2017年5月3日
今回は「自閉症と睡眠」と「自閉症と食事」についてレポートの内容を紹介する。
III 自閉症と睡眠障害
最近の論文によると、自閉症の人たちの半数が、寝つきが悪い、なんども目がさめる、朝起きるのが極端に早いなどの睡眠障害を持っている。これに昼間の行動障害が加わり、学習を妨げ生活の質を落としてしまう。
同時に睡眠障害の子供を持つ親も、徘徊して事故が起きるのではと、睡眠が障害され、強いストレスにさらされている。実際、4歳を超えると徘徊による事故は命に関わる。
自閉症に伴う睡眠障害は病気として捉える必要がある。例えば自閉症の場合概日周期(夜と昼のリズム)に関わる遺伝子の変異する確率が2倍高い。
就寝中に起こるてんかん発作で睡眠が妨げられている場合があること、自閉症の人の11-40%が様々な不安障害を抱えていること、も知られており、これが睡眠障害の原因になることを念頭におく必要がある。
脳波を調べる睡眠相の研究も行われており、自閉症の場合動眼神経が活動するREM睡眠の比率が少ないことがわかっている。このレポートではREM睡眠をそのまま夢を見ることと関連させているが、
最近の研究ではREM=夢という通説は間違っていることがわかっており、頭頂後頭皮質のような夢中枢の研究が今後必要になると思う。
他にも、メラトニンの分泌が少ないなど研究は着実に行われている。もしこの結果が正しい場合、メラトニンの投与は治療のための選択肢になる。
現在睡眠障害の治療として期待されているのは、バンダービルト大学で開発された、自閉症児の親に対する教育プログラムで、ワークショップでは、両親に日中の運動とアウトドアでの活動の重要性を説き、子供が決まった時間に就寝し、途中で起きてもすぐに寝るための様々な方法を教えている。ワークショップ参加者の声から判断すると、このプログラムは効果があるようで、同時に両親もストレスから解放されることができたと述べている。
IV 自閉症と摂食障害
最近の総説論文によると実に70%の自閉症スペクトラムの子供に何らかの摂食障害が見られ、36%は重い摂食障害と診断される。
限られた種類の食物や、特定の色や口当たりの食べ物しか口にしなかったり、食事を中断するなどが症状になる。ただ、全てが精神的な症状ではなく、例えば運動障害によって咀嚼や嚥下機能が低下していたり、胃から腸への排出が遅れたりする場合もある。
以上は摂食障害(feeding disorder)だが、食欲や食行動の異常(eating disorder)、すなわち食べなかったり食べ過ぎたりする行動異常もしばしば見られる。
慢性的な過食症は、子供だけでなく、成人しても見られる異常で、満腹感が低下していることが多い。また、自閉症児は食物の匂いや口当たりに感受性が高く、その結果決まった高カロリー食品を偏食することになる。この場合、肥満になるだけでなく、栄養素によっては不足することになる。自閉症治療に認可されているリスペリドンも食欲増強作用があるので注意する必要がある。
異食症
食べ物とは言えない様々なもの、例えば釘、ガラス片、時には壁から禿げた塗料や消毒材など、を口に入れる異食症は、知的障害を持つ自閉症児にとっては命に関わる重大な事故につながり、最も注意の必要な症状になる。
幸い、行動治療の効果が出ると、異食症も改善する。
最近アトランタの自閉症センターから、異食症を改善するプログラムが発表されている。このプログラムでは、セラピストが自閉症児に、問題となる様々なものを示し、子供が避けると褒美を与えたり、興味を違う対象に向けさせたり、間違ったものを食べるのを止める気持ちをもたせたりするセッションを繰り返す。必要な場合、なんと87セッションが行われる。
現在短期効果については確認されているが、長期効果がわかるためには今後の追跡調査が必要。
摂食障害対策
家庭で対応しきれないことが多い。このレポートでは、医師、栄養士、介護士からなるチームによる、食生活の診断、それに基づく治療プログラム作成、そして児童に対する個別指導などの必要性が強調されている。
特に、
1) 野菜、果物、タンパク質など、どれかを完全に避ける、
2) 特定のブランド、あるいは特定の形や色の食品しか食べない、
3) 食べさせようとすると、口を閉ざしたり、嘔吐したり、食事を中断する。
4) 食べ物に興味を示さない。また褒めても反応しない。
5) 専門家により咀嚼などの運動障害があると診断される。
6) 専門家により栄養不足と診断される。
などの項目の2つ以上が認められるときは、治療が必要。
過食症:
最近の研究によれば、過食は早期から始まり、2−5歳の自閉症児の16%が肥満であることが明らかになった。これは正常児の10%と比べると明らかに高い。原因か結果かは明らかでないが、過食児の多くは、複数の向精神薬を服用している場合があり、専門家とよく相談して治療方針を決める必要がある。
治療としては、偏食を治し、量を減らし、エクササイズを進めるといった一般的な方法しかない。冷蔵庫や食べ物の保存場所に鍵をかけるのも対策の一つになる。自閉症を持つ家族のためのマニュアルが公開されており、この利用も対策の一つになる(我が国の状況は把握できていない)。
問題は、アウトドアでのエクササイズといっても、自閉症児には難しいことが多い点で、これがもとになって、両親のストレスが増えるようでは元も子もない。行動異常や知的障害のある子供達も可能なメニューの開発が望まれる。
最終回の明日は精神的な問題について紹介する。
2017年5月2日
このブログは第一線の学生や研究者に読んでいただいているが、難解な表現が多くあるにもかかわらず、専門外の方々にも読んでいただいている。そこで今日から3日間は連休特集として、論文紹介ではなく、最近Autism Speaksと呼ばれる米国NPOから発表された「Autism and health(自閉症と健康)」と題された特別レポートを紹介しようと思っている。このレポートは
Autism Speaksのウェッブサイトからダウンロードできる。
このレポートの目的は、自閉症自体の治療ではなく、自閉症の患者さんがかかりやすい様々な病気についてわかりやすく解説することだ。内容は、
1) 自閉症とてんかん
2) 自閉症と消化器の異常
3) 自閉症と不眠
4) 自閉症と食事
5) 自閉症と精神衛生
6) 自閉症と突然死
からなっており、自閉症の方々に起こりやすい病気をあらかじめ知ってもらって、できるだけ健康な生活を送ってもらうための情報を提供している。
私は自閉症の専門家では全くないが、このレポートの前書に、「自閉症を持つ人たちの平均寿命が36歳である」と書かれているのに驚いた。これを知ると、自閉症を全身疾患として捉え直し、少しでも健康な生活を送ってもらうことを目的とするこのレポート重要性は計り知れない。本来ならAutism Speaksの許可を得て紹介するのが筋だろうが、日本の人にも正確な情報が届くなら、おそらく問題にはなるまいと、私の一存で紹介することにした。
自閉症とてんかん
てんかんの発症率は1-2%だが、自閉症の方ではなんと発症率が20-33%で、就学前と思春期に発症のピークが見られる。自閉症の約1/3を占める知的障害(IQ70以下)を併発するケースで発症率が高くなる。
21編の論文をまとめた最近の研究は、てんかんが自閉症の死因の7−30%を占めることが示されており、自閉症の健康を守るための最優先項目になっている。
症状としては、1)何かをじっと見つめる発作、2)筋肉硬直、3)四肢の不随意発作などが特徴的だが、もともとてんかん自体は多様な症状を示すので診断は専門家に相談することが最も大事だ。てんかんが自閉症に多いことをしっかり認識するのが、患者さんや家族にとって重要な点だ。
てんかんの治療については専門家に任せることになるが、症状を抑える抗てんかん剤は約2/3の患者さんに効果がある。効かない場合は、迷走神経刺激、あるいはてんかん発作の引き金を脳領域を外科的に除去する場合もある。
最近自閉症とてんかんを誘導する様々な遺伝的異常が明らかにされてきた。それぞれは、特定の遺伝子の変異による特異的な病気だが、共通のメカニズムがわかると、多くの患者さんに利用できる治療法の開発が期待できる。
自閉症と消化器異常
2014年、自閉症児は正常児と比べて8倍、慢性の消化器症状を示すことが明らかにされた。腹痛、腹部のガス、下痢、便秘、排便痛などが症状で、一般的に自閉症の症状が重いほど、腹部症状も重い。特に、コミュニケーションが取りにくい子供で症状が重くなるので注意が必要。
自閉症児のお母さんの観察にヒントを得て研究が行われ、細菌の毒素が消化管と脳をつなぐ迷走神経を刺激して、脳に影響を及ぼすことを発見している。すなわち、腸の細菌叢は自閉症児の行動異常を悪化させることがある。 今年、自閉症児の腸内細菌叢を調べた研究が発表され、1)毒素を持つクロストリジウムのような細菌の比率が高いこと、2)このような細菌の増殖と腸内での炎症反応がセロトニンなどの神経伝達物質のバランスを変化させることが示された。この結果を受けて、正常児の細菌叢を移植する臨床治験が始まっている。
これらの例からわかるように、自閉症のケアは常に消化器の異常の可能性を念頭に置いて進める必要がある。その例として、
慢性の便秘:一過性の便秘と異なり、持続的で腹痛を伴い、場合により直腸裂傷、痔、脱肛などに発展する。コミュニケーションがうまくとれない子供では発見が遅れ、重大な結果につながることがあるため、子供の様子がおかしいと思う場合(背中をそらせて弓なりの体位をとる、お腹を押さえる、歯をくいしばる)場合は医師に相談する必要がある。便秘は腸内細菌叢を変化させ、様々な行動異常を悪化させることもある。
原因としては、1)無グルテン食や偏食により食物繊維がとれない、2)リスペリドン(リスパダール)などの向精神薬、3)行動異常に伴うトイレ習慣の乱れ、が主なものだが、腸管の奇形や運動異常など器質的変化も常に考慮が必要。
(無グルテン食が自閉症の症状を改善するというレポートが出されているが、統計学的にしっかりと計画された治験でほとんど影響がないことが明らかにされている。特殊なケースを除くと、無グルテン食など制限食により食物繊維不足になる方が心配)
治療は、薬剤治療と行動治療を並行して行うが、家庭としてはできるだけ食物繊維をとらせるよう心がける。
慢性下痢:下痢が続く場合は様々な疾患を考えることが必要。自閉症の場合に注意が必要なのは、便秘が原因で下痢が続くことがある点だ。原因を特定することが重要で、もちろん医師の指示に従う。
胃食道逆流症も自閉症児にはよく見られるので注意が必要。喉に引っかかった感じや胸焼けを訴える場合はこの病気が隠れていることがある。結果、食が細ったり、就寝前の食事を避けるようになる。また、会話が難しい子供は、自損行動や反抗的な態度として現れることもある。
治療は制酸剤、ヒスタミン阻害剤、プロトンポンプ阻害剤で治すことができる。
ヨーグルトなどのプロバイオの効果は、まだ動物実験段階で、統計学的に信頼に足る治験は行われていない。宣伝に惑わされないことが重要。
明日は睡眠障害、食事についての内容を紹介する。
2017年5月1日
ドイツ・ライプチヒのマックスプランク研究所の前所長スベンテ・ペーボさんたちの地道な努力により、石器時代の人骨が残っておれば、DNAを抽出し、塩基配列を決める方法が確立し、ゲノム解析は今や考古学に欠かせない技術になっている。10年余り、この分野の研究論文を読んでいると、古代のヒトゲノムのみ解読する方法の開発と並行して、質のいいDNAが得られる骨の種類も明らかになり、この技術が一般にも利用できる方法に発展してきたのがわかる。
このように質のいいDNAを求める方向と並行して、これまで質が悪いとして使われなかったDNAも使い尽くすための研究が進んでいたようだ。今日紹介するライプチヒ・マックスプランク研究所からの論文は、石器時代の人骨が見つかった住居跡の土からDNAを採取して解読できるか調べた論文で、Scienceオンライン版に掲載された。タイトルは「Neandertal and Denisovan DNA from Pleistocene sediments(石器時代の堆積物から採取されるネアンデルタール人とデニソーワ人のDNA)」だ。
鉱物はDNAなどの有機物を吸着して守ってくれる働きがあることがわかっている。このため、土壌からDNAを採取して生息していた動物や植物を推定するための方法が進んでいたようだ。この研究は、これまで開発された方法を、考古学にも利用するための条件設定を主目的にしている。したがって、すでに考古学やゲノム解析が進んでいるヨーロッパ及びシベリアの7箇所(1.4−5.5万年前の石器時代遺跡)の土を採取し、そこから哺乳動物のミトコンドリアDNAを精製、ライブラリーを作成して配列を決めている。論文は、最終的に人間のミトコンドリアDNAの配列を読解するまでの過程を順を追って示している。
まず驚くのが、土壌から得られたDNAの79-96%が全く由来がわからない点だ。要するに、私たちがゲノムを解読できた生物は限られている。このわけのわからないDNAから目的のDNAを採取するため、哺乳類ミトコンドリアを広くカバーできる242種類のプローブを作成し、土壌DNAから前もって哺乳動物mtDNAを精製している。その結果、それぞれのライブラリーから14-50114種類のmtDNA配列を読むことに成功している。これは12種類の哺乳動物に対応し、もちろんマンモスや当時生息していた毛むくじゃらのサイ、クマ、シカ、狼、ハイエナなど、ヨーロッパやシベリアに多くの動物が暮らしていたことがわかる。なんと、現在アフリカに生息するハイエナとほとんど同じハイエナすらヨーロッパに生息していたようだ。
次に原人のmtDNAに焦点を絞ってライブラリーを形成して解読を行っている。今回選んだ遺跡の土壌からは、デニソーワ人のmtDNAが一種類、ネアンデルタールのmtDNAが8種類特定されている。新しい人種などは発見されていないが、これまでのゲノム配列と対比することで、土壌からのDNAも各住居跡の原人の系統関係を相当正確に明らかにするために利用できることがわかった。特に同じ遺跡から発見される複数の異なる系統の今後の解析は面白い。
この研究で最も懸念されるのが、DNAが他の年代の地層に浸透しないかという点だが、幸い鉱物に吸収されることで、同じ年代の地層に止まることも分かった。
研究はこれだけで、メッセージとしては地味だが、mtDNAについていえば、骨から得られる量に匹敵するぐらいのDNAを得ることができることがわかり、古代人の系統関係や生活状態など、さらに詳しい解析が可能であることを期待させる論文だと思う。ミトコンドリアは母型なので、系統交流についても面白い話がわかるような気がする。
2017年4月30日
毎日紹介する論文を探すために必ず見るのが、大学や学会のプレス発表を集めた国際的キュレーションサイトで、基本的には生命科学に限ったサイトを閲覧している。ただ、ざっと目を通すが、プレス発表の内容は読まず、面白いと思えたタイトルは実際の論文にあたり、自分で判断している。おおよそタイトルから面白いと思う5−10編の論文を毎日ダウンロードし、目を通している。大変な作業に思えるかもしれないが、長年やっていると慣れてしまって、だいたい2−3時間あれば十分で、出勤前と通勤時間の間で作業を終えることができる。
現在2つのサイトを閲覧しているが、最近生命科学の中に経済や政治の論文が結構混じっている。政治も経済もいつかは生命科学になると思うとキュレーターの判断に納得するが、息抜きとしてたまに読むようにしている。
今日紹介する論文もこのキュレーションサイトで紹介していたのをダウンロードした。このバージニア工科大学からの論文は、一般的な意味での生命科学とは全く関係なく、幾つかの公表された統計データを集めて、SNSが政治や権力の腐敗を防ぐ役割があるかを検証した論文だ。タイトルはズバリ「Does sociall media reduce corruption? (ソーシャルメディアは腐敗を抑えるか?)」で、Information Economics and Policyオンライン版に掲載された。
この雑誌は初めてなのでデータを調べてみたが、それほどレベルの高い雑誌ではないようだ。ただ、研究の方法は単純明快で、世界銀行から発表されている腐敗度を示すControl of Corruption Index(CCI)と、フェースブックのデータをもとに世界各国のフェースブックユーザーのデータを集め分析し提供しているQuintlyという会社のデータから、各国でのフェースブックの普及度を調べ。両者の相関関係を調べている。この研究の最も重要なデータはこれだけで、後はこのデータの信頼性について様々な要因を加味して検定している。したがって、論文の中で図1として示されたデータをまとめると、
1) まず予想通り、フェースブックの普及率が低い国と、世界銀行の発表している腐敗指数は逆相関する。
2) 腐敗係数が極めて高く、フェースブックの普及がほとんど進んでいない一かたまりの国が数多く存在し、リビア,赤道ギニアなど多くのアフリカの国が含まれる。
3) 腐敗度の最も低いのが北欧3国だが、フェースブックの普及率も高い。
4) 最もフェースブック普及率の高いのはアイスランドで、腐敗度は我が国と同じ程度。
5) 我が国は極めて特殊で、フェースブックの普及率は開発途上国並にもかかわらず、腐敗指数はだいたいフランス、英国、ベルギーに近い。
もちろんこのデータだけからフェースブックが普及すると腐敗は防げると結論するのは早計だろう。実際には経済発展や福祉、政治の伝統の方が腐敗度ともっと相関すると考えてもいい。この点を調べるため、様々な回帰試験を行っており、確かに都市化など多くの要因がこの結果に反映されることも検証している。
中でも面白いのは、報道の自由度との関係で、報道の自由がない場合はとくにSNSの力が発揮できる点、また一般報道との補完性なども指摘している。
いずれにせよ、これはスタートラインで研究としてのレベルが高くないことは専門外でもわかる。しかし、このデータからスタートして、例えば腐敗の激しい一かたまりの国を、同じ指標で追い続けるなど、研究手法としては期待できるのではと思う。
それに加えて、不完全な統計であっても我が国の立ち位置も面白い。特に警官が賄賂を取るといったことはないが、今問題になっている権力者に対する忖度や、役所が文書を平気で破棄する点など、違った腐敗が問題になっている我が国でも、SNSが腐敗を防ぐ可能性の解析は重要だと思う。
論文としては物足りないが、腐敗の解析まできちっと論文として残そうとする精神には感服している
2017年4月29日
医学の常だが、病気を理解するための新しい視点が生まれると、治療のための大きな希望が生まれるが、研究が進めば進むほど、病気の難しさが理解されるようになり、最初の希望がしぼんでしまう。このことが最もよくわかるのがガンのゲノム研究で、ゲノム解読が安価に行えるようになってガンの個性がわかると、治療標的が見つかる可能性が高まった。しかし、ガンのドライバー変異を標的にした治療も、最初は高い効果を示しても、根治には届かないことがわかってきた。すなわちガンの方が多様化して、必ず治療耐性を持った細胞が現れることを示している。事実、ガンのゲノム解析第2弾として行われたガンゲノムの多様性の研究は、ガンが早い段階からゲノムレベルで多様化していることを明らかにした。
もちろん医学も手をこまねいているわけにはいかない。系統的にガンの多様性のルーツを調べ、本当のプレシジョンメディシンの可能性を探っている。今日紹介する英国クリック研究所を中心としたTRACER国際コンソーシアムからの論文もこの方向の研究の一つで、臨床医とゲノム研究が密接に連携して新しい治療指針を求めて研究が進められていることがよくわかる研究だ。一般のゲノム研究と比べると、より臨床の匂いが強い。タイトルは「Tracking the evolution of non-small-cell lung cancer(非小細胞性肺がんの進化を追跡する)」だ。
これまでと比べて、何か新しい試みが行われている研究ではない。100人の肺ガン患者さんの手術サンプルのエクソーム検査を行い、現在まで2年間経過を観察しているだけの研究だ。研究は現在も続けられており、最終的には850人の患者さんについて調べることになっている。あえてこれまでと違う点を探すと、一人のサンプルにつき最低2箇所(平均で3.2箇所)、離れた場所からガン細胞そ採取してエクソーム解析を行っていること、及びエクソーム解析を平均426カバレージと高い精度で行っていることを指摘できる。
結果はこれまでの研究と大きく変わるわけではないが、肺ガンを見ている医師にもわかりやすく結果が示されている。詳細を省いてまとめると、
1)30%の点突然変異、48%の大きな領域の変異がガンの中で新たに発生した変異。
2)ガン細胞の多様化は腺癌、扁平上皮癌であまり変化がないが、扁平上皮癌の方が変異の数が多い。
3)喫煙者は変異の数が多いだけでなく、ガン内での多様化も進んでいる。
4)遺伝子コピー数の変化のような大きな遺伝子変化がガンの中で起こると、予後が悪いが、点突然変異として検出されるガン内の多様性は予後に影響がない。
5)多様性にはAPOBECが媒介する変異が最も大きな寄与をしている、
などだ。
この結果から、腺癌と扁平上皮癌は、異なってはいるが限られたドライバー遺伝子の変異で始まり、長い時間を経た後染色体不安定性や DNA損傷修復メカニズムの異常が起こることで、今度は全くランダムに様々な変異が急速に蓄積を始め、新しいドライバー遺伝子の参加や抑制遺伝子の欠損が起こり、この結果腺癌、扁平上皮癌としての性質が失われていくという経過がよくわかる。
この結果を受けて現段階で治療指針を考えると、やはりガンの早期発見が重要だが、常にガンの多様性を考慮して、標的薬を含む多剤併用型の治療法の開発が重要になる。また、急速に突然変異が蓄積するときには、免疫療法は期待が持てるが、ガン特異的ネオ抗原を割り出す技術が必要であると結論できるだろう。
同じようなガンのゲノム研究だが、臨床にわかりやすいよう示されたいい論文だと思う。
2017年4月28日
今までの知識が全く間違っていることを知って驚くことは珍しくないが、今日紹介するウィスコンシン大学からの論文を読んだ驚きはなかなかないだろう。この論文のタイトル「The neural correlates of dreaming(夢を見ることに関連する神経活動)」が示すように、夢を見ているときの脳活動についての研究で、Nature Neuroscienceに掲載された。
このブログで何度も書いてきたように、私たちが夢を見るのは、REM睡眠と呼ばれる目を盛んに動かしているときだと思っていた。ところがこの論文を読むと、すでに夢にREM睡眠が条件ではないことが明らかになっていたようで、ノンレム睡眠(NREM睡眠)時に被験者を覚醒させた場合でも、夢を見ていたというレポートは数多く発表されているようだ。
ではいつ私たちは夢を見るのか?また夢を見ているときを脳イメージングから予測できるか?この問題に挑戦したのがこの研究だ。研究では被験者に高密度の脳波計を着用して寝てもらい、睡眠中急に覚醒させて夢を見ていたかどうか、またどのような夢か覚えているかを聞くと同時に、覚醒前の各部位の脳波を詳しく調べ、夢を見ることと相関する活動を抽出している。
結果だが、
1) REM睡眠、NREM睡眠と夢は相関しない。ただ、REM睡眠中の方が夢を見ている確率は高い。
2) REM,NREMを問わず1−4Hzのゆっくりした脳波が頭頂後頭葉皮質で見られるときは、まず夢を見ていない。
3) 一方、同じ頭頂後頭葉皮質周辺に20-50Hzの周波数の高い脳波が見られるときはNREM睡眠中でも夢を見ていることが多い。
4) 夢の内容を覚えている場合は、前頭頭頂部側方に高周波の脳波が見られる。
5) 語った夢の内容(例えば人の顔を覚えていること)と高周波の脳波の出現場所を対比すると、覚醒時の経験と同じ場所の興奮が見られること。
が主なものだ。
特に、2)、3)の頭頂後頭葉の興奮と夢を見ることが強く相関することに着目し、睡眠中脳波を見ながら夢を見ているかどうか予測できるか試してみると、なんと8割以上の確率で夢を見ていたかどうか予測できることを示している。
以上の結果は、夢を見るためにはまず頭頂後頭葉にある領域が興奮することで、脳に残っている記憶を集め、覚醒時と同じように体験させるメカニズムが作動することを示している。この夢の中枢ともいうべき頭頂後頭葉に存在する楔前部、帯状束、あるいは脳梁膨大後部皮質を覚醒中に刺激すると自分が異世界、あるいは現実から遊離したような気分になるらしく、夢がまず現実から離れることで刺激される可能性を示唆している。
意識の問題を考える上で、本当に重要なことを教えてくれる論文だった。
2017年4月27日
キチンは真菌から動物まで自然界に広く分布しているアセチルグルコサミンが重合したポリマーで、昆虫やエビカニの外骨格の主成分になっている。あまりに当たり前の分子で、医学の対象としてはあまり研究されてこなかったが、最近になってキチンを認識するレクチンにより自然免疫が誘導され、肺や腸粘膜を障害することがわかってきて俄然注目を集めている。
今日紹介するカリフォルニア大学サンフランシスコ校からの論文はキチンの蓄積が老化に伴う肺線維症を誘導することを明らかにした研究で4月20日号のCellに掲載された。タイトルは「Spontaneous chitin accumulation in airways and age-related fibrotic lung disease(自然の過程で気管にキチンが蓄積すると加齢に伴う線維性肺疾患が発症する)」だ。
今でもキチンを健康食品として販売する会社もあるようだが、実際キチンは体に良い働きをしていると考えられてきた。しかし、自然免疫誘導能が明らかになってから、キチン分解酵素を過剰発現させたマウスを作って調べると、キチンに対する自然免疫が低下していることが明らかになり、キチンの蓄積は肺や腸に悪い効果があるのではと疑われるようになった。
この研究ではキチンを分解するキチナーゼ遺伝子操作を通して、肺でのキチンの機能を調べている。まず、キチナーゼ発現細胞を標識遺伝子ノックインマウスで調べると、気管上皮の分泌型細胞で発現すること、またキチナーゼ遺伝子は定常的に発現しており、発現レベルがIL-13などの炎症シグナルで上昇することを確認している。
次に、キチナーゼノックアウトマウスを調べると、1歳ぐらいから急に肺機能異常が見られるようになり、2年以内に50%以上のマウスが死亡することがわかった。組織学的には気道にコラーゲンが蓄積する肺線維症が主病変で、組織にはT細胞の浸潤が見られることから免疫性の炎症の結果線維症が起こったことがわかる。
キチナーゼ欠損マウスとキチナーゼトランスジェニックマウスを掛け合わせて、気道でのキチナーゼを回復させると、キチン蓄積が抑制され、炎症や線維症を抑制できることがわかった。また同じ効果は、キチナーゼ分子を直接気道に噴霧する実験でも確認される。
最後に様々な間質性肺疾患の洗浄液を調べると、キチンの量が上昇していることを明らかにした。おそらく、上皮のキチナーゼ活性が様々な間質性肺疾患で低下し、キチンが蓄積することが、肺の炎症を持続させ線維化を誘導すると結論している。
一般的にはそれほど面白いとは思えない論文かもしれないが、呼吸器の医者からスタートした私にとってキチンが肺を障害することは驚きだ。もともと老化により肺機能が低下するが、この一因がもしキチナーゼ活性の低下であるなら、キチナーゼの吸入補給により老化に伴う肺機能低下も防げるかもしれない。いずれにせよ、肺機能にキチンが関わるなど想像できない組み合わせだった。
2017年4月26日
先日、世界中でMarch for Scienceと名付けたデモが科学者の呼びかけで行われたが、トランプ政権になってポピュリズム政治が簡単に反科学的になりうることが強く認識されたからだ。このこと自体は、多くの社会学者によって昔から指摘されており、特に現在のように政治的分断が深刻になると、科学に関する分断もますます深刻になる。
このことは十分わかっているつもりだったが、今日紹介するシカゴ大学からの論文を読んで、階層間の分断だけがトランプ現象として現れているのではなく、あらゆる階層でイデオロギーの深刻な分断が進むとともに、一般の人にとって科学自体が自分の好みで消費する対象でしかないことがよくわかった。タイトルは「Millions of online book co-purchases reveal partisan differences in the consumption of science(何百万冊の本の同時購買から科学の消費における党派的分断がわかる)」で、今年から出版が始まったNature Human Behaviour4月2日号に掲載された。
もともと科学は中立で、国力を増大させ、国民の生活を向上させることで分断を和らげるものと考えられてきた。おそらく、多くの科学者もそう考えていると思う。しかし、産業革命から現代の情報社会に至るまで、科学自体がデジタルデバイドや失業といった分断の原因になることも確かだ。
この論文を読んでまず驚くのが、著者らが着想した方法だ。従来このような研究ではもっぱらアンケート調査が用いられてきた。これに対し、この研究ではアマゾンなどのオンラインブックショップを通して買った本の分析を通して、政治傾向と科学への興味を調べる、いわゆるビッグデータ解析が用いられている。一人一人の行動から社会を解析することがますます現実になっていることを実感する。
多くのオンライン購買では、まとめ買いも行われる。この場合、同時に買った本のタイトルは全て記録されているので、政治の本を買った人が、ほかのどの分野に興味を持っているのかがわかる。この研究では、オンライン消費記録から、政治に関する本を含むまとめ買いを行った行動を抜き出し、まず買った政治の本のタイトルから、消費者が保守orリベラルかを割り出す。その上で、同時に買った本の中に科学に関する本が含まれている場合、タイトルからわかるその本の内容で、政治傾向と科学への関心との関係を調べている。
予想したとはいえ、結果は驚くべきものだ。まず、保守もリベラルも、異なる意見の政治本は読まない(身に覚えがある)。すなわち分断されている。ただ、どちらの立場でも政治本を読む階層は同じ程度に科学書を買うことから、同じ程度に科学にも関心があるといえる。
しかし、読んでいる科学書の内容を詳しく見てみると、保守は応用科学を好む傾向があり、リベラルは基礎科学を好む傾向がある。例えば生命科学に対する興味は半々だが、保守の人は医学書は手にとっても、生物学や動物学の本を買うことはない。またリベラルは広い分野にわたる科学書を買っているが、保守層が買う科学書は比較的限られている。
実際、保守の人が最も多く買うのが、気候についての本だが、気候について出されている多くの本の中の極めて限られた本が買われている。また、リベラルが買う気候に関する本とは完全に分離している。同じことは環境科学の本についても言える。
要するに、保守とリベラルは政治本だけでなく、科学書でも全く異なる本を読むことで、さらに分断が深まるという結果だ。
この研究では同時に買われた政治、経済、哲学、芸術などの本についても分析している。予想通り、政治、経済、哲学では両者が買う本はやはり分断しているが、それでも共通に買われる本も一定の割合で存在し、科学書のように完全に分離はしていない。
以上が結果だが、方法論にまだまだ問題があるとはいえ、私はこの結果を極めて重要だと受け止めている。
まず政治本をネットで買う階層は、現代社会に取り残された階層ではなく、現代社会を代表する階層と言っていい。この現代を代表する階層の政治信条が異なるのは当然だが、一旦どちらかの傾向が選ばれると、読む本の傾向が決まってしまって、蟻地獄に落ちたように、一つの方向へと縛られることだ。そして、本として提示される科学も、最初から分断された読者を向いていて、分断を助長している。類は類をよぶと納得している場合ではないと感じる
科学は中立で、思想を超えて大多数の人をつなぐ力があるというのは間違いなく幻想だ。さてどうするのか?重要なのは、異なる考えの人が、違いをもう一度認識するところから議論を始めることだと思う。しかしNature Human Behaviourは面白い雑誌だ。
2017年4月25日
縫合することが難しい褥瘡など炎症性の傷口の対しては、何世紀もガーゼの様な布で傷口からの浸出液を吸収する他に方法はなかった。ところが最近になって、ガーゼの代わりに、ジェル状のマトリックスを用いた絆創膏が使われる様になってきた。この中でPromogranはコラーゲンとセルローズの混じったマトリックスによって浸出液に含まれるプロテアーゼを傷口から隔離することで傷の治りを早める。この新しい絆創膏は、生体反応は損傷治癒に必要であるとする従来の考えを改め、慢性の炎症では、炎症物質を抑えることが損傷治癒を早めると発想を転換したことで可能になっている。
今日紹介するドイツ・ライプチヒ大学からの論文はこの考えをさらに進めて細胞浸潤を誘導するケモカインを吸い取って細胞浸潤自体を抑えるマトリックスはさらに優れた絆創膏になるのではという可能性を追求した研究で4月19日号のScience Translational Medicineに掲載された。タイトルは「Glycosaminoglycan-based hydrogenls capture inflammatory chemokines and rescue defective wound healing in mice(グリコサミノグリカンを材料としたハイドロゲルは炎症性ケモカインを補足しマウスの欠損性損傷を回復させる)」だ。
ケモカインは炎症局所で線維芽細胞や白血球から分泌され、様々な種類の白血球の浸潤を誘導する分子で、炎症部位の感染防御に重要な働きをしている。しかし、損傷を治癒するという再生反応に対してはネガティブな働きをすることが多く、結果難治性の潰瘍が起こることになる。
このグループはケモカインが局所のマトリックスに結合しやすい分子構造を利用して、ケモカインだけを補足するマトリックスを探求し、グリコサミノグリカン(GAG)がケモカインと特異的に結合することを発見していた。この研究では、ケモカインとの結合効率を指標に、ポリエチレングリコールとGAGが結合したマトリックスベースにした高分子をさらに至適化し、ケモカインと高い効率で結合する一方、損傷治癒や炎症に関わるサイトカインとはほとんど結合しないマトリックスを完成させている。
完成した最終型のマトリックスの効果を確かめるため、糖尿病マウスの皮膚を欠損させた大きな損傷を作り、マトリックスの治療効果を調べると、現在よく利用されているpromogranを凌駕する損傷治癒効果が見られたという結果だ。また、人間の損傷部位より採取した滲出物と混合する実験で、ケモカインだけが特異的に吸着されることを確かめている。
もちろんこのままでは、細菌感染に対する防御も抑えることになるため、実際に使うときには抗生物質を混ぜたマトリックスが必要だろう。しかし、使っている分子はすでにFDAで許可されている分子であることを考えると、治験の後臨床応用されるのも早い気がする。
健康な人はいいが、糖尿病や寝たきりの人の皮膚潰瘍の治療は現在なお難しい。増殖因子や抗体を用いるのではなく、分子の物理化学的な性質を利用した安価な治療法が開発されれば、大ヒット商品になること間違いない。同じ様な機能性マトリックスの利用は大きな可能性があると実感した。
2017年4月24日
私たちの健康や病気に対する腸内細菌叢の役割に注目が集まっているが、この理由は細菌叢が介入可能なもう一つの自己と考えられるからだ。CRISPR/Casなどの遺伝子編集法の登場で、私たち自身の遺伝子を変えることが可能になりつつあるが、それでも簡単なことではない。一方、腸内細菌叢は常に変化を繰り返していることがわかっており、これを望ましいバランスに保って健康を維持する可能性は比較的高い。事実、〇〇に効く乳酸菌というキャチフレーズは巷に溢れかえっており、どれが優れているのかよくわからない。結局は、乳酸菌というブランドに頼りつつ、宣伝力で小さな違いを販売に結びつけているのが現状だろう。
しかし、腸内細菌の実際の機能が明らかになり、何が効果の元かが明らかになると、腸内細菌自体を遺伝子編集で変化させ、望ましいバランスだけでなく、体に有益な分子を産生させるということが可能になる。実際2014年このコーナーで紹介した論文では遺伝子操作した大腸菌を移植すると、マウスの食欲が抑制されるということが報告されていた(
http://aasj.jp/wp-admin/post.php?post=1755&action=edit)。この時、今後続々この様な遺伝子改変細菌移植治療が報告されるのかと思っていたが、その後ほとんど同じ様な報告を目にすることはなかった。
今日紹介するイエール大学からの論文は久しぶりに目にしたこの方向性の研究で4月20日号のCellに掲載された。タイトルは「Engineered regulatory systems modulate gene expression of human comm.ensals in the gut(デザインした遺伝子発現調節システムにより人間の腸内常在細菌の遺伝子発現を変化させる)」だ。
論文を読んでみると、なぜ細菌の遺伝子操作を通した腸内細菌叢の介入が進まなかったのかわかった。前に紹介した様に大腸菌を操作して移植する方法はたやすい。しかし、人間の腸内細菌叢の大半はBacterioidetesとFirmicutesで、おそらく大腸菌はいくら自由に操作できても安全に腸内で維持することが難しかったからだろう。残念ながらこれまで使用されてきた大腸菌の操作システムは、Bacterioidetesなどの遺伝子操作には役に立たず、Bacterioidetesにも使える操作法を新たに開発する必要があった。
全ての詳細を省くが、この研究はBacterioidetesでの遺伝子発現をテトラサイクリンの濃度依存的に、何万倍に達するまで誘導することが可能な実験系を開発している。この方法は、ほとんどのBacterioidetesで利用可能で、細菌の本来持つ遺伝子群の発現を調節することができ、無菌マウスのみならず、複雑な腸内細菌叢の中でも働くことができる。最後に、腸内でのシアル酸遊離をシアリダーゼの発現を調節できるBacterioidetesを用いて調節できるか調べている。残念ながら、シアル酸遊離は、原料となる糖鎖が必要で、酵素活性をあげたから無限にシアル酸の濃度が高まるわけではないが、操作は可能であることを示している。
結果は以上で、まだ始まったばかりという印象だが、常在細菌の操作法を開発できたという点で、今後細菌叢を実験的に介入する研究が増える様に思える。もちろんこの先には、新しいプロバイオが視野にあるのだろう。
これまでプロバイオというと数多くの細菌株の中から一つを選ぶという方法で行われ、実際にはなぜその株が一番いいのかという根拠に乏しかった。しかし、この様な方法が開発されると、従来の方法は淘汰される危険性さえある。
一方、常在細菌の遺伝子操作は、組換え食物と同じ問題を抱える。また、人間に移植するということは、組換え体の封じ込めができないことも意味する。この問題も早めに議論を始めた法が良さそうだ。