2024年4月13日
喘息は気管支のアレルギー性炎症による刺激で気管支が収縮し、特に息を吐くのが苦しくなる病気で現在は気管支拡張のためのβ2アドレナリン受容体刺激剤と、炎症を抑えるステロイドの吸入で対応している。まだステロイド吸入剤が整備されていなかった私の現役時代(50年近く前)と比べると、かなりうまくマネージできるようになったと聞いているが、まだまだマネージができない患者さんもおられるようだ。
今日紹介するロンドン・キングスカレッジからの論文は、これまで考えられていた免疫性炎症だけでなく、気管支が収縮するときのメカニカルストレスによる組織障害が喘息の重要な要因になる可能性を探った研究で、4月5日号 Science に掲載された。タイトルは「Bronchoconstriction damages airway epithelia by crowding-induced excess cell extrusion(気管支収縮は上皮の過密を誘導し過剰になった細胞が吐き出されることで気管を損傷する)」だ。
確かに発作により気管が収縮すると、息が苦しくなるほど気管の内径が狭くなるので、気管上皮の密度は上昇する。しかし、ストレッチや圧縮に耐えるようにできた気管で本当に押しくらまんじゅうのように細胞が飛び出すのか、まずこの点を気管支収縮剤投与や、アレルギー反応誘導により気管を収縮させてみている。
結果は予想通りで、15分ですでに気管内に細胞が飛び出してくるのが観察できる。収縮が強いと、上皮全体が剥げ落ちることすらある。すなわち、気管収縮は力学的な強いストレスとして働き、上皮細胞の脱離を引き起こすことが確認された。そして、この脱離を気管支拡張剤だけでは防ぐことができない。
そこで気管上皮のメカニカルストレス経路にある分子の発現を調べると、Piezo や TRP のチャンネル、スフィンゴシン1リン酸(S1P)合成とそれによる受容体刺激が続くことを確認し、それぞれの阻害剤を気管支収縮誘導と同時に投与すると、気管支は収縮しても上皮の障害が起こらないことを確認している。また、より臨床的設定で、アレルギー反応が起こってから気管支拡張剤とともにメカニカルストレス経路を阻害する実験系でも、気管組織を守れることを示している。
メカニカルストレス軽減により気管支上皮の障害を防ぐことは、単純に組織のインテグリティーが守られるだけでなく、障害部位からのアレルゲンや細菌の侵入を防ぎ、炎症の拡大を抑えることも示している。すなわち、発作の度に上皮が傷害されることが喘息の遷延に大きな役割を演じていることがわかる。
さらに、阻害実験からメカニカルストレスは気管上皮を刺激して粘液分泌を高め、上皮組織の障害をさらに促進しており(すなわち上皮が基底膜から浮き上がる)、これを Piezo チャンネルや S1P 阻害剤で抑えることができることも示している。
最後に、喘息でステロイド吸入を続けている患者さんが、ガンで肺切除を受けた機会を捉えて、実際の喘息患者さんの気管組織を調べると、気管上皮の障害とともに、上皮の気管内への脱落が見られることを確認し、人間でもこの治療を必要としていることを示している。
以上が結果で、この研究で使われた Piezo 阻害剤や S1P 受容体阻害剤はそのまま臨床に使えないので、より安全な阻害剤の開発が必要だが、動力学的視点に立つことで喘息の新しい治療標的が特定できたことは間違いない。
2024年4月12日
近代医学が始まって以来、細菌が発ガンを促すという考えは根強く存在していたが、研究が進むにつれ細菌説は消えていく。ところが、オーストラリアのマーシャルとウォレンによりピロリ菌が胃潰瘍や胃炎だけでなく、胃ガン発症リスクを大きく高めることが示され、ノーベル賞に輝いて以来、細菌とガンの相関研究は重要な分野になり、例えばフゾバクテリウムと直腸ガン、そしてこのブログでも紹介した口内連鎖球菌と胃ガン(https://aasj.jp/news/watch/24006)など、発ガンを促進する細菌が明らかにされてきた。
今日紹介するオランダ癌研究所からの論文は、4000を超す転移ガン組織の細菌叢を調べることで、包括的に細菌とガンの関係を探った研究で、4月25日号 Cell に掲載された。タイトルは「A pan-cancer analysis of the microbiome in metastatic cancer(転移ガンの細菌叢のガン横断的研究)」だ。
1700人の転移ガンの患者さんから、4000を超す転移組織バイオプシーに潜む細菌 DNA 配列を解読し、細菌叢とガンや転移組織特異的相関が見られるか調べている。当然バイオプシーの過程や、転移した側の組織の細菌叢などからの細菌の紛れ込みなどを考慮する必要があるが、これらの要因を除いても、転移組織やガンのタイプに特徴的な細菌叢が存在することを明らかにしている。
転移先の組織で見ると、酸素濃度の影響が大きい。すなわち、嫌気性菌の割合で組織が低酸素状態かどうかがわかる。理由はわからないが面白いのは、ガンのゲノム不安定性と細菌叢のタイプがはっきり分かれる点で、再現できる結果なら調べる価値はある。
この研究の目的は細菌叢によってガンの進展が影響されていないかを決めることだ。ただ、ピロリ菌やフゾバクテリウムのように、ガンの増殖を促進するかどうかについては検討されておらず、もっぱら細菌叢により影響される自然免疫が、ガンの増殖進展に追う影響するかが検討されている。
まず、細菌叢は様々な分子を介して、ガン組織の遺伝子発現を変化させる。例えば、コラーゲンの発現は大きく高まる。また、自然免疫を刺激して好中球や単球の主要組織への移動を促す。これらの結果、ガン組織への免疫細胞の遊走が阻害され、ガンの増大や転移が促進される可能性がある。
一方で、細菌叢はホスト免疫系の影響を強く受ける。例えばチェックポイント治療を受けている患者さんは、一般的免疫が増強される結果、細菌叢の多様性や量が低下する。
残念ながら、この研究はガン免疫に影響を及ぼす特定の細菌を特定するには至っていないが、直腸ガンの増殖を促進することが知られている Fusobacterium とチェックポイント治療について調べ、このバクテリアがガン組織での免疫を抑制して、チェックポイント治療の効果を抑えていることも示している。
以上、「とりあえず調べた」といった感じの論文だが、ガン組織で細菌叢と自然免疫に焦点を当てた点は面白いと思う。このように、細菌叢が自然免疫を誘導し、白血球の浸潤を増やすなら、チェックポイント治療も、まず一般抗生剤でガン組織の細菌を減らしてから行うことも考えられる。
2024年4月11日
脳の神経細胞は増殖後静止期に入ると、ゲノム DNA の代謝は修復時に起こる置換だけに限られる。従って、ほとんど代謝されずに情報がしまわれているとすると、人間の場合100年近く同じ核酸がゲノム中に維持されることになる。実際、カロリンスか研究所の Frissen 研究室からの原爆実験によりできたアイソトープを用いて脳の一部の細胞で生後も増殖が続いていることを証明した研究には驚いたが、逆に言うと何十年も取り込まれたアイソトープが安定にゲノム DNA の中に維持されていることを意味している。これは核酸だけでなく、同じアイソトープを使って、脂肪組織の中には古い脂肪酸が維持されていることを Spalding グループは証明している(https://aasj.jp/news/watch/11426)。
今日紹介するドイツ神経変性疾患研究センター、戸田研究室からの論文は、RNAの中にも細胞内で代謝されずに長期間維持される種類があり、主にクロマチン維持に関わることを示した研究で、4月5日号の Science に掲載された。タイトルは「Lifelong persistence of nuclear RNAs in the mouse brain(マウス脳内の一生涯維持される核RNA)」だ。
この研究のハイライトは、RNA の中に代謝されないで長期間維持される分子があるのではと考えたことだ。そして、エチニルウリジン (EU) を生後に注射し RNA をラベル、その後1週間、1年、2年とラベルされた RNA の存在を追跡している。と、驚くことに、一部の細胞では代謝されない RNA が核内に維持され、2年間もそのまま存在するケースがあることを発見している。
主に海馬や小脳に局在し、海馬では4割、小脳では6割の細胞が一年間たってもラベルされる。ところが、皮質体性感覚野では全くラベルされない。
培養細胞をラベルして調べると、増殖するとラベルは消失するので、静止期にあるときにだけこの長寿 RNA が維持されることがわかる。
次に、どのような RNA が維持されるのか、培養細胞やラベル1ヶ月目の海馬で調べている。培養実験では1575種類の EU ラベルされた RNA が特定されている。一方、海馬では16種類しか検出できていない。従って、長寿 RNA もゆっくりは新陳代謝している可能性が高い。
さらに驚くのは、ノンコーディングもあるが、コーディング RNA が圧倒的に多いことだ。しかもクロマチン維持に関わる分子が多い。海馬の場合16種類なので、実験を繰り返しても同じ16種類が分離されるのか、さらに RNA の長さに偏りはあるかなど、長寿 RNA 発生機構はまだまだ研究が必要だと思う。
ただ、多くの RNA がゲノム内の繰り返し配列にマップされたことから、繰り返し配列を持つ RNA に焦点を当て、これらがヘテロクロマチンと結合しており、この RNA を細胞内で除去するとヘテロクロマチンの維持が低下することを明らかにしている。また、このような細胞では増殖期に移行させると DNA 損傷などが起きて細胞が死ぬことを示し、おそらく長寿 RNA はクロマチンの維持に積極的に関わることで、静止期の細胞を守っていると結論している。
結果は以上で、読んだ後、余計に疑問がわいてくるタイプの論文だと思う。考えてもいなかった現象なので当然だが、静止期にあっても神経細胞では興奮のたびに DNA 切断がおこり、修復されているので、ヘテロクロマチンと結合しているという以上の意味があるかもしれない。さらに詳しい研究が必要だと思う。
いずれにせよ、RNAワールドでは長寿 RNA が必要だった。そのためには、安定なタンパク質に守られることで、個別性が維持されたと思っているが、ひょっとしたらそんな名残が長寿 RNA から見えるかもしれない。
2024年4月10日
多発性嚢胞腎は遺伝的な変異で腎臓に嚢胞が形成され、経過とともに腎不全に陥る疾患で、我が国には3万人前後の患者さんがおられる。現在遺伝子診断は可能になっているが、治療する方法はほとんどない。幸い、患者さんの iPS細胞から誘導した腎臓オルガノイドに嚢胞を形成させる方法が開発され、これを用いた創薬研究が行われてきた。この分野は我が国も西中村さんや長船さんなど活発な研究が行われており、たしかレチノイン酸を用いた治験が進められているはずだ。
今日紹介するシンガポール南洋理工大学からの論文は、患者さんの iPS細胞を用いた嚢胞形成の細胞学的、生化学的解析を進めて、繊毛とオートファジーの嚢胞形成への関与を明らかにし、これに基づく薬剤スクリーニングの結果、一般的にもよく知られるケハエグスルミノキシジルが嚢胞形成を抑える可能性を示した研究で、1月4日号の Cell Stem Cell に掲載された。タイトルは「Kidney organoid models reveal cilium-autophagy metabolic axis as a therapeutic target for PKD both in vitro and in vivo(腎臓のオルガノイドモデルは繊毛・オートファジー・代謝の経路が多発性嚢胞腎の治療標的になることを試験管内および生体内で明らかにした)」だ。
創薬への iPS細胞応用を調べていたとき、見落としていたこの論文に気づき、1月号と少し古くなってしまったが面白いので紹介することにした。
研究ではこれまで多くの研究と同じで、腎臓のオルガノイド形成により、様々な多発性嚢胞腎の嚢胞形成を再現できること、この過程に細胞内 cAMP とカルシウムシグナルが関わることを明らかにしている。すなわち、アデニルシクラーゼを活性化すると嚢胞形成が高まり、カルシウムチャンネルをブロックすると嚢胞形成が抑えられる。
このシステムを用いて、さらに嚢胞形成に関わる過程を細胞学的、分子生物学的に検討して、嚢胞形成には上皮の極性の変化と、細胞増殖スピードの変化を来す様々な遺伝子発現変化によることを明らかにしている。詳細はすっ飛ばすが、なるほどこうして方法ができるのかというイメージがよくつかめる。
その上で、多発性嚢胞腎の上皮では細胞内の代謝変化に平行してオートファジーが抑えられていることに気づく。そこで、オートファジーを高めるため ATG5 を発現させると、嚢胞形成が強く押さえられる。
次に、オートファジーに関わる様々な分子が繊毛に一度集まることが知られているので、繊毛と嚢胞形成を調べる目的で、KIF3分子をノックアウトして繊毛形成ができなくした iPS細胞を用いた実験を行うと、嚢胞形成が押さえられる。このメカニズムを探ると、細胞内カルシウムシグナルが上昇し、オートファジーが上昇する。すなわち、繊毛形成を押さえることで、オートファジーが高まることで嚢胞形成が押さえられる。
この系を用いて嚢胞形成を押さえる薬剤を探すと、グルコース代謝阻害剤、メトフォルミン、ラパマイシンなどの代謝に関わる化合物が嚢胞形成を抑えることを発見する。ただ、使用濃度から治療薬として用いることはできないと判断している。
この代謝を標的にする薬剤に加えて、フォルスコリント同じアデニルシクラーゼ阻害剤の ST034307 と、毛生え薬として一般薬としても使われているミノキシジルが特定された。
この効果を調べるため、試験管内で形成させたオルガノイドをマウス腎臓カプセル内で成長させ、嚢胞を形成させるモデルを作成し、これを治療実験に用いている。この系で、オートファジーを遺伝的に高めると嚢胞形成は抑えられる。また、繊毛のできないオルガノイドでも嚢胞形成が抑えられる。そして、ミノキシジルを投与すると、嚢胞形成が半分程度に抑えることが明らかになった。
この研究ではなぜ sulfonyl-urea receptor を作動させるミノキシジルが嚢胞を抑制するのかについて完全に明らかにできていないが、結果として細胞内カルシウムの上昇とオートファジー上昇が起こっていることは確認できている。従って、詳しいシグナル経路を解明するのは難しくないだろう。
以上、ミノキシジルが嚢胞を抑えるという結果に驚いた。
2024年4月9日
ミトコンドリアは細胞内で独立して増殖するが、そのときのDNA合成はポリメラーゼ γ 複合体により行われる。ポリメラーゼ γ の機能が低下すると、当然ミトコンドリアの数が減少し、重傷のミトコンドリア病を発症し、目や眉を動かせないというミトコンドリア病特有の症状を始め、感覚運動失調やてんかん、さらには肝臓障害など多様な症状が現れる。
今日紹介するヘルシンキ大学からの論文は DNA ポリメラーゼ γ を構成する POLG1 の変異の中でも、p.W748S と呼ばれる一人のバイキングに由来し、フィンランドやノルウェーではキャリアの比率が1%を超えるまでに広がっている MIRAS と名付けられたミトコンドリア病の発症メカニズムを明らかにした研究で、ミトコンドリアの機能の複雑性がよくわかる面白い論文で、4月3日 Nature にオンライン掲載された。タイトルは「Ancestral allele of DNA polymerase gamma modifies antiviral tolerance(先祖から伝わるDNA ポリメラーゼ γ の変異はウイルス感染寛容性を変化させる)」だ。
MIRAS の特徴は、発症時期が極めて多様なことで、年齢とともに発症する一般のミトコンドリア病とは大きく異なっている。このグループは、MIRAS の発症の引き金がウイルス感染ではないかと考えた。というのも、MIRAS で特に象徴的なのが、元気だったティーンエージャーが軽いウイルス感染の後、急にウイルス性脳炎と同じ症状を示すケースがある。また最近の研究で、ミトコンドリア DNA 合成時に発生する DNA が自然免疫センサーの感度を高める役割をしていることが明らかになっている。すなわちミトコンドリアとホスト細胞との相互作用が、ウイルス抵抗性に寄与している。実際、フィンランドゲノムベースで p.W748S と創刊する病気を調べると、トップに来るのが免疫不全になり、この可能性を強く示唆している。
そこで MIRAS 患者さんから線維芽細胞を分離し、2重鎖核酸で刺激すると、1型インターフェロン(IFN1)の誘導が低下している。また試験管内でヘルペスウイルスを始めコロナウイルスなど様々なウイルス感染実験を行っても、同じように IFN1 誘導が低下し、逆に NFκB を介する自然炎症が代償的に上昇することを確認している。以上のことから、ポリメラーゼ γ 変異によるミトコンドリアの DNA 合成低下が、ウイルス感染防御に関わっていることが明らかになった。
次の問題は、ウイルス感染という引き金が実際に神経や肝臓の症状まで進展するかで、このためにMIRAS 変異を持つマウスを作成して実験している。まず、MIRASマウスをダニ媒介脳炎ウイルスに感染させると、インターフェロンシグナルによる自然免疫遺伝子発現が軒並み低下しており、試験管内での結果が生体内で確認された。そして、脳細胞を調べると、特に GABA 作動性の抑制性神経の変性が強く、これがてんかんの原因になっていることを示している。
さらに肝臓では肝細胞の細胞死を誘導する MLKL 分子のリン酸化が上昇しており、何かの引き金で急速な肝臓障害が誘導できる状態になっている。この結果は、MIRAS 患者さんがてんかんを発症したとき使われる抗てんかん剤 valproate で肝臓細胞壊死が誘導されるケースの理解に極めて重要で、少なくともバイキングの子孫の場合、このことを頭に置いててんかんに対処する必要がある。
以上をまとめると、MIRAS ではミトコンドリアの DNA 複製が低下しているため、自然免疫系のセンサーの感度を維持することができておらず、ウイルス感染に対して IFN1 分泌が傷害され、ウイルス感染が拡大しやすくなり、脳炎や肝炎へと発展する。一方で、自然炎症は正常マウスより更新しやすく、感染症が重症化しやすく、変性が進む。
このような遺伝子変異がこれほどの頻度で維持されているのは不思議で、おそらくもっと面白い話が一人のバイキングの子孫から出てくる気がする。
2024年4月8日
大規模情報病理学の進展を見ると、すでにデータが膨大すぎて人間が見て診断するのではなく、人間にわかりやすいように膨大なデータを表示することが重要になっているように見える。ただこのような試みの基礎になるには、現在も臨床に欠かせない HE 染色標本についての病理診断で、これを AI で処理し、その上に組織上での他の情報(例えば蛍光抗体法による診断)などが統合されていくようになると思う。X線写真や MRI など、さまざまな画像診断の AI 化が進んでいる現在、もちろん病理標本の AI 診断研究も進んでいるが、まだ実用には至っていない。
今日紹介するハーバード大学からの論文は、実際に病理診断で行われているのと同じレポート作成が可能な大規模言語モデルについての研究で、3月号の Nature Medicine に掲載された。タイトルは「A visual-language foundation model for computational pathology(コンピュータによる病理診断に向けた画像―言語基盤モデル)」だ。
同じ号にもう一方、大量の病理画像だけをラベル無し・マスクをかけてプレトレーニングした後、ファインチューニングにより画像中の異常を見つけて様々な用途に使えるようにした AI モデルの論文が掲載されていたが、ラベル付きの学習モデルから、大規模言語モデル LLM を用いる病理診断法の方へと移行しているのがよくわかる。
しかし、病理診断は病理医による言語ベースのレポートで行われることが普通で、画像からテキストが生成されるように、あるいは言語から画像が作れるようになるのが望ましい。この論文では、実際の病理診断での標本とレポート、論文に掲載された病理画像とその説明を、コントラスティブ学習により統合してエンベッディングすることで、現在行われている病理診断レポートが可能になるか調べている。
医学の様々な分野で進行している、いわゆる画像と説明のマルチモーダルエンべディングモデルの作成と考えて貰えば良い。じっさいには8台の GPU を備えたコンピュータに100万枚の画像とその説明をラベルなしで学習させた完全に独自のモデルを形成している。
多くの病理診断 AI はガン診断でのパーフォーマンスで評価されており、今回のモデルは全く新しい画像の診断(Zeroshot)では、すべてのガン診断でこれまで作成された他のモデルを凌駕する。さらに、訓練に使ったラベル付けされたデータセットで比べても、他のモデルより勝るという結果だ。
ただ、このような独自モデルでは学習したデータの大きさに限界がある。特に、稀なガンの診断となるとそのパーフォーマンスは低下する。そこで、少数ショット学習でそれぞれのクラスの特徴を示すラベルを増やしてパーフォーマンスを比べ、今回のモデルではより少ないラベルで高いパーフォーマンスに到達できることも示し、モデルのチューニングを工夫することでパーフォーマンスを挙げられる可能性を示している。
では画像からレポート作成が可能かだが、画像を見ただけですらすらレポートができるというわけではない。決まった書式の中の穴埋めを行う形でレポートが作成できるといった程度が現状だ。
他にも、組織上でガンなど病理変化を特定する能力についても調べているが、省略する。
読んだ印象では、他の分野の同じ試みと比べて、まだまだといった感がある。おそらく、病理標本の多様性が大きすぎて、100万程度の学習では、100%に近い診断率まではかなり道のりが遠い気がする。ただテキストと画像の統合は人間が最終判断する場合は必須になるので、さらに数を増やしてパーフォーマンスを上げていく必要があるだろう。また、少数ショット学習だけでなく、最近流行りのプロンプト学習なども合わせることで、進展していくと予想できる。
とはいえ、病理に特化したモデルを拡大していくのか、一般画像を学習したモデルを病理にも使えるようなチューニングを行うのか、素人には予想できない。重要なのは、並行して昨日紹介したような形態と遺伝子発現の統合されたデータが急速に拡大すると思うので、これと統合するという観点では、独自モデルを医学界全体で進めるのがいいような気がする。
2024年4月7日
昨年の8月にも YouTube 配信で解説したが、大量の分子発現データを組織上で集める新しい組織学が急速に進んでいる。元々病理学組織には大量の情報が存在しており、情報の重要な部分は形態自体に内在している。従って、細胞を組織から分離する single cell RNA sequencing では明確にできない情報が組織学から得ることができる。すなわち、組織という場で多くの情報を統合する研究が重要になる。そこで、今日から3日間、新しい組織学研究を紹介する。
最初のハーバード大学からの研究は MERFISH と呼ばれる方法で940種類の RNA 発現を組織上で一度に調べる方法を用いて硫酸デキストランにより誘発されるマウス腸炎の発生および回復過程を調べた研究で、4月11日号 Cell に掲載された。タイトルは「Charting the cellular biogeography in colitis reveals fibroblast trajectories and coordinated spatial remodeling(腸炎の細胞のバイオ地理学図譜により線維芽細胞の変化と協調的構造変化が明らかになった)」だ。
この研究で使われた MERFISH は、一つの RNA を検出するオリゴプローブに2種類のユニークな読み取り配列が結合されており、組織上の RNA とハイブリダイゼーションした後、今度は読み取り配列に反応する蛍光ラベルプローブ(この研究の場合72種類の異なる読み取り配列を用いている)によるハイブリダイゼーションを繰り返すことで、特定の RNA の場所が決められるようになっている。もちろんこれには正確にプローブの場所を記録するイメージングシステムが重要になる。同じ目的で、プローブに結合したバーコードの配列を読み取る方法も開発されているが、1000個近いプローブを用いることができるなら、MERFISH のほうがまず普及しそうな感じがする。
この研究から生み出されるデータは当然膨大で、これを形態と統合して解析したり、あるいはわかりやすく可視化するソフトウェアの開発と一体化している。マウスの腸炎は硫酸デキストランで上皮構造を壊して起こる細菌感染から始まるが、この過程を回復まで21日間にわたって追いかけている。
Single cell RNA sequencing と比べると、新しい遺伝子が見つかるということはない。ただ、腸管に存在し、炎症過程で現れるほぼすべての細胞を完全に特定できる。上皮、免疫細胞、そして線維芽細胞それぞれ、正常時の種類に加え、炎症で特異的に変化した細胞が何種類も新しくできてくる。そして、こうして特定した細胞の組織上の分布を瞬時に組織上にディスプレーできる。
この結果、元々腸管では上皮や筋肉、あるいは神経細胞層が、異なる線維芽細胞と相互作用して形成されていることがわかる。さらに、細胞間相互作用に関わる分子セットと、それを発現する細胞セットの組織上の位置を統合し、例えば幹細胞ニッチと上皮との関係を維持に関わる Wnt シグナルの勾配などを知ることができる。
そして、炎症が起こると、新しいタイプの線維芽細胞が誘導され(この誘導シグナルについては特定できていない)、それぞれの線維芽細胞にリードされて、腸上皮の再編とともに、炎症細胞のリクルートが起こることがわかる。中でも面白いのが、IL11 などを介する異なる線維芽細胞同士の相互作用で、これにより炎症と修復の境界が形成されたりする。
さらにそれぞれの炎症性線維芽細胞種の起源を調べると、腸のクリプトで幹細胞維持に関わっていた線維芽細胞が上皮や血管の再構成を主導し、また白血球を上皮領域にリクルートする線維芽細胞は、正常状態ではクリプトの先端に存在する線維芽細胞が分化してきたこともわかる。
詳細は覚えきれるものではないので、結果は一種の辞典ができたと考えればいい。重要なのは遺伝子発現と形態が統合されることで、時間的ファクターもその中に含まれ、空間と時間が統合されたデータが現れることだ。
もちろん、炎症、回復過程での線維芽細胞間相互作用を IL11 は変化させ、損傷に応じて異なる効果を示すことなど、新しい介入方法も生まれているので、極めて重要なデータだと思う。これらの方法は、私が引退した頃に急速に開発が進んだが、10年を経てそろそろ実装期に入ったいるようだ。
2024年4月6日
専門誌はともかく、Nature などの一般紙に掲載される細菌叢研究の数は減っているが、内容は現象論から、より因果性やメカニズムに迫る研究に移行している。例えば、3月27日に紹介した IgA 腎症と細菌叢の話は(https://aasj.jp/news/watch/24237)、ヒトでも確認が取れれば重要性は計り知れない。
今日紹介するハーバード大学からの研究は、心血管系のコホート研究で集められた便を、細菌叢、メタボライト、患者さんの血液マーカーの間に存在する相関を統合的に調べ、この代謝に関わるバクテリアの遺伝子の特定と健康への影響まで調べた驚くべき大作で、4月11日号 Cell に掲載された。タイトルは「Gut microbiome and metabolome profiling in Framingham heart study reveals cholesterol-metabolizing bacteria( Framingham 心臓コホート研究での腸内細菌叢とメタボロームプロファイリングは、コレステロール代謝細菌を明らかにした)」だ。
このハーバードのグループは以前にも取り上げたが(https://aasj.jp/news/watch/20882)、元々複雑な細菌叢データとメタボローム解析データの関係を、健康への因果性を明らかにしようと、大規模コホート研究と組み合わせるインフォーマティックスで世界のトップを走っている感がある。はっきり言って、示されたデータは詳細すぎて見ただけではほとんど理解できない。それでも研究の方向性はわかる。
この研究で調べられた因果関係は、心臓疾患と血中バイオマーカー(例えば LDL、HDL やトリグリセライド)、細菌叢、さらに便のメタボロームの間の膨大な関係だ。この中からまず心臓疾患のリスクマーカーと細菌叢の相関を調べると、LDL や TG など脂質代謝に悪い方に働くのが細菌叢の多様性欠如と、Clostridium bolteae などの細菌、逆によい方に働いているのが細菌叢の多様性と Alistipes および Oscillibacter の存在であることを発見する。
ここまでならほかにも多くの研究があるが、次に便中の代謝物を調べて、血液リスクマーカーとの相関を調べ、脂質代謝異常と関わる代謝物、およびそれを合成したり分解したりしている細菌種を特定している。こんなバクテリアを抱えておれば、健康に留意していても意味がない。改めて健康的な細菌叢と付き合うことの重要性がわかる。
脂質代謝に悪影響のある代謝物は脂質代謝に直接関わるものだけではない。例えば短鎖脂肪酸のように炎症を抑えて、脂質代謝によい影響を及ぼすものもあるし、逆にトリプタミンなど自然炎症を促進して脂質代謝や心臓病に関わるものもある。
このようなまさにビッグデータ解析から特に注目して抽出しようとしているのがコレステロール代謝で、中でも心臓疾患やリスクマーカーのリスクを低減させる Oscillibacter のコレステロール分解機能に焦点を当てている。
これまでも、コレステロール分解の最初の過程を媒介する IsmA 酵素を持つ細菌が血中コレステロールを下げる可能性が示唆されていたが、バクテリアの特定、発現遺伝子の機能アノテーション、便中の代謝物解析、さらに細菌培養にアイソトープラベルしたコレステロールを添加する実験を組み合わせて、Oscillibacter 種に様々なコレステロール分解に関わる分子が発現して、IsmA と強調して、腸管中のコレステロールを取り込み、それを分解し、ホストには吸収できない形に変化させている可能性を示している。また、こうしてできた代謝物は、ほかのコレステロールを好む細菌を増やすことでさらに腸管中のコレステロールを下げてくれていることも示している。
以上が結果で、心疾患、LDL や TG などの血中マーカーと、コレステロール分解バクテリアの関係は、動物実験などで確かめる必要があるが、脂質代謝異常を抑えてくれる細菌叢があり得ることは心強い限りだ。
しかしこのグループのインフォーマティックスは勉強になる。新しいところでは、Oacillibacter の遺伝子からコレステロール代謝に関わる分子を特定するのに、タンパク質構造ベースで機能を予測する言語モデルを使っている。もちろんアルファーフォールド2を使って確認もしており、この分野を目指す若い人には大変参考になると思う。
2024年4月5日
1型インターフェロン(IFN1)は感染防御の第一線で、このシグナル経路に関わる様々な分子の遺伝子変異を持つ動物やヒトは、ウイルス感染防御の低下が共通に存在している。このように IFN1 は感染防御システムとして存在していると考えられ、正常の組織課程に関与するとは考えられてこなかった。しかし、発生時にウイルス感染等で IFN1 に暴露されると、神経発生異常が誘導されることはよく知られた事実で、異常な状況では発生にも影響することはわかっていた。
今日紹介するカリフォルニア大学サンフランシスコ校からの論文は、感覚神経発生をモデルに IFN1 が正常発生にも関わっていることを示した研究で、4月11日号の Cell に掲載された。タイトルは「Type-I-interferon-responsive microglia shape cortical development and behavior(1型インターフェロン反応性のミクログリアは皮質神経発生と行動に関わる)」だ。
おそらく最初から IFN1 の関わる正常発生過程を探すとことが研究の目的だったと思われる。そして選んだのが、一本一本のヒゲの刺激を区別して感じるために形成される一次感覚野のそれぞれのヒゲに対応するバレルと呼ばれる単位構造だ。ヒゲに対応するバレル構造は大変有名な実験系で、感覚刺激を受ける細胞だけが生き残り、ほかの細胞が除去されることでバレル構造ができる。構造が形成できない。生まれてすぐにヒゲを抜いてしまうと、感覚刺激がないため、神経やシナプスの剪定ができず、バレル構造が消失する。
このバレル形成過程を観察すると、通常ほとんど存在しない IFN1 反応性グリア細胞が急速に増加し、ヒゲを抜いた場合はこの増加が見られないことがわかった。この IFN1 反応性グリア細胞の機能を調べていくと、バレル形成領域で死んだ神経細胞を貪食しているのがわかる。すなわち、選定過程で不要になり細胞死に陥った神経を速やかに除去するため、誘導されるのがわかる。
実際に IFN1 シグナルが関わるかを調べるため、全身、あるいはミクログリア特異的に IFN1 受容体をノックアウトする実験を行って調べると、神経細胞を貪食した後消化が遅れてリソゾームが泡状に膨れたバブル細胞が増加することを発見する。また、IFN1 を局所に投与する実験系で、ミクログリアの貪食も促進することを示している。一方、貪食される側の神経を調べると、主に感覚野の興奮神経であることも確認している。以上の結果から、IFN1 は感覚神経依存性のバレル形成過程で、興奮神経細胞を刺激を受けた必要な細胞だけに抑制する役割があることがわかる。このシグナルが欠損すると、貪食が低下し消化が進まず、神経細胞の剪定が進まず、細胞が全体で増加してバレルの境が消失する。
最後に IFN1 反応性ミクログリアの増加を誘導するシグナルを、様々な自然免疫分子のノックアウトマウスを用いて調べ、刺激を受けない興奮神経で細胞死過程が始まると、そのとき生じる dsRNA が MAVS により検知され、インターフェロンが誘導されることを示している。
結果は以上で、まず刺激依存的シナプスの剪定、それに続く神経細胞死の誘導が始まると、自動的に IFN1 反応性のミクログリアが増加して、必要ない神経細胞を除去する過程が明らかになった。IFN1 自体が神経発生に関わることはわかっていたが、正常過程でも機能していることを示したのがこの研究のハイライトといえる。
3月31日にも TLR9 が記憶の固定化に重要な働きをしていることを示す研究を紹介したところだが(https://aasj.jp/news/watch/24198)、自然免疫がここまで広く神経のダイナミズムに関わっているとは驚きだ。
2024年4月4日
感覚神経は外界からの刺激に対する最初の防御機構だが、神経系的反応が起こった後、様々な役割を果たすことが知られている。このシステムが機能しなくなると、肺の感染症にかかりやすいことが知られている。また、感覚神経異常が起こる糖尿病で傷が治りにくいのも神経システムと損傷治癒に感覚神経が重要な働きをしていることを示している。このブログでも、以前、痛み感覚神経がカルシトニン関連ペプチド (CGRP) を分泌して自然炎症を誘導することを示した研究を紹介した(https://aasj.jp/news/watch/10612)。
今日紹介するオースリアにある EMBL 研究所からの論文は、痛み神経から分泌される同じ CGRP が、傷口を炎症防御優先から、修復優先へスイッチさせる働きを持つことを示した研究で、3月27日 Natureにオンライン掲載された。タイトルは「CGRP sensory neurons promote tissue healing via neutrophils and macrophages( CGRP 感覚神経は好中球とマクロファージを介して組織修復を促進する)」だ。
この研究では痛み受容体を発現する感覚神経をジフテリアトキシンで除去できるモデルマウスを用いて、皮膚の損傷治癒過程を調べると、神経がないと損傷治癒が遅れることに注目している。また、筋肉損傷でも同じ実験を行い、筋肉の損傷修復も同じように、痛み感覚神経に依存していることを明らかにする。
以前にも紹介したように、痛み感覚神経は CGRP を分泌して周りの組織に働きかけることが知られている。そこで、CGPRシグナルに対する受容体コンポーネントRamp1 を、関与が強く疑われる骨髄球でノックアウトする実験を行い、損傷治癒誘導は、CGRP が白血球の傷口への遊走を抑え、マクロファージを炎症型から、修復型へ変換させることで、損傷修復を促進していることを明らかにしている。
この過程は極めて合目的に行われており、早期に傷口での炎症防御に関わった白血球が、それ以上傷口へ入るのを抑え、さらにマクロファージの死細胞の貪食を押さえる。同様に、この時期では様々な炎症性サイトカインの分泌も抑えられる一方、損傷治癒に関わる例えば血管増殖因子などの発現が上昇する。
そこで、CGRP の刺激を受けてこの複雑な機能を担う分子を探すと、刺激によってマクロファージでの発現が最も高まるトロンボプラスチン1一つで、炎症組織での好中球やマクロファージの細胞死を誘導し、白血球の傷口への遊走を押さえ、マクロファージによる死細胞貪食を高めることを確認する。また、トロンボプラスチン1をマクロファージでノックダウンすると、損傷治癒が強く押さえられることも示している。
以上の結果から、痛み神経、CGRP、そしてトロンボプラスチンとつながる損傷治癒促進過程のメカニズムを明らかにできたので、最後に CGRP を治療に使えないか検討している。
CGRP の機能についてはこれまでも多くの論文が報告されているので、おそらく CGRP を用いる治療実験がこの研究のハイライトといえる。CGRP はペプチドなので、局所でその機能を維持することは簡単でない。そこで、組織に保持されやすいエンジニアした CGRP を作成し、これを糖尿病モデルマウスに作成した損傷部位に塗ると、傷口が閉じる過程が大幅に促進されることを示している。
以上が結果で、糖尿病患者さんの損傷治癒を助けるペプチド薬が完成する期待がある。メカニズムはもっぱら神経血液サーキットで興っているので、これが存在する組織なら、効果も皮膚に限らないだろう。期待したい。