2019年1月26日
やろうとしていることは面白いのだが、そのために用いた手法がよく理解できない論文が、脳科学には多い。これはどんなに複雑な行動でも、それに関わる神経活動は結局興奮スパイクとして現れるので、それを目的に合った形で処理するうちに、極めて抽象的な指標になり、私のような素人の読者が、実際に起こっている過程を頭にイメージすることが難しくなるためだ。
今日紹介するイスラエルワイズマン研究所からの論文は、猿と人間の神経系の違いを単一神経細胞レベルで特定しようとした研究で、目的は大変面白く、よくわからないながらもなんとか最後まで読んだ。タイトルは「A Tradeoff in the Neural Code across Regions and Species (領域と種を超えて見られる神経のコードの折り合い)」だ。
結局理解の浅い人間に紹介されても余計わかりにくいと思うので、今回は猿と人間の違いをなんとかここの神経細胞の反応の違いに集約できないか頑張っているグループがあるという程度に理解してもらって、面白いと思われたら是非オリジナル論文を読まれることを進める。しかし、同じような課題を行なっている人間と猿の神経活動を細胞レベルで比べた研究はまずないと思う。
実際にはこのコラムでも紹介しているように、テンカンが起こる場所を特定するためには、電極を長期間脳内に留置した患者さんと実験ごとに電極を挿入したカニクイザルを使って比較を行っている。イメージを見せて思い出すという課題をこなしてもらっている間に、扁桃体と前帯状皮質の神経細胞のスパイクを記録しているが、これらの領域は課題を行うことに直接関わるのではなく、統合された感覚や判断を処理する高次の過程に関わっているため、単一の神経活動は課題に関わる脳の反応全体が反映されていると考えられる。しかし、一個一個の神経はあくまでも興奮スパイクでしか評価できないので、このスパイクの特徴を読み取るための様々な手法を使うことになる。
普通スパイクを処理するとき、スパイクの全体数や反応のスピードを判断し、これにより神経反応の信頼性を図る。この研究では、これに加えてスパイクのパターンを言語に見立てて、意味のあるパターンを取るかどうかを調べるエントロピーという指標を導入し、一つの神経が行なっている情報伝達の量を測っている。これにより、一つの神経の反応の速さや信頼性を反映した一種の規則性と、処理している情報量の両方の数値を比較できる。少し具体的に言うと、神経細胞が規則的に反応している場合は、多くの神経は同じように反応している。しかし、情報量は乏しい。一方多くの情報量を伝える場合は、規則性は失われるといったような話だ。
この研究の問題はこうして指標を決めた後は、全くそれぞれの抽象的指標だけが一人歩きしてしまうので、ついていくのが困難だが、この指標を使うと何がわかったのかだけ、箇条書きにしておく。
- 人間の神経細胞は、反応性は犠牲にしても多くの情報を伝えられるようにできている。
- 猿でも、人間でも、前帯状皮質の方が扁桃体より多くの情報を処理している。
- 反応性と情報性は逆相関する。
- 猿の扁桃体は、従って、最も情報処理量が低いことになるが、そこに存在する神経細胞の多くが同調して活動している。要するに、反応の多様性が少ない。
とまとめていいだろう。結論を見ると、納得なのだが、これが単一神経細胞レベルの特性としてあるのかと言われると、おそらくそうではないだろう。しかし、全ネットワークに表象された情報の全体が、一個一個の細胞でどう見えるのか、こんな地道で大変な作業を繰り返す必要があるのかと、困難に唖然としてしまう。
感想:これほど読むのに時間がかかり、それでも理解が浅いと反省する論文は、どうしても敬遠してしまうが、頑張って今後もできるだけ紹介したい。
2019年1月25日
久しぶりにCRISPR/Casについての論文を取り上げる。さて、昨年の暮れから中国南方科技大学の研究者がヒト受精卵にCRISPR/Casを導入した後、子供が生まれた話で持ちきりだった。実際に思うとおりに編集が起こったかどうかはわからないが、行為自体は倫理的にどうこうというより、人間のゲノムを傷つける犯罪だ。というのも、使われたCasはおそらく強い遺伝子切断活性を持っており、目的の遺伝子どころか、他の多くの場所が切断される恐れがあるからだ。人間には片方の遺伝子が傷つくと、異常が起こる遺伝子が少なくとも200種類はある。この危険性を知った上で、敢えて受精卵の遺伝子編集を行ったことは、間違いなく生まれてくる子供を傷つける犯罪だ。
さて、このCasが持っている強い遺伝子切断活性の為に、この技術は使い物にならないと極論する人たちがいるが、この意見も間違っている。現在、この切断活性の特異性を高める技術が開発されつつあるし、そもそもCasの切断活性を用いないで遺伝子編集も行わず、遺伝子の発現を上げたり下げたりする事が可能だ。実際、今から3年も前にこのコラムで紹介したが(http://aasj.jp/news/watch/2571)、Casの切断活性を完全にのぞいて、代わりにヘルペスウイルスの持つ遺伝子を活性化させるタンパク質を結合させ、このCas-VP64をRNAガイドによって目的の遺伝子上流にリクルートし、その遺伝子を全く編集することなく活性化することができる。このように、CRISPRの技術を遺伝子編集技術と称することすら間違っているのだ。したがって、この方法を用いると、遺伝子の発現量が下がって病気になっている遺伝病を治すことが可能だ。
今日紹介するカリフォルニア大学サンフランシスコ校からの論文は、2本ある染色体の片方の遺伝子の機能が失われると肥満になる脳の下垂体で発現しているSim1とMc4r遺伝子を標的に遺伝子治療が可能か調べた研究で、1月18日号のScienceに掲載された。タイトルは「CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency (CRISPRを用いたプロモーターやエンハンサーの活性化により片方の遺伝子が失われることで起こる肥満を治療できる)」だ。
DNA切断活性を完全に除去したCasを用いて遺伝子の活動を操作する方法は、編集を伴わないため安全性が高い。このグループは随分前からこの方法を磨いており、この研究はその前臨床研究の仕上げといったところだ。標的には遺伝子の発現量が半分に低下するだけで摂食行動が変化し肥満に陥る下垂体で発現する2種類の遺伝子に絞って、まず細胞株を用いてCas-VP64と組み合わせた時、遺伝子発現が上昇するガイドRNAを特定している。プロモーター、エンハンサー両方の部位のガイドRNAで遺伝子発現を高めることができるが、Cas-VP16は特異的遺伝子にリクルートされ、他の遺伝子のプロモーターの活性化は検出されない。
次に、この系を組み込んだトランスジェニックマウスを作り、Cas-VP64で残った正常遺伝子の発現を高め、肥満が改善するか調べ、期待通りの結果を得ている。また、特に副作用も認められない。
そこで最後に、ガイドRNAとCas-VP64を別々にAAVベクターに組み込み、下垂体に直接注射して様子を見ると、どちらの遺伝子の場合も遺伝子発現が高まり、摂食が低下し、肥満が治ることを示している。
詳細はほとんど省いてエッセンスだけ紹介したが、すでに前臨床試験はクリアしたところまで来たように思う。あとは、臨床試験に進んで問題はないと思う。同じように遺伝子発現量が減ることで病気が起こる遺伝子は200以上あるため、これがうまくいけばガイドだけを変えて治療が可能になる。また、ガイドを増やすことで、いくつかの遺伝子を同時に高めることもできる。原理的には遺伝子そのものを導入するのと同じだが、アデノウイルスベクターに組み込みにくい大きな遺伝子でもこの方法だと活性化できる。 繰り返すが、CRISPR技術は必ずしも遺伝子編集を伴わない。実用化は、編集が必要ないプロモーターの活性化や、エピジェネティック調節から始まると思う。メディアの報道や、専門家の意見を聞いていると、編集しか頭にないようだが、着々とCRISPRの技術は進化し、患者さんに届くようになると思う。
2019年1月24日
ノーベル賞に輝いたエドワード博士が最初に生殖補助医療による出産、すなわちいわゆる試験管ベイビーに成功したのは、今から40年前だが、その数は増え続け、わが国では全出生数の5%を超えているのではないだろうか。 5%というと、もはや当たり前の治療になったということだが、それでも周産期にさまざまな障害が起こる統計が多く、お母さんにもこのリスクは告げた上での治療だと思う。実際、卵を凍結したり、受精時期が遅れたり、あるいはホルモン療法が行われたりと、生殖補助医療には様々な余分な介入が必要で、これらの操作自体に、ある程度のリスクがあるのは当然だと思ってしまう。
今日紹介するロンドン政治経済科学大学からの論文は、フィンランドの出生記録と様々な投薬記録から、生殖補助医療による出産を特定し、特にその中で自然妊娠と生殖補助による妊娠の両方を経験した家族について調査して、生殖補助医療自体のリスクを調べようとした研究で1月14日The Lancetにオンライン出版された。タイトルは「Medically assisted reproduction and birth outcomes: a within-family analysis using Finnish population registers (生殖補助医療と出産:フィンランドの人口登録を用いた家族内での分析)」だ。
これまでの研究と同じで、生殖補助医療を受けた胎児の出産と、正常胎児の出産を単純に比べると、年齢などを補正しても、確かに出生児体重は60.5g程度低く、さらに早産の危険性が2.15%上昇する。
しかし自然妊娠による出産と生殖補助医療による出産の両方を経験した家族で、出産時の体重を比べてみると、自然妊娠による子供より前に生殖補助医療による子供を出産した場合は、出生児体重が163g低下し、早産率が上がるが、自然妊娠で生まれた子供の後に、もう一人生殖補助医療で出産した場合は、生殖補助医療による妊娠で生まれた子供の体重が50g多い事がわかった。
すなわち、同じ母親から生まれた子供で比較した場合、早く生まれた方が出生時体重が低いということは、胚の操作自体は、少なくとも出生時の体重や早産には影響がないことを強く示唆している。
5%が生殖補助医療という状況では、もややリスクを云々しても仕方がないが、今回の結果は、少なくとも周産期の問題については、ほぼ安心できることを強く示唆している。単純な統計だけで満足せず、大規模データから同じ母親からの子供を比較しようと考えた著者らに脱帽だ。
2019年1月23日
このコラムで何度も紹介してきたが、組織に存在する細胞を取り出して、それぞれの細胞について遺伝子発現を網羅的に調べるsingle cell transcriptomeは、様々な領域でこれまで不明だった問題を快刀乱麻解決し続けている。ガン領域では、がんの多様性のみならず、癌組織に浸潤するリンパ球について、どの細胞が多いのか、ガン抗原特異性はあるのか、幾つのクローンからできているのか、などなど多くのことがこの解析から明らかになり、オプジーボも含めガンの免疫療法を解析する最も重要な手段になっている。ただ、急速に多くの論文が発表されていることから、やれることはほとんどやり尽くされているのではと思っていた。
今日紹介するイスラエル・ワイズマン研究所からの論文は、がんに浸潤するリンパ球のsingle cell transcriptomeと全く同じ研究を行なっても、ちょっと見方を変えればまだまだ新しい発見があることを教えてくれた研究で2月6日号のCellに掲載予定だ。タイトルは「Dysfunctional CD8 T Cells
Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma (機能不全のCD8T細胞が人間のメラノーマ組織で動的に調節を受けているし増殖性の集団を形作っている)」。
この研究も、single cell transcriptomeを用いた他の癌組織のリンパ球研究と同じことをしているだけで、メラノーマ患者さん25人の腫瘍組織からsingle cellを調整し、そのなかのT細胞に焦点を当てて解析している。結果はもちろんこれまでの研究と同じで、キラーT細胞から免疫チェックポイント分子を発現する機能不全におちいったCD8陽性細胞、未刺激細胞、メモリー細胞、そしてNK細胞までほぼ全てのサブセットが存在する。ただ、この研究はどのタイプの細胞が存在するかだけではなく、キラー細胞を含むCD8T細胞が極めて多様な集団からできている点を重視して研究している。
そこで、この多様性を特徴付ける遺伝子について調べ、CD8陽性細胞が、1)キラー細胞、2)PD-1やLAG3といったチェックポイント分子を全て発現している機能不全細胞、そして3)両者の中間細胞に分けられ、それぞれの集団は決して分離できるのではなく、連続的に分布していること、そして、このチェックポイント分子を発現した機能不全型CD8細胞の割合は、患者ごとに大きく異なることを明らかにしている。すなわち、免疫治療の標的であるチェックポイント分子を発現しているこの論文でいう機能不全型のCD8(CD4も同じ)細胞自体が、多様な集団であることを示せたのが、この研究の第一のハイライトになる。
これまで、PD1やLAG3のようなチェックポイント分子は、T細胞の免疫を落とす役割を持つことから、細胞の増殖を抑制すると考えられていたが、細胞周期分子や、T細胞受容体の発現からわかるクローン性を調べることで、ガン組織内では、この機能不全T細胞が最もクローン性の増殖を行なっている集団で、ガン抗原に対して反応していることを証明している。また、同じタイプの機能不全型CD8細胞は末梢血に見られないため、おそらくガン組織で分化し、一生を終える集団だと結論している。
そして第二のハイライトだが、T細胞受容体を指標にクローン性を調べると、驚くことに、中間段階と考えていたCD8細胞と機能不全細胞には同じクローンが多く存在し同じ細胞から分化してきた集団と考えられるが、明確なキラー活性を持っていると思われる集団は、これらとは全く無関係の存在で、同じT細胞受容体を全く共有していないことがわかった。すなわち、キラー活性を持つ細胞が誘導された後、PD1を発現して機能不全型へと分化するのではなく、両者は全く別々に未熟細胞から誘導されて来ることが示された。そして、腫瘍に対する反応性を見ると、これも驚くことに機能不全型の細胞のみがHLA+ガンペプチドに反応していることを示している。
話は以上だが、この論文を読むと、これまでのsingle cell profilingの研究とは全く違った景色が示され、これまでの研究はなんだったのかと思ってしまう。もしこの論文が正しいとすると、ガンに浸潤し組織で増殖する機能不全型CD8T細胞のコントロールが、ガンの免疫治療のポイントで、チェックポイント分子を抗体でブロックしつつ、増殖を維持させるようなテクノロジーの開発が必要になるという結論になる。もちろん、機能不全型T細胞はガン抗原刺激で炎症サイトカインを分泌するが、キラー活性があるのかどうかはわからないので、今後、この細胞がガンを殺せるか、あるいはどの細胞が顔を殺しているのか確かめることがまず必要だろう。もしガン免疫が組織で作られる機能不全型により担われていることが確認されれば、治療法は大きく変わる予感がする。
毎日毎日、新しい話が生まれる。これがガンの免疫療法分野の今だ。
2019年1月22日
昨年5月から施行された次世代医療基盤法は、デジタル化された膨大なレセプトデータを実際に行われた検査や治療と匿名化して連結させたビッグデータを、様々な研究に使えるようにしようとする法律で、我が国の医学医療にとって重要な一歩になると個人的には思っている。この作業は、最も重要な個人情報を含むため、この法律では国が認めた認定業者が行うが、認定のハードルは高く、日本医師会以外は現在のところ手を挙げている団体はないように思う(正確には把握していない)。
ただ、膨大な数のレセプトがあれば何が可能かを示す論文がハーバード大学からNature Geneticsオンライン版に掲載された。タイトルは「Repurposing large health insurance claims data to estimate genetic and environmental contributions in 560 phenotypes (膨大な健康保険の請求書データを560種類の形質について遺伝と環境要因を推定する目的に変換する)」だ。
米国の医療保険は最低限の公的保険もあるが、オバマケアでも民間保険会社と契約するのが基本で、契約者が医療を受けると、かかった費用を保険会社に請求し費用が還付される仕組みになっている。このクレームが日本でいうレセプトの役割を果たしているが、これにはコード化された病名とかかった費用の明細、および一部は検査データも添付されている。もちろん病気の詳しい解析はできないが、厳しいガイドラインで保険が運用されているため、病名や患者さんの状態についてはかなり正確にわかる。
ただ、いくらビッグでもクレームデータだけから病気の遺伝的あるいは環境的要因が本当に推定できるのか不思議に思うが、読んでみると素晴らしいアイデアだと納得する。すなわち、クレームの中から同じ日に生まれた同じ家族のメンバーで遺伝的に近い双生児を抽出し、双生児の間で有意に相関性が高い病気や状態を遺伝的要因が関与すると判断する。一方環境要因の推定は、クレームに記載されたZIPコードから同じ地域に住んでいるかどうかを判断し、同じZIPコードの人の間で高い相関を示すものを環境要因に作用されていると判断している。これ以外のことは全く調べておらず、遺伝子も調べていない。要するに、アイデアさえあれば、レセプトからも遺伝と環境という医学で最も重要な問題を研究できるわけだ。
研究では4500万のクレームデータを分析し、なんと72413人の兄弟姉妹、そして56396人の双生児(一卵生、2卵生を含む)を抜き出すことに成功している。そして、560種類の病気や状態の中から双生児の間で一致率が高い状態を遺伝性があると判断し、またZIPコードが一致した同じ地域に住む人の方が一致率の高い状態を環境要因が高いと判断している。
この結果、560のうち225種類の病気や状態は何らかの遺伝性があると判断され、最も一致率の高いのが定量的検査データの数値や認知機能に関わる形質だった。一方、ZIPコードとの相関から判断する環境要因が関わる形質は138種類存在し、その中で最も高い一致率があったのが眼科疾患と呼吸疾患だった。面白いことに、医療費も遺伝的要因が大きい。これは病気の頻度、深刻さが遺伝的に影響されることを示しているのだろう。環境要因では、ZIPコードから、平均気温、大気汚染なども調べることができるため、様々な汚染物質の疫学も将来可能になると思う。
最後に、他の双生児研究の結果と比較が行われ、クレームから判定する今回の方法も、これまでの双生児研究と同じ結果が得られることを示している。
結果は以上だが、レセプトの病名が完全なら、わが国でも新しい法律がなくとも十分今回のような研究は可能だろう。もちろん、これに様々なデータがリンクされることで、さらに詳しい状態解析が可能になると期待できる。ただ、今日紹介した論文を読んで、この匿名化してデータを加工する作業が一体どのぐらいかかるのかという点と、この研究のように公開されたデータを使って創意溢れるアイデアで、ビッグデータを解析できる研究者がどれほど我が国にいるのかも少し心配になった。
2019年1月21日
私たちの体にはウイルスに対する様々な抵抗手段が備わっているが、全てウイルスを感知するところから始まる。抗体やT細胞による免疫反応は、ウイルス抗原を処理し、ペプチド抗原としてT細胞に提示するところから始まるが、これ以外にも自然免疫システムがあり、多くの場合侵入してきたウイルスの核酸を認識して、インターフェロンなど自然免疫反応が誘導される。逆に、人工的に合成した核酸でこの感知システムを刺激するのが、拡散アジュバントだ。
エイズウイルスなどRNAウイルスの場合、侵入したRNAが宿主のRNAと区別して感知されるのだが、これはホストRNAのリボースの一つの水酸基を2’O―MTaseでメチル化することでウイルスから区別されている。すなわち、このマークがないとウイルスのセンサーに引っかかる。もちろんウイルスの方もさるもので、ホストと同じ2’O―MTaseを使って自分のRNAを2’Oメチル化してセンサーを逃れる種類がある。しかし、自分で2’O―MTaseを持っていなくとも、自然免疫を刺激しないウイルスもあり、その一つがエイズウイルス(HIV)だ。このため、HIVも何らかの方法で自らのRNAを2’Oメチル化していると考えられる。
今日紹介するフランスモンペリエ大学からの論文はHIVが自然免疫を逃れるメカニズムを明らかにした、結構オーソドックスな研究でNatureオンライン版に掲載された。タイトルは「FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid
innate immune sensing (FTSJ3はRNA2’-O-メチル基添加酵素をリクルートして自然免疫の感知を逃れる)」だ。
あとでデータが示されるが、著者らはHIVも2’Oメチル化されることで自然免疫に感知されないことを知っていたと思う。もしウイルスゲノムに2’Oメチル化酵素が存在しないなら、ホスト細胞の2’Oメチル化酵素をウイルスも使うシステムがあるはずだと考えた。そこでHIV のLTRを活性化するRNA-結合タンパク(TRBP)に注目し、これが2’Oメチル化酵素をHIV RNAに連れてくると考え、TRBPに結合するタンパク質を探索したところ、2’Oメチル化酵素活性を持つFTSJ3を特定することに成功した。
実際HIVを感染させた細胞でもFTSJ3とTRBPが結合しており、またTRBP結合サイト(TAR)を持つHIV-TAR-RNAにリクルートされることも明らかにしている。そして、HIVウイルス粒子内のRNAが2’Oメチル化されており、感染細胞からFTSJ3をノックアウトすると、ウイルスRNAのメチル化が抑制されることを明らかにしている。すなわち、最初考えられた様にウイルスはTRBP と結合する能力を身につけることで、TRBPが2’Oメチル化酵素FTSJ3を利用して2’Oメチル化し、自然免疫から逃れられる様になる。
最後にこのシナリオを確認するため、FTSJ3欠損した細胞で合成させたHIVを単球細胞株に感染させると、インターフェロンが合成されることを確認している。すなわち、FTSJ3がウイルスを2’Oメチル化し、自然免疫から守っていることを証明した。
またHIVの一つの弱点が見つかり、今後ひょっとしたら治療につながるかもしれない。とはいえこんな論文を見ていると、動物と病原体の間で続いている永遠の競合をひしひしと感じることができる。
2019年1月20日
体内のアンモニアのほとんどはは腸と腎臓で合成されるが、肝臓内で尿素に変換され無毒化されるが、肝硬変や解毒システムの突然変異により、血中のアンモニア濃度が上がると、脳に侵入して神経細胞が消失し、様々な脳症状が発生する。アンモニアの多くが腸内細菌により合成されることから、抗菌剤を投与することでアンモニア濃度を下げることも治療の一つとなっている。
今日紹介する米国のベンチャー企業Synlogicからの論文は、腸内細菌を殺菌する代わりに、腸内に存在するアンモニアをバクテリアの合成サイクルを用いてアミノ酸に変えてしまおうという研究で、1月16日号のScience Translational Medicineに掲載された。タイトルは「An
engineered E. coli Nissle improves hyperammonemia and survival in mice and
shows dose-dependent exposure in healthy humans(操作したNissle大腸菌は高アンモニア血症を軽減し、マウスの生存を伸ばし、容量依存的効果を示す)」だ。
確かに言われてみるとなるほどと納得するが、アンモニアをバクテリアに処理させるなど凡人にはなかなか思いつかない。この会社では、これまでもプロバイオに用いられ安全性が確認されている大腸菌の系統のアルギニン合成経路に関わる様々な遺伝子を系統的に変換し、Synb1020と呼んでいるアンモニアを消費してアルギニンを合成する大腸菌を作り上げる。この研究は、Synb1020の前臨床研究と第1相試験になる。
まずマウスを用いた実験で、Synb1020が腸に定着し、アンモニアからアルギニンを合成できること、またアンモニアを解毒できないマウスや、チオアセトアミド投与による急性冠不全モデルを用いて、Synb1020投与が血中アンモニアの濃度を低下させ、マウスの生存を伸ばすことを示している。また、マウスや猿のモデルで、このバクテリアが腸以外の場所に移動しないこと、それ自身の毒性は強くないことを確認している。
最後に、健常人に量をエスカレートしながら投与する安全性試験を行い、5 × 10 11以下では副作用はないが、それ以上だと吐き気など軽い症状を示す人が出てくること、またアイソトープを用いた実験で、ヒトの腸内でもアンモニアを処理していることを示している。
結果は以上で、あとは肝不全で高アンモニア血症の患者さんに使うだけだ。アイデアは面白いので、ぜひ進めてほしい。もしうまくいけば、酵素欠損で肉親からの肝移植を待つ子供達にも朗報になるのではと期待する。
2019年1月19日
妊娠後期に妊婦さんが発作的に痙攣や失神を起こす恐ろしい病気があり子癇という難しい病名が付いているが、この発作の背景にある状態が子癇前症、現在では妊娠高血圧腎症と呼ばれている、妊娠時に起こる高血圧、末梢循環障害に伴う、腎臓病で、私が習った時はもちろん、現在までメカニズムが不明で、従って対症療法に頼り、出産してしまう以外の根治方法はなかった。
今日紹介するスイスチューリッヒ大学からの論文は子癇前症の分子メカニズムを明らかにし、治療可能性を示した画期的な研究成果で、1月10日号のCellに掲載された。タイトルは「Beta-Arrestin1 Prevents
Preeclampsia by Downregulation of Mechanosensitive AT1-B2 Receptor Heteromers (Beta-arrestin 1 preeclampsia by downregulation of mechanosensitive
AT1-B2 receptor heteromers (AT1-B2ヘテロ受容体の機械刺激感受性をベータアレスティンが低下させ子癇前症を防ぐだ)。
これまでも子癇前症では血管平滑筋のアンギオテンシンII(AT2)感受性が、その受容体の発現が上昇することで高まって起こると考えられていた。この時AT2のシグナルを伝えるAT1にもブラディキニン受容体B2が合わさると、AT2に対する感受性が高まり、血管が強く収縮するのでこれが子癇前症の背景になっているとされていた。
この研究ではこの可能性を調べるため、AT1とB2の平滑筋での発現が2倍程度に上昇し、AT2に対する感受性が上昇しているトランスジェニックマウスを作り実験に用いている。まず、妊娠後期で子癇が現れるということは、胎児が成長して血管が機械的刺激にさらされると、収縮が起こると考えられるが、このトランスジェニックマウスでも機械的刺激が血管収縮を誘導し、妊娠すると子癇前症を発症すること、この反応がAT1とB2のヘテロ2量体形成により起こることが明らかになった。
以上の結果は、AT1/B2ヘテロ2量体形成を抑えることで、子癇前症での血管収縮を抑制できる可能性がある。これを確かめるべく、ヘテロ2量体を分離させる働きがあるβアレスチンと呼ばれる分子をレンチウイルスベクターに運ばせてマウスに導入すると、平滑筋症状が低減されることが明らかになった。以上の結果から、子癇前症では、様々な原因でAT1/B2の発現が上昇するとともに、両者の2量体形成を分解させるβアレスチンの活性化がうまく働かないと、受容体の感受性が高まり、妊娠により機械的な刺激を受けることで、血管が収縮し、子癇前症が起こると考えられる。
したがって、AT1/B2の発現を下げ、アレスティンの活性を高めて、2量体を分離させることが有効な治療になると考えられる。この研究では最後に,このアレスチンによる2量体の分解活性をTRV027と呼ばれる薬剤が促進すること、また高血圧によく使われるカルシウム拮抗剤のうちのアムロジピンがアレスチンの発現を高め、AT1/B22量体形成を阻害することを発見する。
TVR027はまだ認可された薬では無いので、この研究では最後に子癇前症の患者さんにアムロジピン、ニフェジピン(異なるタイプのカルシウム拮抗剤)、平滑筋弛緩剤ヒドララジンを別々に投与して、その効果を比べると、全て血圧降下という点では同じだが、子癇前症のマーカーとなる血中FLT1の上昇はアムロジピンのみで抑制された。また、マウスの子癇前症モデルでも効果が見られるので、今後、子癇前症の場合血圧を下げる薬剤としてはアムロジピンを第一選択にするのがいいことがわかる。また、TVR027あるいは同じメカニズムを持つ薬剤の開発も完成されれば、子癇前症にも対応できる可能性が高い。臨床に即繋がる基礎研究のお手本のような論文だった。
2019年1月18日
今年ももちろんアルツハイマー病や、パーキンソン病など、多くの神経変性疾患の論文を紹介したいと思っている。個人的印象だが、パーキンソン病は様々な治療方法が臨床試験として行われるようになっている。遺伝子治療については、第3相が進んでいると思うし、わが国では高橋さんが細胞治療の治験を始めている。しかし、アルツハイマー病については、多くの治験が失敗に終わり、なんとなく悪いムードが漂っているような印象だ。このような時は、基礎から考え直す時期なのかもしれない。
実際、アルツハイマー病の原因かもしれないと最も疑われているアミロイドβ(Aβ)はもともと生理的な機能が存在することなど、あまり気にしたことがなかった。今日紹介するベルギー・ルーヴァンカトリック大学からの論文はAβが持つ本来の神経機能を調べた論文で1月11日号のScienceに掲載されている。タイトルは「Secreted amyloid-β precursor protein functions as a GABA B R1a ligand to modulate synaptic transmission(分泌されるアミロイドβタンパク質はGABAbR1aのリガンドとして作用してシナプスを調節する)」だ。
正直私自身Aβの本来の機能についてあまり考えたことはなかった。しかし、Aβの前駆体遺伝子をノックアウトすると、様々な神経症状が出ることがわかっており、シナプスの機能に何らかの役割があると考えられるようになっていた。
この研究では分泌型に切断したAβ前駆体(sAPP)と結合するタンパク質をいくつかの方法でスクリーニングし、GABAbR1aと結合すること、そしてGABAbR1a受容体を導入した細胞との結合アッセイでsAPPのExD部位がGABAbRのsushi1部位に結合することを明らかにしている。
次にsAPPの生理活性を、海馬の培養神経細胞のシナプス伝達活動を用いて調べ、GABAbR刺激剤と同じように、前シナプスを刺激してシナプスでの神経伝達分子の分泌を抑制する方向に働いていること、この効果がグルタミン酸作動性シナプス、GABA作動性シナプスの両方で見られることを確認している。
次は脳レベルでのsAPPの機能を調べるため、海馬を切り出して培養するスライス培養で、GAGAbRを発言する海馬神経回路にsAPPを加え、シナプス伝達後の神経の興奮を調べると、期待通りこの回路でのシナプス伝達因子の分泌を抑制し、興奮を抑制する働きがあることを確認できる。また、同じ効果がExD部分の短いペプチドだけでも見られることも明らかにしている。
最後にAPPの海馬神経活動への作用を、カルシウムに反応して誘導される蛍光反応で調べるアッセイを用いて調べている。マウス海馬にこのペプチドを注射すると、試験管内での実験と同じで、神経興奮を抑制する作用があることを確認している。
話はこれだけで、APPノックアウトマウスで異常が起こるのがわかっているのに、どうして今までこのような研究ができていなかったのか、逆に不思議に感じる論文だった。もちろんこの結果は、アルツハイマー病の一部の症状を説明することができる。抑制性の因子として働いていることから、アルツハイマー病でsAPPの分泌がおかしくなると、神経興奮が高まると予想できるが、実際病気の初期に神経興奮が高まるという報告はある。また、初期のアルツハイマー病患者さんでGABAbRを刺激すると、記憶力がある程度回復できるという報告もあるようで、この結果を踏まえた治療法の開発も進むかも知れない。何れにしても、Aβに生理機能があって当たり前なのに、考えもしなかったとは恥ずかしい話だ。
2019年1月17日
2日間、専門的な論文の紹介が続いたので、今日は息抜きの意味で、一般の方でも関心のある遺伝子組み換え食物についての論文を紹介する。遺伝子組み換え技術なしに、今や生命科学はあり得ないし、これについて何も知らずに生物学者を名乗ることはほぼない。従って、よほど人体に危害を加えようとする意図を持って植物や動物の遺伝子を変えない限り、遺伝子組み換え食物(GMO)を食べたところで、何も起こらないことを生物学者はよく理解している。もともと、遺伝子を他の個体に導入することは簡単ではなく、食べたぐらいで簡単に移るなら遺伝子治療はずっと簡単になる。実際、食べた食物のに含まれる核酸は膵臓から出る核酸分解酵素でヌクレオチドに分解されてしまう。
もちろんGMOに全く問題がないわけではない。例えば、殺虫剤に耐性の遺伝子を植物に導入することで、野生の植物を殺す目的で殺虫剤をより多く使うようになり、残留薬品の濃度が上がることは今問題になっている。しかも、組み替え自体は、自然の生態系を破壊する可能性があり、自然界に組み換え植物が広がるのが危険なことは明白だ。その意味で、私もできるだけGMOに頼る農業や漁業は避けたほうがいいと思う。とはいえ、組換えた遺伝子そのものは無害だと思っている。ところがこの話になると、強硬にGMOは組みかえられた遺伝子自体も有害であると主張される方がいる。理由として、会社のデータが信用できないとか、慢性疾患が増えてきたなど、因果性とは言えない根拠が挙げられ、生物学的知識については首を傾げたくなる。
この問題に真っ向から取り組んだのが今日紹介するコロラド大学、ワシントン大学、トロント大学、ペンシルバニア大学が共同でNature Human Behaviourに発表した論文だ。タイトルは「Extreme
opponents of genetically modified foods know the least but think they know the
most (遺伝子組み換え食品に強硬に反対する人ほど科学のことはよく理解しているというが、実際は科学的知識に欠けている)」だ。
この研究の目的は、遺伝子組み換え食物と地球温暖化の2つの問題について、科学者の一般的意見に対して反対する人の科学知識について、主観的評価と客観的評価を比べることだ。そのため、1000人の米国に住む成人について、1)GMOを受け入れるという1段階から絶対反対の7段階まで、GMOに対する反対度についての自己評価、2)自組み換え食物についての知識レベルについての自己評価、そして最後に、3)テストによる客観評価(テストは簡単なもので、例えば「全ての植物はDNAを持っていますか?」といった程度)を行なっている。そして、それぞれの項目でのスコアを元に、GMOへの反対の強さと科学知識の評価との相関を計算している。また同じようなテストを科学者内でも意見が分かれる地球温暖化についても行なっている。
GMOについてみると、結果は極めて明瞭で、強硬に反対する人ほど自分では知識を持っていると自信を持っているにも関わらず、客観テストでは点数が低い。一方、GMO自体には問題はないと考えている人は、自分の科学知識は足りないと謙虚に評価するが、実は反対派の人より生物学的知識を持っているという結果になる。
これが米国だけの特殊な結果でないことを確認するため、同じ調査をドイツやフランスでも行っている。面白いことに、強硬に反対する人ほど自分の科学知識に自信を持っているという傾向は同じだが、客観的知識に関しては少し低下している程度で、米国ほど有意な差が認められないという結果だ。すなわちドイツ、フランスは一般的科学リテラシーが高い。そこで、ヨーロッパで独自に行われていたGMOへの反対の程度と遺伝子組み換えに関する客観的知識の相関を見た調査を調べ直し、25カ国中20カ国で米国と同じように、反対派ほど知識がないことを確認している。
並行して行われた地球温暖化については、同じような明確な傾向は認められず、この結果が科学全般に適用できるかどうかはわからないという結果になっている。
結果は以上だが、科学者にとって反対派をバカにして喜べるという話ではない。すなわち、いくら科学のリテラシーを上げる努力をしても、結局強硬に反対する人は自分は知識を十分持っていると思っており、リテラシーを高める教育には見向きもしないという結果で、今まで通りの方法ではすれ違いを解消することは出来ないことを意味している。さてどうするのか科学者自身が真剣に議論しなければならない。