2018年6月25日
翁長沖縄県知事は最近膵臓癌であることを公表したが、最近のニュース映像を見ると、急速に痩せて来ているのがわかる。確かに自分の乏しい臨床経験から考えても膵臓癌の場合とくに病気の早い時期から痩せ方が激しいような印象がある。もちろん他のガンでも痩せるのは普通のことだが、膵臓癌はガン自体の作用以外に何か特殊な要因を持っていると考えられる。
今日紹介するマサチューセッツ工科大学からの論文は、まさに私が長年持っていた疑問にチャレンジした研究でNatureオンライン版に掲載された。タイトルは「Altered exocrine function can drive adipose wasting in early pancreatic cancer (早期の膵臓癌に見られる脂肪組織の消耗は外分泌機能の変化により起こる)。
読み通してしまうと、ちょっと拍子抜けの研究で、大事な課題だとは言えよくNatureに掲載されたなというのが正直な印象だ。とはいえ、目的ははっきりしており、なぜ膵臓癌で早くから痩せるのかを理解することだ。研究では、まず同じことが実験動物で再現できるのか確かめるため、マウス膵臓癌モデルで痩せ方を調べ、人間と同じように筋肉よりはるかに脂肪組織の喪失が大きいことを確認している。
繰り返すが、普通最も悪性の膵臓ガンなら痩せるのが当然だと思ってしまうが、この論文の著者は、ガンそのものではなく、膵臓にガンができるということが問題の核心ではないかと考えた。この研究のハイライトは、これを確かめるために行った実験の単純さだろう。なんと、がん細胞を正常マウスの皮下と、膵臓内に注射して、どちらが脂肪細胞の消耗が激しいかを調べるというきわめてナイーブな実験を行った。そして予想通り膵臓に直接ガンを注射した時だけ強い脂肪細胞の消耗が生じることを発見する。すなわち、脂肪細胞の消耗は、ガン自体が大きくなることで起こるのではなく、ガンの作用で起こる膵臓の変化により起こっていることを示唆している。
膵臓にガンができたマウスの便を調べると、脂肪やタンパク質の消化機能が低下している。そこで、消化酵素を食事に入れて食べさせると、脂肪細胞の消耗を止めることができることがわかった。結局、膵臓が圧迫され、消化酵素が出ないため、脂肪細胞が消耗するという平凡な話になってしまった。
著者らも、これでは満足できなかったのだろう。最後に、痩せの激しい患者さんと、そうでない患者さんを比較して、予後に違いがあるか調べ、今回の研究から治療可能性が見つからないか調べている。ところが皮肉なことに、膵臓癌の場合痩せの程度は予後に関わらないことを800人近い患者さんの検討から明らかにしている。これも意外だった。
話はこれだけで、結局研究手法のナイーブさに一番新鮮な驚きを感じるとともに、痩せているからといって必ずしも予後が悪いと決めつけることはないと学んだ論文だった。
2018年6月24日
てんかんの発作に対しては現在抗けいれん薬が用いられるが、てんかん発作を示す小児のかなりの部分で治療に反応しない、「難治性てんかん」と呼ばれるグループがある。これまでは手術的にてんかんが起こる場所を取り除く以外方法がなかった難治性てんかん治療に、最近になって新しい治療法が開発され期待されている。一つは、大麻の使用で、子供にも使えるよう大麻成分を用いた治験が進んでいる。もう一つの方法が、糖質制限を中心にしたいわゆるケトン食による治療で、様々なタイプのてんかんに効くことがわかってきた。
ただ大麻成分を用いる治療と比較した時、ケトン食によるてんかん治療は効果のメカニズムが明らかでなく、また多くの家庭にとっては導入が難しいため、普及が遅れていた。今日紹介するUCLAからの論文はケトン食により腸内細菌の構成が変わっててんかん発作の閾値がたかまることが効果のメカニズムではないかと着想し、それを確かめた研究で6月14日号のCellに掲載された。タイトルは「The gut microbiota mediates the anti-seizure effects of ketogenic diet(腸内細菌叢がケトン食の抗けいれん作用を媒介する)」だ。
食を通した治療の効果や副作用はまず腸内細菌叢を疑うのが今の常識になっている。この研究ではまず、ケトン食が効果を示すてんかんモデル系を作成した上で、効果が見られたマウスの腸内細菌叢を調べ、アッカーマンシア(AK)とパラバクテロイデス(PB)が著明に上昇していることを発見する。
あとはこの細菌が発作の抑制に関わるか因果性を確かめる必要がある。まず細菌叢がケトン食の効果に関わることを調べるため、無菌マウスや抗生物質で腸内細菌を除去したマウスにケトン食を食べさせる実験を行い、ケトン食の効果には細菌叢が必要であることを確認する。
そしていよいよ、細菌叢を移植する実験を行い、最終的にAKとPB両方の細菌を移植すれば、普通食でも発作の閾値を高めて、発作の回数を減らせることを発見する。すなわち、ケトン食はこれらの細菌の選択的な増殖を促すことで、発作の閾値をたかめていたことになる。
では、なぜこの2種類のバクテリアが多いと、発作の閾値を高めることができるのか?腸内や血清中の代謝物を調べ、ガンマグルタミン酸化されたアミノ酸の低下が激しく、この結果海馬の神経伝達因子でGABAの方がグルタミン酸より高まることを突き止めている。この結果は、アミノ酸のガンマグルタミン酸化を止めることで、発作を防げる可能性を示唆しているので、普通食のマウスにガンマグルタミン酸化を阻害する分子を食べさせると、発作を減らすことができることを示している。
話は以上で、マウスの話とはいえ難治性てんかんを抑える新しい切り口が間違いなく見えたように感じている。例えば、AK+Pbのプロバイオ、さらには腸内最近にのみ効果があるガンマグルタミン酸化阻害剤など、素人が考えてもすぐリストができる。臨床治験が早く行われ、ご両親の負担が少しでも軽くなることを願っている。
2018年6月23日
初めての人をもてなす時、「左党?甘党?」とまず聞くように、嗜好品でアルコールと甘みはいつも対比される。実際には、私のように両方好きという不健康な人間も多いと思うが、両者を比べて絶対に違うと思うのが、アルコールには呑まれてしまう人が出てしまうことだ。私自身も、ずいぶん飲む方でアルコールなしで暮らせないと自認するが、朝からアルコールが欲しいと思うことはない。しかしどの民族でも、一定の割合でアルコール依存症が出てしまう。また、一旦依存症になると、抜け出すことは至難の技になる。
このように一部の人だけがアルコールに呑まれてしまう原因を探った極めて面白い論文がスウェーデンのLinköping大学から6月22日号のScienceに掲載された。タイトルは「A molecular mechanism for choosing alcohol over an alternative reward(他の楽しみよりアルコールを選んでしまう分子メカニズム)」だ。
この研究ではWister系統のラットに甘いサッカリンとアルコールを交互に経験させたあと、両方自由に選べるようにして10週間行動を観察し続け、甘いものも選べてもアルコールを選ぶことが多くなるラットがいるのか調べている。ほとんどのラットは甘党で結局サッカリンを選ぶが、1割程度はアルコールを選ぶ方が多い左党のラットが出てくる。こうして選ばれたラットは、左党というよりアルコール依存症に近く、アルコールを選んだら電気ショックで罰せられる状況でも、アルコールを選ぶようになる。
正直、この研究のハイライトは数が少ない左党のラットを選ぶ方法を開発し、実際に選ぶことに成功したことに尽きる。使用したラットは遺伝的背景を揃えてあるので、この差は遺伝的多様性とは別の違いを反映している。
こうして選んだアルコール中毒ラットと甘党のラットについて、薬剤中毒に関わる遺伝子の発現を脳の様々な場所で調べると、感情に関わる脳領域、扁桃体で神経伝達因子の一つGABAの細胞外濃度を調節するトランスポーター分子GAT-3が低下していることを発見する。この分子は細胞外のGABA濃度を低下させる働きがあるが、この機能が落ちることで、左党ラットの扁桃体の興奮が常に高まっている。以上の結果から、何らかのきっかけでGAT-3の発現が低下すると、アルコール中毒になりやすいというシナリオが出来上がる。
これを確かめるため、ウイルスベクターを使って扁桃体にGAT-3遺伝子の発現を抑えるRNAを注射すると、そのラットでは注射後2週間ぐらいから急にアルコールを選ぶ率が高まる。すなわち、100%ではないが、明らかにGAT-3のレベルとアルコール好きは因果関係がある。
最後に、人間のアルコール依存症の患者さんの脳を、解剖例から集めてGAT-3の発現を調べると、このシナリオから予想される通り、扁桃体で最も発現が抑制されていることも確認し、この結果が決してラットだけの特殊な話でなく、ヒトにも当てはまると結論している。
繰り返すが、この研究は左党ラットを選ぶための実験プランを着想した時にほぼ終わっている。この研究では、遺伝的背景が揃っているのにどうしてGAT-3の発現に差があるのかの原因についてはわからないままだが、今後この点が明らかになると、酒に呑まれる人と呑まれないひとをあらかじめ予想することもできるようになるかもしれない。左党の私にとって特に面白い論文だった。
2018年6月22日
南アフリカ・ケープタウンで行われた世界初の同種(人間同士)心臓移植はわが国でも大きく報道され、医学部を目指していたこともあり、個人的にも新しい時代が来るのかと強い印象を受けた。その時移植が成功しても、結局免疫拒絶反応で定着しないことを知り強く興味を惹かれた。1968年入学後、特に免疫学に興味を持ったのも恐らくこの時の強い印象から来ているのかもしれない。
私が医学部に入学した1968年は札幌医大で和田心臓移植が行われたが、和田さんが殺人罪で告発されたこともあり、その後我が国では「脳死は人の死か?」についての国を2分する議論が続いた。この結果臓器移植法が制定されるのは1997年まで実に30年近くかかることになる。
医学部を目指していたからか、私自身は脳死を人の死とすることは当然のことだと考えていたし、移植という医療に特に違和感を抱かなかった。その後、今度はヒトES細胞樹立の条件を議論する側に回って、科学技術会議の「ヒト胚研究小委員会」の委員として、胚は人間かの議論に参加した。この際、受精卵を滅失するという行為を脳死議論と比べる機会があり、改めて日本が死体を大事にする儒教文化に強い影響を受けていることを認識した記憶がある。
いずれにせよ心臓移植は、身体の死、すなわち心臓死を前提としては成り立たない。これは、動物を用いた前臨床研究が進んだ頃から認識され、脳死を人の死とする議論が各国で始まったようだ。今日紹介する米国ハーバード大学Troug博士の意見論文は、米国で脳死という概念がどのような歴史をたどって今に至るかをうまくまとめた論文で、6月7日米国医師会雑誌にオンライン出版された。タイトルは「The 50-year legacy of the Harvard report on brain death(脳死についてのハーバード大学レポートの50年の遺産)」だ。
この論文を読むまで米国で最初に脳死を正式に定義したハーバード大報告が1968年8月に発表されたことを知らなかった。この意見論文はハーバード大報告が50周年になるのを記念して書かれたものだが、私が医学部に入学した年と重なることを知り、感慨が深い。
今日は書かれた内容を淡々とまとめる。
脳死の定義の必要性は、1)人工呼吸器の発達で脳幹の機能が失われても身体を生存させることができるようになり、生命維持装置を外す判断が求められたこと、2)心臓以外の臓器移植の成功が続き、心臓移植の前臨床研究がほぼ終わったこと、の医学的理由から始まった。
これに対応して1967年Beecherを議長とする委員会が研究者主導で形成され、「蘇生の可能性のない昏睡とは何か」についての1年間の議論がハーバード大報告として発表される。
この時、「24時間、患者さんが刺激に反応せず、自発的に動かず、呼吸せず、反射がないという症状に、脳波で脳の活動が全く記録できない場合を脳死とする」と定義される。
アメリカは合衆国なのでこのようにまず民間主導で話が進むのだろう。その後、この脳死定義を基礎に、1970年のカンサス州を皮切りに、各州で脳死の定義と、臓器移植に関する法整備が進んでいく。報告が発表されて2年で州レベルの議論が進むというのは迅速だ。
1981年になって初めて、国として死を一律に定義する法律UDDAが成立し、死は、1)心肺機能の不可逆的停止、2)脳全体にわたる完全機能停止、と定められる。ただこれはあくまでも国の方針で、この法律を運用しやすいよう様々な条項を加えた独自の法律を制定している。
おそらくわが国でもそうだが、アメリカでは移植を別にすると厳密な脳死判断なしに生命維持装置を外すことが一般に行われるようになり、この法律はもっぱら臓器移植のための法制度として機能するようになった。その結果、現在では8000例を越す脳死による移植が行われている。
ただ、脳死の概念自体はその後も議論され、アップデートされている。なぜ脳死と身体死を統合する試みが行われ、1981年にはBernat委員会では、「脳が身体の複雑な機能を調整する唯一の臓器である」とする考えが示される。
しかし、その後脳死と診断されて蘇生するケースはなかったものの、生命維持装置だけで20年生物学的生命が維持されるケースが出たため、脳と身体の関係がもう一度議論され、最終的に「有機体」としての人間にとって脳は欠かせないという考えが受け入れられるようになった。
以上が論文の内容で、ハーバード大報告は米国医療を支える一つの重要な概念として、大きな遺産を残したという結論だ。
個人的には医学部入学と重なって、特に感慨が深いが、議論をよく読んでみると、17世紀デカルトが二元論で心と体を別々の人間の条件として定義したことから議論が始まり、ライプニッツを皮切りに両者を新たに統合するための議論が始まり、18世紀「有機体論」の概念が生まれた歴史が繰り返されることに気づき、この背景にヨーロッパの長い歴史遺産があることにも驚いた。倫理問題は、各国の歴史から切り離しては存在しないことが改めてわかる。
2018年6月21日
私が研究を始めた頃、ウイルス感染が原因で起こるガンの研究はかなり盛んだった印象がある。おそらく、ヒト成人白血病がウイルス感染によることを明らかにした高月先生をはじめ、淀井さんや内山さんと付き合いがあり、その印象を持っていたのだと思うが、同じ頃ドイツではZur Hausenが子宮頸ガンとパピローマウイルス (HPV)との関わりについての研究を進め、ノーベル賞に輝いた。特に、Zur Hausenらによる子宮頸癌の発症を防ぐHPVワクチンの開発は、現在も多くの女性が亡くなる原因になっている子宮頚ガンを減少させることにつながると期待され、ノーベル賞につながったのだと思う。
もちろんFDAが認可する根拠になったワクチンの効果を示す治験研究は存在するが、接種対象が15-26歳と、現在の思春期前に行われる接種とは時期がおおきくずれているため、現在普通に行われる接種方法については、新たな検証が必要だった。
今日紹介するコペンハーゲン大学公衆衛生学教室からの論文は、デンマークでHPVワクチン接種が行われる前の女性と、行われるようになった後の女性を比べることで、ワクチンのがんの予防効果を調べようとした観察研究だ。タイトルは「 Impact of HPV vaccination on outcome of cervical cytology screening in Denmark- A gegister based cohort study.(HPVワクチンのデンマークでの子宮頸部組織スクリーニング検査への効果)」だ。
公衆衛生の先進国デンマークでは、女性が20-23歳になると細胞診を行なって子宮頸がんの前段階の異型細胞の発生を早期に発見して子宮ガンを防ぐ努力が行われている。またデンマークでは2006年HPVワクチンが認可されてすぐから、無料で4系統のHPVが混合されたワクチン接種を提供され、7割の女性が15歳までに接種を受けている。
この研究では、20−23才時に子宮頸がんリスクを診断するために行われる細胞検査の結果を、1983年に生まれ、ワクチン接種を受けていない女性19461人、1993年生まれで92%がワクチン接種を受けている女性25478人で比べ、HPVワクチンが異形細胞の出現を抑えることができるか調べている。
我が国の現状を把握していないが、デンマークの女性のセックス初体験は16歳で、この研究の対象になった女性も15歳以前に性交渉を持った経験のある女性は37%に達している。この実情を踏まえて性交渉を持つより先にワクチン接種を行うため、15歳以前に2回目の接種が終わるよう計画しているようだ。
子宮頸がんはウイルス感染が継続している細胞が、まず前癌状態と言える異形細胞に変化することから始まる。この異形成状態は軽度異形(LSIL)と高度異形(HSIL)に分けることができる。ワクチン接種の有無で、それぞれのタイプの発生を比べると、軽度の異形細胞はワクチン接種にかかわらず4%程度で、特に変わりはない。ところが、高度異型細胞の出現は、ワクチン非接種群では1.8%に対し、ワクチン接種群は1.1%とはっきりとした効果が見られている。他にも様々な補正を加えて、有意の差があるかを確かめているが、高度異形細胞の出現が抑えられることは間違いないと結論している。
さらに数は少ないが、ワクチン接種が15歳以降に遅れた815人についても比べて、遅れたグループでは接種しないグループと差がないことを示している。これは年齢ではなく、性経験が始まるより前にワクチン接種を行う必要性を示しており、思春期の女性の性行動について正確に把握した上でワクチン接種計画を立てることの重要性を示した。予想されたとはいえ重要なデータだと思う。
今後同じグループは、さらに追跡され、子宮頚がんの発生頻度も20年後には発表されるだろう。ただ、今回の研究を含め、実際にワクチン接種がウイルス感染を防ぎ、異常細胞の出現を抑えるというデータは蓄積されつつある。これまで我が国では効果そのものも疑う議論が展開されていた。しかしそろそろ、効果については間違いなくあることを前提に、議論がでできる条件が整ったと言える。
2018年6月20日
Immediate early gene(最初期遺伝子)は、神経の興奮によって早期に上昇してくる転写因子やシナプスの伝達性を直接変化させる分子Arcなどが代表だが、これらの発現を指標にすると神経が興奮したのかどうか、後から知ることが出来る。哺乳動物でもっともよく使われているのはFos遺伝子だが、50近い最初期遺伝子がこれまで特定されている。
今日紹介する英国ワーウィック大学からの論文は、最初期遺伝子の中のシナプスの伝達性を直接変化させられる分子Arcの発現持続時間を厳密に制限することの重要性を調べたユニークな研究で6月27日号のNeuronに掲載された。タイトルは「The temporal dynamics of Arc expression regulate cognitive flexibility (Arc発現の時間的動体は認識能力の可塑性を調節する)」だ。
Arcは神経興奮により誘導されAMPA型グルタミン酸受容体の細胞内へのとりこみを促進し、シナプスの興奮性の閾値を下げる。海馬ではこの抑制が空間記憶にとって重要であることがわかっている。ただ、Arcは刺激後すぐに分解されるよう設計されており、タンパク質は短い期間だけ発現している。同じような例に細胞周期があるが、この研究ではなぜこれほど厳密に発現時間が調節される必要があるのかを明らかにすることを目的にしている。普通に考えれば、もしAMPA型受容体のシナプス上の量を抑えることが空間記憶の維持に必要なら、もっと長時間発現させたほうが良いように思える。
この疑問を調べるために、著者らはArc分子を分解するための印をつける部位(ユビキチン化部位)を除去した遺伝子で正常の遺伝子を置き換えたマウスを作成し、その空間記憶について調べた。この変異分子はユビキチン化されないため分解されず長期間発現が維持される。この変異を導入しても、マウスは正常に生まれて、外見的には異常は見当たらない。しかし海馬のシナプスを調べると、このマウスは期待通りArcの発現が維持され、グルタミン受容体が長期間抑制された状態が生じることが確認できる。
おそらく様々なテストを行い、このマウスの記憶に異常がないかどうか調べたと思うが、結局大きな異常は見つからなかったようだ。そして最後に、円形の部屋で出口を見つける課題を用いて2週間学習させた後、出口を急に全く反対側に動かした時マウスがどう反応するかという課題ではっきりした差が生まれることを発見する。
すなわち、新しい課題が生じると、正常マウスはこれまでの記憶にとらわれず、様々な試行を行うのに、Arcの発現が持続するマウスでは、すでに出来上がった記憶に囚われ、記憶に残る出口の場所から順番に出口を探す。要するに、臨機応変に行動を変化させることができない。逆から考えると、Arcは記憶が振れるのを抑えていると考えてもいい(勝手な解釈だが)。
ある意味では単純な実験だが、シナプスの調整にも細胞周期と同じぐらい分子の厳密な発現時間のコントロールが行われていること、そしてそれが狂うと記憶の書き換えがうまく行かないという結果を知ると、Arcが薬剤中毒の鍵になっているというこれまでの臨床結果もふくめて納得できた。
2018年6月19日
プラナリアの身体の中には全ての細胞へと分化できる幹細胞があり、これが定常的な細胞の新陳代謝とともに、プラナリアの驚異の再生力に関わっていることは、長年の研究で明らかになった。また、プラナリアの幹細胞の多能性を検出するための放射線照射個体の再構成実験系も出来上がっている。となると、次の課題は、幹細胞を分離して、それを個体の再構成系に移植する実験だ。ただ、この為には細胞を単離するための方法の開発が必須だ。
今日紹介するStowers研究所からの論文はこの課題に挑戦し成功した力作で、6月14日号のCellに掲載された。タイトルは「Prospectively isolated tetraspanin+ neoblasts are adult pluripotent stem cells underlying planaria regeneration(前もって分離されたテトラスパニン陽性のネオブラストはプラナリアの再生を支える多能性細胞)」だ。
著者らはすでに放射線照射したプラナリアを単一細胞で再構成する実験系を構築しており、約6%の細胞が再構成能力を持つことを示していた。この研究では、この確率を100%上げることが目的だ。そのために、単一細胞の遺伝子発現解析をはじめとする最新のテクノロジーを惜しみなく使っている。全部を紹介するのは大変なので、かいつまんで説明する。
まずネオブラストのマーカーとして使われているPiwi-1の発現を指標に、5月10日に紹介した現在発生学を変えつつあるテクノロジー単一細胞レベルの遺伝子発現解読法(
http://aasj.jp/news/watch/8430)を用いて、この集団を数多くの分画に分けることができ、その中でもNb2分画がもっとも未熟な幹細胞としての条件を備えていることを明らかにしている。そして、このNb2がtetraspanin-1と呼ばれる膜タンパク質を発現していることをついに突き止める。
プラナリアでこのtetraspanin-1はプラナリアが障害を受けた時、幹細胞がその場所に移動する過程に関わることを明らかにし、幹細胞の機能にとって必須の分子であることを確認している。その上で、tetraspanin-1に対するポリクローナル抗体を作成し、この抗体で濃縮すると、単一細胞移植による放射線照射プラナリアのレスキュー効率が、23%まで濃縮できる事を示している。最後に、放射線照射プラナリアへの移植実験、再生実験などから、多能性幹細胞が、環境のシグナルに応じて、様ざまな系列へ分化誘導されることを示している。
以上のことから、これまでネオブラストとして特定されていた細胞の多くは、一部特定の系列へのコミットメントが進んだ細胞で、tetraspanin-1陽性細胞だけがもっとも未熟で、多能性を持ち、自己再生を維持している幹細胞であることを示している。この研究からだけで、幹細胞を100%にまで濃縮できたとは言えないが、23%はかなり高い濃縮に成功したと言って良いだろう。また、血液学のようにいくつかのマーカーを開発すれば、100%も可能だろう。これまでもプラナリア研究を見てきたが、ついに幹細胞からの段階的分化の道筋については、かなり信頼の置けるモデルが完成し、プラナリア再生研究が新しい段階に到達したと言える。このように、プラナリアのゲノムが明らかになり、多能性幹細胞の分離が可能になった今、残されたチャレンジは、プラナリア多能性幹細胞の培養ではないだろうか。是非若い研究者により、このハードルがクリアされる事を祈っている。
2018年6月18日
膵臓癌のほとんどは、発見された時にリンパ節転移や遠隔転移が存在する進行癌で、これが治療が難しい一つの原因だ。ただ、これにとどまらず、せっかく早期発見できて、手術時にもほとんど転移が見つからずに安心していても、2年ぐらいして転移が発見されるケースがかなりあることだ。即ち、早期発見したと思っていた時にはすでに隠れた遠隔転移細胞が存在して、それが何かの拍子に活動を始めて、完治をはばむというはなしだ。
今日紹介するCold Spring Harbor研究所からの論文は、このステルス転移ガンが発生するメカニズムを調べた研究で6月15日号のScienceに掲載された。タイトルは「Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases(対処できないERストレスが潜伏性の膵臓癌を発生させる)」だ。
この研究は最初から潜伏性のステルス転移ガンが存在するという仮説で研究を進めており、まず何らかの理由で亡くなった転移がないと診断された初期膵臓癌患者さんの解剖例を集めて、肝臓に膵臓癌の潜伏性転移がないか詳細に調べるところから始めている。調べた全例で、膵臓癌マーカー陽性の細胞が単独で肝臓に見つかること、そして転移癌は免疫反応に必須のMHC分子の発現がE-カドヘリンとともに低下していることを発見する。
この観察から、原発巣の細胞の一部がE-カドヘリンを失うことで転位がおこり、その細胞はMHCが欠けているために免疫反応から逃れられて潜伏するというシナリオが生まれる。
これ以上はヒトで確かめることはできないので、マウス膵臓癌モデルについて同じことが起こっていることを確認し、この潜伏細胞から細胞株を樹立している。この細胞は免疫が成立していないマウスでは増殖するが、免疫が成立していると増殖が抑えられ、免疫から逃れた潜伏がん細胞だけが残る。従って、何らかのきっかけで免疫機能が低下したり、あるいはガンの変異が重なると転移巣が再活性化されることになる。
最後に、Eカドヘリン陰性、MHC 陰性のステルス細胞の発生するメカニズムを調べる目的で、Eカドヘリン陰性、陽性の細胞を比較し、発現している分子セットから、ステルス細胞ではERストレスに関わる分子が強く発現していることを発見する。あとは、ERストレスに関わる分子を阻害したり活性化させる実験で、膵臓癌がERストレスを処理できない時にMHC発現が抑制されること、そしてこれによりがん細胞が免疫系にキャッチされることを明らかにしている。
以上の結果は、潜伏するステルスガンは、細胞自身の増殖状態の変化ではなく、免疫系との関わりで発生するグループがあることを示している。
以前から、ERストレスにより細胞が転移しやすくなったり、あるいは静止期を維持する幹細胞化が起こる可能性については研究が進んでいるが、免疫系との関係だけで潜伏性が決まるというケースは今回の研究が初めてではないだろうか。いずれにせよ、ガンの多様性にどう立ち向かうかが、現在最も大きな課題になっていることを実感する。幸いこの研究では、これに立ち向かうヒントも示唆している。まず、ステルス細胞は免疫機能が低下すると増殖するため、手術後免疫が低下して、このような細胞が増えないように注意することが重要になる。著者らは、術後のストレス反応を抑えて免疫系を維持することが重要で、そのために術後に高栄養状態を保つことがステルス細胞の増殖を抑えるのに役立つかもしれないと示唆している。もう一つのヒントは、ステルス細胞のMHCがERストレスを解消してやることで発現が戻ることで、このために化学シャペロンの投与が役立つと示唆している。是非早急にこれらの可能性を確かめて欲しいと思う。
2018年6月17日
2005年、チンパンジーゲノムの解読が報告され、「単一塩基の違いが1.2%」という数字が一人歩きしている感がある。私はこれを「猿の惑星症候群」と名付けている。すなわち、サルもちょっと変われば言葉を話して人間と同じになると考えてしまう「傾向」で、一部のサル学の人たちのサルへの愛情が色濃く反映されてしまっているように思う。
実際、どのような変異がヒト、特にヒトの脳の進化に関わっているかを考えると、このブログでも紹介したように、小さな領域で起こる重複が関わっている可能性が高まってきたが、これまでの精度の解読はほとんど役に立たない。最も致命的なのは、ヒトゲノムを下敷きにしてしまって、猿のゲノムにヒトゲノムのバイアスを加えて「猿の惑星症候群」に手を貸してしまった。
今日紹介するワシントン大学を中心とする論文はかなりレベルの高いオラウータン、ゴリラ、チンパンジーのゲノム解析の論文で、このデータはヒトへの進化を理解するのに役立ちそうな予感がする研究で6月8日号のScienceに掲載された。タイトルは「High-resolution comparative analysis of great ape genomes(類人猿のゲノムの高精度比較解析)だ。
まずこの研究では、一分子シークエンサーを用いて一度に長い配列をしかも100回近く繰り返して読むことで、ヒトゲノムを下敷きにせず構成している。この結果、ゲノム解析で残されていたギャップは平均で100倍近く減らすことに成功、また一分子シークエンサーを使いつつ、99%を越える精度に達している。その結果、ヒトには存在しない遺伝子についても数多く発見でき、進化を詳しく追いかけられるようになった。
この解析データに基づき、様ざまな議論が行われているが、あまりに膨大なので今日は神経進化に関して面白いデータだけをつまみ食いして紹介する。
まず脳の進化の駆動力として注目が高まっている大きな構造変化を調べると、なんとヒト特異的変化の139箇所が遺伝子調節の最も重要なスーパーエンハンサーに集中している。従って、脳の遺伝子発現は人間と猿で随分違っていると考えていい。例えば脳とは関係ない例で示すと、男性ホルモン受容体のエンハンサーでも重複による構造変化がみられる。それぞれの種を比べると変化により新しい構造ができており、この結果人間がペニスの骨を失い、ゴリラは雄の猛々しさを演出しているの可能性を示唆している。このように構造的変異は多様な形質変化の原動力であることがわかる。
さて、このような構造変化と、脳の様々な細胞での遺伝子発現を比べ、脳の進化に関わる大きな構造変化を探している。このような研究が様々な類人猿で可能なのは、ゲノムを調べた個体のiPSが樹立されていることで、分化させた細胞の単一細胞レベルの遺伝子発現を統計的に処理することで各系列の遺伝子発現を決めることができている。この結果、ヒトの幹細胞radial gliaと興奮神経で発現があがっている遺伝子、および発現が低下している遺伝子を特定している。
この中で、ヒト特異的に発現が低下させていると考えられる遺伝子はradial glia細胞に集中しており、遺伝子発現低下に関わる構造変化の実に41%を占めている。このことから、進化にはより遺伝子発現セットを単純化することが重要になるのかもしれない。一方ヒト特異的構造的欠失はradial gliaにも興奮神経にも濃縮されている。他にも、ヒト特異的新しい遺伝子がこのような構造変化から生まれることはすでに証明されている。今回発見された「意味深」な領域の様々な機能解析がこれから始まるという予感がする。
以上のように、ヒト脳進化の入り口にようやく立てたというところだが、この研究の貢献度は大きいと思う。個人的にも、ヒトの脳の進化に関しては目が離せない時代が来たように感じている。
山中iPSが可能になった時、この論文の著者の一人Gageは、まず類人猿のiPSを樹立すると興奮していたが、この先見性が今実を結ぼうとしているのを実感する。
2018年6月16日
CLOVES症候群は極めてまれな病気で、脂肪細胞の増殖、血管奇形、色素斑、側湾症などさまざまな症状が出てくる。特に進行する脂肪腫とリンパ管障害による浮腫のために一度見たら忘れることのない外観を示す。これまで大きくなった腫瘤を外科的に取り除く以外に治療法はなく、予後は悪い。
2012年この病気のメカニズムが明らかになり、PIK3CAと呼ばれる細胞増殖のマスター遺伝子が発生途上で活性化型突然変異を起こし、その細胞が異常増殖を起こして様々な症状が出ることが明らかになった。この結果、CLOVESは現在ではPROS(PIK3CA related overgrowth syndrome:IK3CAが関わる過剰増殖症候群)と呼ばれるようになった。
今日紹介するパリ大学を中心にフランスの研究機関が協力して発表した論文はPI3KCAを抑制する薬剤を開発し、CLOVES症候群の患者さん全例の治療に成功したという論文でNatureオンライン版に掲載された。タイトルは「Targeted therapy in patients with PIK3CA related overgrowth syndrome (PIK3CAが関わる過剰増殖症候群の分子標的治療)」だ。
PIK3CAはガンでも変異がみられ、がんに対する標的薬として開発が進んでいた。この研究ではまずはCLOVESと同じ変異をマウスのPIK3CAに導入し、生まれてから一部の細胞で活性化型分子が発現するように操作してCLOVES症候群モデルマウスを作成し、このマウスをノバルティスがガンの標的薬として治験を進めているBYL719を用いて治療実験を行なっている。結果は、病気を発症させたマウス全例でほぼ病気を完治することができるという、赫赫たる戦果をあげることができた。
そこで次は、手の施しようがなくなり、予後数ヶ月と診断された2人の症例を第1/2相試験を行い、2例ともBYL719投与後急速に改善し、ほぼ症状が取れすでに1年半程度経過している。マウスの実験から、薬剤を止めると再発することがわかっており、患者さんはこの薬剤を続ける必要があるが、副作用は対応可能な高血糖以外ほとんどないという結果だ。
この結果を受けて、おそらくフランスの患者さん全員ではないだろうか、17人の患者さんに投与を始めている。皮膚に現れた色素斑や毛細血管増殖は全ての患者さんで消失し、腫瘤も縮小したおかげで、それまで痛み止めとして服用していたモルフィネを中止できている。他にの消化管出血は改善、あるいは血管異常による血栓の危険性も解消した。
これ以上詳しく述べても仕方ないだろう。1年半ぐらいの投与期間では副作用がなく、しかも効果は絶大だ。すでに認可が行われている薬剤だと思うので、世界中の患者さんの治療に使える日も近いと思う。重要なシグナル分子が活性化される病気はFOPをはじめとして多く発見されている。せっかく原因がわかっても、それから研究が進んでいないという状況が続いているが、今日紹介した論文は、同じようなことが他の病気でも十分起こりうることを示す医学の勝利だと言える。