個別の経験の前に形相(イデア)が存在する」という形相の概念も、形相の概念が正しいかどうかの議論をしても意味はない。しかし形相の概念を、対象に対する人間の認識過程、脳の発達過程、そして言語の問題などに分解して、私たちの脳の認識の問題として扱うことはできる。

同じようにテアイテトスで議論される3つのテーマも、感覚を通した動的インプットが統合されて、新しい経験についての記憶を形成する脳過程の問題として理解できる。この立場に立ってとりあえず3つの問いに答えてみると次のようになる。

  • 「知識は知覚か?」:知覚があらゆる知識の最初であることは間違いない。あらゆる感覚が閉ざされれば知識は生成しない。すなわち、知覚なしに知識は存在しない。
  • 「万物の尺度は人間である」:個人個人の知覚は主観的な過程だが、人間の脳は知識を他人と共有し、個人の脳から切り離して共通の概念を共同で作り社会で共有するメカニズムを持っている。これが普遍性の獲得に重要な役割を演じており、その最たる例が言語だ。言語の構造を考えると、例えば「りんご」という対象の認識は、同時に果物というカテゴリー、食べられるというカテゴリー、あるいは動物ではないと言うカテゴリーなど、そこに存在しない様々な物や事と連合して行われている。これらは全て、脳の発達の問題として捉えられる。
  • 「万物は変化する」:物理学的にみれば知覚できるかどうかは問わず万物は変化している。またそれだけでなく、知覚も常に動的に形成される(目は決して写真のように景色を切り出すのではなく、視線を動かして得られた部分を統合し、また分解して認識する極めて動的な過程だ)。

このような現在の科学・脳科学を念頭におくと、ある程度の答えを用意することが出来るが、20世紀以前の科学レベルでは、このような問題自体に納得できる答えを出すことは難しい。実際、「テアイテトス」でも、イライラするぐらい「ああでもない、こうでもない」と議論を繰り返したあと、結局これらの問いに対する直接の回答は出せていない。当然のことだと思う。

そして「知識は感覚か」と言う問いについては、感覚は不確かであるという理由にならない理由を持ち出し、「知識は省察で感覚ではない」と言う考えが採用される(プラトンではいつものことだが)。そして、知識と感覚の議論は棚上げして、「正しい知識とは何か」へと問題がすり替えられる。

正しい知識についての議論の過程は全て割愛するが、知識の真実性や虚偽性についての議論を繰り返した後、

「知識とは差異性の知識がついた正しい考え方」

と言う回答がひねり出される。すなわち、頭の中に形成された考えの中で間違っていないと言える部分に、差異性の知識=論理性を足せば誰もが安心できる正しい知識となるという結論だ。

そして驚くのは、この結論を導き出した直後に、

「知識とはなにかという問いを探求しているのに、差異性であれ、ほかのなんであれ、なにかの『知識が付け加わった』正しい考えであると答えることは、まるっきり愚鈍なことだ」と、

ひねり出したばかりの結論の全否定を行なっている。すなわち「よくよく考えてみると、知識を定義するのに、他の知識を持ち出すとは笑止千万」というわけだ。

あれほど脱線に脱線を繰り返しながら、行きつ戻りつ議論を繰り返した結果、最後に極めて厳しい条件を突然持ち出して、結論を出すこと自体が間違っていると主張している。ここまで「どんな答えが出てくるのか?」と読み進んで来て、見事に裏切られる。そして、答えは出せなかったが、それでもソクラテスという知の助産婦と議論することで、テアイテトスが持っている全ての知識が「産み落とされた」ことが重要で、結論が出るかどうかは問題ではないとまで言っている。

プラトンに慣れ親しんでいる人にとって、これは驚きのエンディングだろう。確かに、知識は感覚かについては明確に否定しているが、おそらくやる気になれば「知識とは何かを」に対する答えもプラトン的に答えられたはずだ。例えば彼のイデアの概念などを参考に考えてみると、超越的な「正しい知識」が最初から存在し、私たちが知識として認識しているものは全て、「正しい知識」「最高の善の知識」の反映であると言う答えが出てきても良いように思える。ところがテアイテトスでは、プラトンは正直に「わからない」と結論している。私自身はテアイテトスにプラトンの全く違う一面を見た気がして驚いた。この最後のどんでん返しは、「脳(知識)は脳(知識)を理解できるか?」という現代の問題にも似ており、おそらく意図せず脳認知科学の核心をプラトンも感じたのかもしれない。

結局プラトンは多くの人を魅了するだけの多様なスタイルを持っていたのだろう。同じように、プラトンには珍しく、極力例え話や無駄話を排し、スピノザの様な禁欲的議論が続く著作「パルメニデス」を読んだ時も、こんなプラトンがあるのかと思う。その意味で、本当は捉えがたい多面性を持つ哲学者であることを、今回実感した。

そこで最後に私のプラトン像を独断と偏見でまとめて終わることにする。

イオニアの哲学者の直接の著作は残っていないのに、我々が彼らの考えについて知る事ができるのは、プラトンやアリストテレスによって、断片的ではあってもその説が議論されているからだ。事実、テアイテトスには、プロタゴラス、ヘラクレイトス、パルメニデスなどの思想が断片的に紹介されているし、他の著作でも同じだ。また「パルメニデス」のように、哲学者の名前を冠した著作も存在する。

この事が意味するのは、プラトンがそれ以前の哲学に通じていたことだ。アリストテレスはプラトンの弟子なので、おそらくそれまでの哲学はプラトンにより集大成されたと言っていい。同時に、アテネの哲学界では、これらの思想が生き生きと議論されていたことは、プラトンが著した多くの対話ドラマから伺う事ができる。

前回考察したように、原則自由な個人が、超越的力に頼らず自分で世界について考えたのがイオニア哲学の特徴だが、自分で考えると言うことは、多様な思想が生まれると言うことで、科学の様な検証手続きがないと、議論は終わりなく続くことになる。彼以前の哲学を集大成する過程で、プラトンはこの状況を収束させること、すなわち全ての問題に答えを出すことが自分の使命だと感じたに違いない。それが彼の膨大な著作を著す原動力になったと思う。

私もほんの一部しか読んでいないが、おそらくテアイテトスのように、結局答えが見つからずに終わる試みもあったのだと思う。しかし全てに答えを示さなければという使命感は、イオニアの哲学にあった様々な考えを許容する寛容さを排除し、一つの考えに収束させる、非寛容な哲学を招き入れる結果になる。

すなわち、全てを説明しようとすると、答えを超越的な力、絶対的な価値などに根拠を求めざるを得ない。すなわち、神が「正しさ」の唯一の根拠になる宗教と紙一重になる。これが、その後プラトン、アリストテレスがキリスト教に長く生き続ける原動力になった。この「哲学は全てを説明できなければならない」という、間違いや捏造の根拠となった信念は、デカルトにより呪いが解かれるまで続くことになる。次回はアリストテレスで、この問題を見てみることにする。

6月23日 トランスポゾンから学ぶ新しいクリスパーテクノロジー(Natureオンライン版掲載論文)

2019年6月23日

クリスパーはもともとバクテリアが、外来のウイルスやプラスミドから自分のゲノムを守るために進化してきたシステムだが、逆にウイルスに取り込まれて、バクテリアの免疫を抑える方向にすら使われている、融通無碍のシステムだ。従って、クリスパーの利用法を学ぶ目的で、今も自然に存在するクリスパー/Casシステムを探索して、新しい機能を探す研究が行われている。

今日紹介するコロンビア大学からの論文は、クリスパーシステムを特定の遺伝子サイトに潜り込むために使っているトランスポゾンの発見でNature オンライン版に掲載された。タイトルは「transposon-encoded CRISPR–Cas systems direct rNA-guided DNA integration(CRISPR-Cas システムをコードするトランスポゾンはRNAのガイドによるDNAへのインテグレーションを可能にする)」だ。

この研究では、自然に存在するCRISPRシステムを探索している中で、コレラ菌に存在するトランスポゾンが、CRISPR/Casを持っているが、DNA切断活性を持つCas9は持っていないことを発見する。

もともとトランスポゾンは、自身でDNAを切断し、ホストゲノムと統合できる活性を持っている。ただ、これには全くゲノムの場所特異性はない。著者らは、新たに見つけたクリスパーシステムを持つトランスポゾンが、クリスパーをゲノムへの統合場所の特異性を決めるのに使っているのではと考えた。

詳細は全て省くが、まずこのトランスポゾンのコードするTniQとCas8,Cas7, Cas6が繋がった分子が、ガイドRNAに導かれてバクテリアゲノムの特定の場所に結合し、次にその場所にトランスポゾン分子tnsCをリクルートしてトランスポゾン複合体が集められ、自らのDNAを統合させる過程を明らかにした。

実験のほとんどはこの生化学過程の解析だが、最後にガイドRNAを用いて、狙ったところに正確にトランスポゾンが挿入されていることを示している。

本当は大事な生化学的過程の詳細は省いてしまったが、この論文のメッセージは、ゲノムへの侵入を防ぐ目的のクリスパーを、ゲノムへ統合するために用いているシステムがあるということで、バクテリア間での重要な遺伝子のやりとりができる新しい系が進化したと言えるかもしれない。

ただ、クリスパーを技術として見る観点から言えば、トランスポゾンと組み合わせると、これまで悲願だった大きな遺伝子の狙った場所への挿入が可能になったことになる。おそらくこのためには、システムを2−3個の独立したベクターに組み込む必要があると思うが、近いうちにそんなシステムが販売される様な気がする。

カテゴリ:論文ウォッチ

6月22日 発達障害とNMDA型グルタミン受容体(6月18日Science Signaling掲載論文)

2019年6月22日

Rett症候群は運動障害、知能発達障害、自閉症様症状などの発達障害を示す病気で、DNAのメチル基に結合するタンパク質をコードする遺伝子MECP2の機能が片方のX染色体で失われることで起こる。この病態を理解するためにはMECP2が脳神経細胞で何をしているのか理解することが必要だが、MECP2自体は多様な過程に関わっており、特定の機能とピンポイントで結びつけるのは難しい。

最近ゲノム解析が進み、これまでRett症候群として分類されていた中にCDKL5やFoxG1の様な分化誘導因子の変異が存在していることがわかり、この発達過程で多くの遺伝子が働いていることがより明らかになってきた。今後、一つ一つの遺伝子のRett症候群での機能を解明することが、治療法開発につながる。ただ、この様な臨床例を基礎的に調べなおす力がある研究グループは多くない。

今日紹介するバロセロナ大学からの論文は、GRIN2に変異を持つ極めて稀なRett症候群を生理学的に詳しく解析し、症状を改善させる治療法を開発した研究で6月18日号のScience Signalingに掲載された。タイトルは「L-Serine dietary supplementation is associated with clinical improvement of loss-of-function GRIN2B-related pediatric encephalopathy (GRIN2B遺伝子欠損による小児の脳症をL-serineを混ぜた食事で改善する)」だ。

この研究は一人のRett症候群の子どもから始まっている。症状からRett症候群と診断されたが、MECP2遺伝子は正常だったため、エクソーム検査を行い、グルタミン酸受容体を構成するGRIN2B自体に変異が発見された。この遺伝子の変異はウェスト症候群や巣てんかんなどの原因遺伝子として知られていたが、553番目のプロリンがスレオニンに変わる変異はほぼRett症候群に近いことがわかる。

そこで、この変異を片方の染色体に持つ場合、何が起こるかを、細胞学的、生理学的に調べ、グルタミン酸への結合力が低下してチャンネルのコンダクタンスが低下すること、またこの結果としてシナプス形成が低下することを発見する。

NMDARはグルタミン酸だけでなくセリンのラセミ体D-serineやグリシンによって側面から活性化されることでシグナルの調節が行われていることが知られている。そこで、試験管内でD-セリンを加える実験を行うと、変異による様々な異常を改善することがわかった。

最後にこの結果を受けて、患者さんの症状をセリン投与で改善できないか調べている。D-セリンは薬剤として使われ始めてはいるが、子供に投与する時の予想できない副作用を考慮し、この研究では普通のL-セリンを食べさせている。事実、D-セリンはL-セリンより脳内で合成できることがわかっており、この患者さんでもL-セリン投与でD-セリンが上昇することが確認できる。投与量は、500mg/kgなので、5歳児(20kg)とすると、10gという大量の投与が必要だが、食事に混ぜて食べさせることで行動異常が大きく改善したことを示している。

話は以上で、一人の臨床例をここまで解析できた研究グループには頭がさがる。結果については、一見NMDARの変異に限った話と思われるが、MECP2の変異によるRett症候群でもNMDAR受容体の活性が低下しているという指摘もあることから、他の様々な発達障害の治療方法になる可能性がある。RettやMECP2重複症はiPSも存在し、神経を誘導できる。是非この可能性も積極的に調べて欲しいともう。

カテゴリ:論文ウォッチ

6月21日 皮膚の上から血中のメラノーマ細胞を検出する(6月12日号Science Translational Medicine掲載論文)

2019年6月21日

毎日論文に接していると、専門の医学に限っても、全く知らないところで新しい技術が生まれていることを実感する。今日紹介するアーカンサス医科大学からの論文は、1860年にグラハムベルによって原理が発見された光のパルス・エネルギーを音に変換する光音響効果を用いて、血中を流れるメラノーマを検出しようとする技術の開発で6月12日号のScience Translational Medicineに掲載された。タイトルは「In vivo liquid biopsy using Cytophone platform for photoacoustic detection of circulating tumor cells in patients with melanoma (Cytophoe技術を用いた生体中のliquid biopsyによりメラノーマの患者さんの血中を流れるガン細胞を検出できる)」だ。

今回私が驚いた技術が、光音響効果を用いた技術なので、少し解説しよう。実際、我が国も含め世界中で研究が進んでいるようだ。分かりやすくいうと、超音波を照射し返ってくる音波を検出して体内の様子を画像化する超音波診断と同じようなものだ。ただ、超音波を照射する代わりに、パルスレーザーを照射し、レーザーがぶつかった細胞が温められた時に発するナノバブルの音を検出して、体内の様子を調べるものだ。したがって、特定の波長のレーザー光の吸収とそれによる超音波発生の細胞ごとの効率が検出されることになる。

ただ、超音波診断が聴診器の代わりになり始めている現状で、この技術の優位性を見つけるのは容易ではない。色々試行が重ねられて、ついにこのグループは血中を流れる色素を持ったメラノーマ細胞の数を血液を抜かずにカウントするという、ドンピシャの適用法を着想した。

最近になって血中を流れるガン細胞を検出して、ガンの状態をモニターする方法が続々開発されているが、流れていると言っても血中のガン細胞の数は少なく、採血可能な血液量では検出に限界があった。一方、直径1mmぐらいの血管を1時間近くモニターすると、なんと1リットルの血液に相当する量をモニターすることができる。

この研究では、最適なレーザー波長、エネルギー、データ処理システムなどを至適化して単一のメラノーマ細胞、メラノーマ細胞の固まり、メラノーマ細胞と白血球の塊、白血球などを、連続してシグナルを送る赤血球の中から区別して検出できるようになった。そしてこの方法をメラノーマの患者さんで試してみると、18例中17例で間違いなくメラノーマ細胞を検出することができた。

最後に同じプラットフォームでもう少し強いレーザーを当ててメラノーマを血中で殺せるかという実験も行っている。驚くことに、18例中6例でたしかに処理後、血中のメラノーマ数が減少したことを示し、治療にも役立つと結論している。

しかし、わざわざ2兎を追わなくても、持続的モニターだけでも十分価値があると思う。特にメラノーマはチェックポイント治療、ガンの標的療法など、最先端の治療法が使われている分野だ。しかも、皮膚に病巣があり、支配血管を特定することもできる。とすると、治療効果をガンの周りの血管で調べる新しい研究が可能だ。この分野でまず技術を磨いて、その後適用を拡大すればいいと思う。

カテゴリ:論文ウォッチ

6月20日 動物の起源(6月19日号Nature 掲載論文)

2019年6月20日

真核生物は、次に植物が属するバイコンタと動物とカビが属するオピストコンタ、そしてどちらにも属さないアメーバに分かれる。動物をさらに菌類からわけてホロゾアと呼んでいるが、このホロゾアに属する単細胞生物が分化した細胞を持つ多細胞生物が生まれるが、この段階を代表すると考えられているのが単細胞の襟鞭毛虫と、この細胞によく似た襟細胞を持つスポンジだ。

今日紹介するオーストラリア・クイーンズランド大学からの論文は、この襟細胞の類似性に着目し、発現遺伝子のパターンから、動物進化を読み解こうとした論文で、一種の機能ゲノミックスを絵に描いたような研究だ。タイトルは「Pluripotency and the origin of animal multicellularity(多能性と多細胞動物の起源)」だ。

この研究ではまずスポンジから、襟細胞、上皮細胞、多能性の間質細胞(原始細胞)の3種類の細胞を目視で分離してきて、それぞれの発現遺伝子を解析している。この発現パターンをもとに主成分分析を行うと、襟細胞がほかの2種類の細胞から最も分かれていることがわかる。また、これまで知られていたように、スポンジでは原始細胞が増殖や分化に関わる遺伝子を強く発現してスポンジの幹細胞として働いていることがわかる。

次にスポンジの遺伝子を、襟鞭毛細胞とメタゾアが分かれる時点から見て、新しい遺伝子と古い遺伝子(前メタゾア、後メタゾア)、そしてスポンジに特異的な遺伝子に分け、それぞれの細胞でどのタイプが発現しているか調べると、原始細胞では前メタゾア遺伝子が、襟細胞ではスポンジ特異的遺伝子の割合が多いことを見つけている。すなわち、襟鞭毛細胞とより近いのは、襟細胞ではなく原始細胞の方だ。

一見、矛盾するように見えるが、襟鞭毛虫は異なる生活サイクルを持っており、多細胞の集合体を形成することがある。この襟鞭毛虫の生活サイクルで現れる異なる段階と、スポンジの3種類の細胞とを比べると、原始細胞の遺伝子発現パターンが、襟鞭毛虫が細胞集合体を作った時の発現パターンに似ていること、逆に形は似ていても襟細胞や上皮細胞はこれらの単細胞生物とはほとんど似ていないことが明らかになった。

このパターンと、3種類の細胞の分化能を比べるため、細胞を標識して分化を追跡する実験を行い、スポンジの体を支える幹細胞が原始細胞で、全ての細胞へ分化すること、そして面白いことに、襟細胞は原始細胞と可逆的に分化転換を起こしていることがわかった。

以上の結果を総合して、可逆的に分化転換が起こっている襟細胞と原始細胞のセットは単細胞生物時期にすでに進化しており、このシステムを形態形成に使ったのが多細胞動物の始まりであると結論している。

単純にゲノムだけを比較するゲノム進化研究から着実に機能ゲノミックスが発展していることがよくわかる論文だ。この研究で使われたスポンジはqueeslandicaという学名がついており、大学と同じ名前のついた生物をわざわざ選んで研究する洒落っ気が感じられるのも好感が持てた。

カテゴリ:論文ウォッチ

6月19日 マウスは食べ物の安全性を他の個体に教えることができる(6月7日Science掲載論文)

2019年6月19日

おそらく人間の幼児の場合、好き嫌いはあっても、食べ物の安全性は習わないとわからないと思う。これは他の動物でも同じで、習わない場合は結局進化の過程で本能に備わった好き嫌いが、ある程度安全性を担保できるようになっているとおもう。実際、昆虫などは食性が極めて限定されている。

もちろん人間やサルに限らず、マウスのような動物でも他の動物の行動から食の安全性を習うと思われるが、食べ物の安全性を習うという行動を実際に実験するとなるとどのように調べればいいか、簡単ではない。今日紹介するジュネーブ大学からの論文は他の個体の行動からマウスが食の安全性を習う神経回路を調べた論文で6月7日号のScienceに掲載された。タイトルは「Social transmission of food safety depends on synaptic plasticity in the prefrontal cortex (社会的な食の安全性の伝達は前頭前皮質のシナプス可塑性に依存している)」だ。

この研究のハイライトは、食べ物の安全性が伝えられるプロセスを調べるための課題の設計に尽きる。この研究では同じ食べ物にクミンとタイムの匂いを染み込ませ、マウスに選ばせる実験系を用いている。それぞれの匂いに全く未経験の場合、マウスはすぐにタイムの匂いを選ぶようだ。ところがそこに、クミンの匂いを持つ食べ物になれたマウスを同居させると、初めてのマウスもクミン臭の食べ物を時間をかけて調べるようになる。よくまあこんな実験系を思いつくものだと感心する。

行動実験系が出来上がれば、あとは脳の反応を調べることになる。まず他の個体から学習した時に反応する神経を調べると、前頭前皮質で反応細胞が増えているのがわかる。そこで次にモティベーションに関わる側坐核への投射が機能しているか光遺伝学など様々な方法で調べ、側坐核へ投射する中型のスパインを多くもつ神経細胞(MSN)がクミン臭の食べ物の安全性を習うときに増えることを発見する。

全く初耳だったが、マウスはこのような状況では二硫化炭素を用いてコミュニケーションを行うらしく、実際マウスから習わなくとも、二硫化炭素を嗅がすと同じ回路のMSNが増加する。そして確かにこの匂いを感じる梨状皮質から側坐核へ神経投射している前頭前皮質の神経細胞へ神経投射があることを確認している。すなわち、習うときに二硫化炭素を感じて、それが前頭前皮質を介して側坐核を活性化する。

次に、こうして食の安全性を学習することが、梨状皮質、前頭前皮質、側坐核の回路の特性を変化させるか調べるため、行動実験時に光遺伝学で梨状皮質から前頭前皮質へ投射している神経を刺激すると、学習時の側坐核の神経興奮がさらに増強することを確認している。シナプスを化学的にブロックできるようにしたマウスをもちいて、この回路を特異的に遮断すると、学習が消失する。

以上の結果から、クミン臭になれたマウスは硫化炭素を介した、匂いのシグナルでマウスの前頭前野から側坐核への神経細胞を増加させて、食の安全性を伝え、また学習することが示された。

脳生理学的には特に驚くことはない話だが、マウスが食べ物の安全性をしっかり伝えており、またその行動を調べるための実験系が工夫されていることを知って、感動した。

カテゴリ:論文ウォッチ

6月18日 抗体だけでT細胞活性化するガン免疫治療(6月12日号Science Translational Medicine掲載論文)

2019年6月18日

現在成功しているガン免疫治療は、PD-1抗体のように活性化T細胞に対するチェックポイントを抑制する治療か、あるいはガンに対して反応するよう遺伝子操作したT細胞(CAR-T)による治療だが、ガンに対する免疫を活性化させる方法はまだまだある。すなわち、様々な治療が次から次へと開発されてくることが予想され、現在行われている治療もいつ古くなるか気が気ではないと思う。

今日紹介するのはまさにそんな競争を繰り広げている製薬会社ロッシュの研究所からの論文で、ガンの近くにT細胞をリクルートしてそれを抗原とは無関係に活性化してしまうというガン免疫治療開発で6月12日号のScience Translational Medicineに掲載された。タイトルは「Tumor-targeted 4-1BB agonists for combination with T cell bispecific antibodies as off-the-shelf therapy (ガン組織に集まる4-1BB活性化分子と2種類の特異性を持つT細胞活性化抗体は誰にでも用いられるガン治療を実現する)」だ。

T細胞を刺激するためには抗原ペプチド+MHCによるT細胞受容体(TcR)の刺激と、CD28や4-1BBのような共刺激シグナルの両方が必要で有ることがわかっている。実際今話題のCAR-T治療で用いられるキメラ抗原受容体はシグナル部にCD3とCD28の両方の刺激が入るようにできている。

この研究のアイデアは、共刺激シグナルと、TcRシグナルをガン局所で、非特異的に刺激してやれば、そこにいる全てのT細胞を活性化してガンを攻撃できるというものだ。このために、ガン抗原やガンの間質に存在する抗原に対する抗体と4-1BB刺激リガンドを合体させたキメラ分子と、ガン組織の抗原に対する抗体とTcRに対する抗体を合体させたキメラ抗体の両方を用いて、ガン組織に存在するT 細胞だけを、全身の副作用なしに刺激できる治療法を開発している。繰り返すと、T細胞への刺激は非特異的だが、刺激分子が両方ともガン組織に集まるようにしてあるので、ガン組織だけで免疫反応が起こる。

他の組織で活性化が起こらないよう様々な工夫が行われているが全て割愛する。まだ動物モデルだが、両方の活性化分子を注射すると、CAR-Tのように白血病を根治できるのはもとより、ガンの間質に集まりやすくした共刺激シグナル活性化分子を用いると、様々な固形がんにも利用可能であるという期待の持てる結果だ。

すなわち、CAR-Tのように治療のたびに患者さんのT細胞を遺伝子操作する必要もなく、抗体だけの投与でCAR-Tと同じ効果が得られる方法だ。従って、やすくはないが、同じものを多くの人が使えるという意味で、CAR-Tよりはかなり安価に治療できる可能性がある。さらに、固形がんにも効果が示されていること、がん細胞上の抗原に限らず、がん組織に対する抗原で十分治療効果を得られることは、普遍的がん免疫治療に一歩近づいたのではと期待する。

カテゴリ:論文ウォッチ

6月17日 パーキンソン病治療薬L-ドーパを分解してしまう腸内細菌(6月14日号Science掲載論文)

2019年6月17日

パーキンソン病の運動障害はドーパミンを分泌する神経細胞が変性により失われることで起こるが、これを治療するための最も重要な薬剤がL-dopaだ。ドーパミンではなく、L-dopaにするのは、ドーパミンが脳血管関門を通過できないためで、L-dopaが脳内に入った後AADC と呼ばれる酵素で脱炭酸化されてドーパミンになる。問題は、末梢にもAADCが存在するため脳に入る前にドーパミンになるL-dopaの方が6割近くあり、脳内には1−5%しか到達しない。また、末梢でドーパミンが上昇すると血管緊張性を変化させ、立ちくらみや、不整脈がおこる。

このようにもともと摂取量の調節が難しいL-dopaの効果をさらに複雑にする要因として最近腸内細菌叢が着目されるようになった。今日紹介するハーバード大学からの論文は腸内細菌によるL-dopaの代謝経路を明らかにした研究で6月14日号のScienceに掲載された。タイトルは「Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism (腸内細菌の種間が協力するLevodopa代謝経路の発見と阻害)」だ。

研究ではまずデータベースからL-dopaの脱炭酸化能力のある細菌を検索し、E.Faecalisのチロシン代謝システムがL-dopaの脱炭酸化能力を持つ可能性を突き止める。そして、小腸に存在するE.Faecalisを培養して、この能力を確認している。

もし細菌叢により変換されたドーパミンがそのまま吸収されると先に述べた循環系の副作用の元になる。ただ、さらに脱水分解が進んでm-tyramineになれば問題はなくなるので、この経路を持つ細菌を腸内から分離することと次に試みている。

実際には、ドーパミンだけが電子受容体として働く培地で便を培養し、最終的にE lentaを分離し、この細菌がdopamin delydroxylaseを確かに持っており、ドーパミンをl-tyramineに変換できることを確認している。ただ、腸内に存在するこの種類の細菌のドーパミン脱水化の能力は極めて多様で、細菌の種類の検査だけではこの活性が予測できないことも明らかにしている。

次に人間の腸内でこれらの細菌が働いてL-dopaを分解しているかどうかを、便中の細菌叢の培養を用いて調べ、17例中12例の便でl-dopaがm―tyramineへ分解することを確認している。また、この活性がE.Faecalisの量と比例することも明らかにしている。またドーパミンからm-tyramineへの分解は、脱水化酵素の506番目のアミノ酸がアルギニンである系統のみが人間の腸内での分解と相関していることを示した。これにより、L-dopaを服用した時のドーパミン産生とその分解についてある程度予測可能であることが明らかになった。

最後に、L-dopaの脱炭酸化を阻害する薬剤をスクリーニングし、現在人間の脱炭酸化酵素を阻害する薬剤は細菌には効果がないこと、また新しく開発したAFMTでは腸内細菌叢特異的にL-dopaの脱炭酸化を抑えられることを示している。

以上の結果は、L-dopaが腸内細菌叢によりドーパミンになる経路を明らかにしただけでなく、患者さんたちが必要量のL-dopaを正確に摂取できるための腸内細菌叢の寄与度を確かめる臨床検査法開発、またこの活性を抑える薬剤開発までカバーした重要な貢献だとおもう。

カテゴリ:論文ウォッチ