2014年11月3日
自閉症はこのホームページでも何回か取り上げたが、間違いなくゲノム解析の重要な対象になっている。これまで自閉症の発症と関わるとされた遺伝子は千近くになる。おそらく自閉症の子供のご両親は、遺伝子が異常と言うだけで暗い気持ちになられるかもしれない。しかし、遺伝子異常と言っても、親から遺伝して来た異常もあるが、子供の世代で新しく起こった突然変異もある。自閉症の家族歴を調べると確かに遺伝傾向があるが、子供に選択的に発症するケースが多く、おそらく子供の代で起こって来た突然変異の寄与が大きいと予想されていた。この可能性を確かめるために、2千人規模で家族の全エクソーム解読を行ったアメリカの研究が2報Natureオンライン版に掲載された。アメリカ国内だけで競い合ってこれほどのゲノム研究が2つも進んでいるのを目の当たりにすると、ゲノムと人間の脳に対するアメリカの本気がわかる。結果は2報ともほぼ同じなので、ここでは私にとって読み易かった、Cold Spring Harbor研究所を中心とする多施設共同研究の方を紹介する。タイトルは「The contribution of de novo coding mutations to autism spectrum disorder (自閉症に新しく起こった突然変異が寄与している)」だ。研究では両親と自閉症の子供のタンパク質に翻訳される全部分(エクソーム)を解読し、様々な情報処理法を駆使して比べ、子供にだけ見られる突然変異を特定している。この様な検査をすると、正常な子供でも7%−10%近くに親にないアミノ酸変化を伴う突然変異が起こっている。ただ、自閉症の子供ではこの確率が倍になる。更に病気の発生との相関を調べると、新たに突然変異が起こった遺伝子の方が、親から受け継いだ遺伝子より強く病気と相関しており、自閉症のかなりの部分を子供に起こる突然変異病として位置づけることが出来ることが確認された。同じ突然変異は勿論発生初期の分裂でも起こるが、卵子や精子が作られる過程でも起こる。この結果は、自閉症の確率が高齢出産で上昇すると言うこれまでの報告とも一致する。ではどのような遺伝子異常が起こっているのか。先ず、自閉症の子供では予想通り、これまで自閉症に関わるとされていた遺伝子に突然変異が見られる。その中で男の自閉症には脆弱X染色体症候群の原因遺伝子に突然変異を示す場合が多い。もともと脆弱X染色体症候群は原因遺伝子がはっきりとしたまれな知能障害を示す病気であることを考えると、自閉症をこの観点から診断し治療する意味は大きい。実際、この遺伝子に突然変異を持つ自閉症の子供には知能障害が見られることも両方の病気の共通性を示唆している。一人の患者さんに遺伝子異常がどの程度集まって病気になっているのかも調べられて、特に知能の低い子供では多くの自閉症関連遺伝子が集まっていることを示している。他の突然変異が見られた遺伝子には、染色体を調節する遺伝子、神経間の伝達に関わる分子、神経発生に関わる分子をコードする遺伝子に自閉症に関わる突然変異が新たに起こっていることが確認された。
詳細は割愛して、この論文から結論できることをまとめると以下のようになる。1)多くの自閉症の患者さんは親から傾向は引き継いでいるかもしれないが、新しい突然変異が引き金になって病気を発症している。2)ほぼ全ての突然変異は片方の遺伝子でだけ起こっている。3)新しい突然変異は精子や卵子の発生過程で起こることが多く、高齢出産も発症に寄与する。4)新しい突然変異の起こった遺伝子を調べることで、自閉症を更に詳しく分類できる。5)突然変異が引き金になっていても、多くの遺伝子が積み重なって発症する。6)IQの高いグループと低いグループでは発症に関わる遺伝子のタイプが違う。
これだけ聞いてしまうと、手の施しようがないように思えるが、ほぼ全ての患者さんではもう片方の遺伝子は正常だ。従って、自閉症は質の病気と言うより、量の病気と言っていい。今後残った遺伝子の機能を高めることで治療法が開発される可能性もある。その意味で、自閉症とひとくくりにしないで、遺伝子診断をして病気を知ることがいかに重要かを示す論文だと思う。
2014年11月2日
これまでCRISPR/Cas9の利用のほとんどは、Cas9のDNA切断能力を使った遺伝子編集だったが、ガイドRNAがあればCas9がゲノムの特定の場所に結合する性質を利用したそれ以外の様々な方法の開発が進んでいる。例えば、昨年12月26日、生きたまま細胞内の遺伝子を見る方法の開発について紹介した。しかし最も期待されるのが、特定の遺伝子の発現やエピジェネティックな状態を自由に調節するための利用だろう。今日紹介する10月23日号に掲載された2編の論文はカリフォルニア大学サンフランシスコ校の同じグループからの研究で一つのセットになっている。タイトルは「A protein-tagging system for signal amplification in gene expression and fluorescence imaging (蛋白標識システムを遺伝子発現と蛍光イメージングの増強に使う)」と「Genome-scale CRISPR-mediated control of gene repression and activation (CRISPRを全遺伝子レベルの発現抑制と活性化の調節に利用する)」だ。最初の論文では細胞質内で働く抗体の開発と、それが結合する短いペプチドを使ったタンパク質標識方法(SunTag法)について紹介している。遺伝子改変によりタンパク質に蛍光蛋白を融合させる方法は最早ルーチンの方法だが、さらに蛍光シグナルが強くなればと誰もが感じている。一つの分子を複数の蛍光分子で標識出来ればいいのだが、巨大な分子になると追跡したい分子の正常な機能が維持できなくなる。この問題を解決するために、タンパク質の機能に影響のない短いペプチドの繰り返しSunTagで標識しておいて、そのTagを細胞内で発現させた蛍光標識抗体で検出すると言う方法を開発したのが最初の研究だ。原理は簡単だが、抗体を生きた細胞質内で機能させることはそう簡単ではない。試行錯誤を繰り返し、ついに細胞内で特異的にSunTagに結合する抗体標識システムを完成させ、生きた細胞の中で単一分子を追跡できる技術に仕上げている。この技術をCas9と合体させて、遺伝子転写を活性化させる方法が次に紹介されている。Cas9にSunTagをつけて、ガイドRNAと発現させると標的遺伝子の近くにSunTagを寄せてくることが出来る。これを今述べた細胞質内で働く抗体と組み合わせば特定の遺伝子の核内での位置を検出することが出来る。ただ、この論文では蛍光蛋白の代わりに転写の開始を促進するVP64蛋白と抗体を結合させて、目的の遺伝子の転写を活性化する方法を開発した。即ち、ガイドRNAでCas9-SunTagを特定の遺伝子転写開始点に結合させ、抗体に結合したVP64で転写を誘導する方法の開発だ。結果として、この方法が期待通り使えることを確認して、次の論文に示された研究へと進んでいる。この研究では、細胞内のあらゆる遺伝子の転写を調節する新しい方法の開発に挑戦している。これまで網羅的に遺伝子を不活性化する方法としてshRNAなどが使われていたが、特異性の問題、そして活性化の方には使えないと言う限界があった。この論文では、転写を活性化するSunTag, Cas9-VP64システムと、転写を抑制するCas9ーKRABシステムを組み合わせいる。KRABは転写抑制因子で、Cas9と結合させると特定の遺伝子のみ転写を抑制出来ることがわかっている。開発にとって最も重要なのは、Cas9をガイドするRNAの選択だ。実際には、49種類の遺伝子について転写開始点前後1万塩基対についてガイドRNAを合成し、活性、抑制それぞれについて最適な場所をスクリーニングし、抑制の場合は転写開始点を含む領域、活性化の場合は少し離れた上流でガイドRNAを選べば良いことを特定した。この成功でこの研究は峠を超えたと言える。次に、全ての遺伝子について抑制、活性2種類づつガイドRNAを設計し、レンチビールスベクターを用いて、それぞれのガイドRNAが発現する細胞ライブラリー作成して、標的過程に関わる遺伝子の機能を網羅的に特定できるようにしている。要するに特定の遺伝子の発現がon/offになっている細胞を全遺伝子分作ったと考えていただければいい。詳細は割愛するが、この様な細胞があると、例えばガンが増える時どの分子が必要か、あるいはどの分子がそれを抑制するのかなどしらみつぶしに調べることが出来る。実際、この研究ではモデル系として、コレラ毒素とジフテリア毒素に関わる分子を網羅的に調べ、まだ特定できていなかった新しい分子を発見している。膨大な仕事で、これ以上詳しく紹介することは差し控えるが、とても印象的な仕事だった。今後ガン細胞やiPSなどにも導入され、様々な細胞内プロセスに必要な分子の同定が行なわれるだろう。これまで、網羅的に遺伝子機能を調べる方法が数多く試みられて来たが、大きな成功を収めた方法はないと思う。その点で、この方法はポテンシャルが高そうだ。この様な網羅的技術は大学や研究所だけでなく、創薬企業に重要な技術だ。もしiPS研究が国策なら、iPSと組み合わせたこの様なシステムを簡単に企業が利用できるようにすることも、iPS研究で助成を受けている研究者の使命だと思う。
2014年11月1日
優れた技術は多くの研究者の想像力をかき立て、更に新しい技術へと展開して行く。この点でCRISPR/Casシステムは、ゲノムを自由に編集したいと言う研究者の希望にヒットし、ヒットした研究者の想像力やエネルギーを吸収する事で、膨大な可能性を生み出し続けている。テクノロジーの観点から言えば、おそらくiPSに勝るとも劣らないだろう。実際メドラインでざっと数えてみると10月号の雑誌と言うフィルターをかけるとCRISPRで検索すると36編、iPSで検索すると43編だった(正確ではない)。しかし今週はNatureやCellにCRISPRを用いた新しい技術開発の仕事が4編も出ていたのでそれを2回に分けて紹介する。今日紹介する2編の論文はともにCRISPRを発ガンメカニズム解析に利用するための開発研究だ。一編はスローンケッタリング研究所からの論文でタイトルは「In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system(CRISPR/Cas9系を用いた発がん性染色体再構成を生体内でエンジニアする)」で、もう一編のマサチューセッツ工科大学からの論文のタイトルは「Rapid modeling of cooperating genetic events in cancer through somatic genome editing (体細胞ゲノム編集法を用いてガン遺伝子間の共同をモデリングする)」だ。
幾つかのがんでは染色体転座によりキメラ遺伝子が出来る事がガンの駆動力になっている事が知られている。最も有名な例は、ほとんどの慢性骨髄性白血病に見られるBcl,Ablの2つの遺伝子が結合したキメラ遺伝子で、遺伝子変異が診断に使われて来た病気としては最古参に入る。最近では現東大の間野さんが見つけた肺ガンのドライバーになっているEml,Alkの結合したキメラ遺伝子がある。いずれも、キメラ分子に対する標的薬が開発され多くの患者さんを救って来た。勿論この転座だけではがんが起こらない事もわかっている。我が国の被爆者の方の調査から、被爆時に転座が起こったとすると、慢性骨髄性白血病の発症はそれから8年してピークになる事が知られている。ガンを知るためには、ドライバーだけでなく転座の起こる前後にどのような細胞の変化が必要かを解明する事が必要だ。特に成熟後に転座が起こるように設計した動物の開発は重要だ。これに答えたのが最初の論文で間野さん達の発見したAlk転座をマウスでCRISPRを使って誘導できないかに挑戦している。CRISPRで使われるCas9はDNA切断酵素で、ガイドRNAに導かれて正確に遺伝子を切断する。一方染色体転座が起こるときはやはり点座する2つの遺伝子に切断が入り、それが修復される時に転座が起こる。とすると、それぞれの遺伝子の特定部位で遺伝子をCRISPR系で人為的に切断できれば、転座の確率を上昇させる事が出来る。これを確かめるために、アデノビールスにCas9と転座を誘導した部位に相当する2種類のガイドRNAを組み込んだアデノビールスを作成し、気管から肺へ吸入させてガンの発生を待っている。結果は予想通りで、ヒトの肺腺癌に極めてよく似たガンを4−7週で誘導する事が出来ると言う結果だ。勿論このガン治療に用いられるクリゾチニブに良く反応する。このガンではほとんどの場合クリゾチニブが効かなくなる。このモデルを通して、耐性が生まれるメカニズムや、この点座を助ける細胞側の要因が急速に明らかにされる事を期待したい。ただ問題もある。今回の研究では同じ染色体上の遺伝子を選んで転座を誘導しており、遺伝子間の距離も近い。もっとダイナミックな転座を効率よく起こすためにはCas9を媒介に遺伝子を近づける様なテクノロジーの開発が必要だ。おそらくこれも時間の問題だと思う。
もう一編の論文は逆に、ドライバー遺伝子と協調してガンの進展やガンのタイプを決める能力を持つ様々な遺伝子を早くスクリーニングするための実験系を作っている。これも肺ガンをモデルとしているが、遺伝的にRas突然変異と、p53欠損を誘導できるマウスの発ガンモデルで3番目の遺伝子をCRISPR系で欠損させそれぞれの分子が発ガン促進にどうか変わるかを検討している。この研究ではベクターにレンチビールスを用いており、増殖力の高い細胞を狙って遺伝子を導入している。この実験では、肺ガンでしばしば欠失が見られるNkx2-1,Pten,Apcを3番目の遺伝子選び、それぞれの調べており、これらの遺伝子が肺ガンの組織型を決めるのに大きな役割を持つ事を示している(例えばNkx2-1が欠損すると粘液を多く分泌するタイプになる)。ガンゲノム研究が加速し、一つのガンに幾つかの遺伝子変異が共存して特定の形質を作っている事がわかっている。その意味で動物の体内で発見された遺伝子の協調関係を研究できるようになった事は大きな意味がある。最初この酵素が発見されたのは我が国だ。その意味で、我が国の現状を知りたいと思っている。
2014年10月31日
私事になるが私の妻は大動脈弁閉鎖不全と診断され、経過観察中だ。と言っても、まだ症状はなく、山登りでも私より元気だ。しかし、この病気は徐々にではあっても必ず進行する。症状が出た時には、手術で弁を人工弁に置き換える必要がある。ただいつ手術を受けるかは患者にとって大問題だ。心臓手術ということで、体力のある元気なうちに受けたいと思う。とは言え、症状も出ていないのに予防的に受けるのも問題だ。人工弁にも一定の寿命があることを考えると、手術は遅いほどいい。しかし今元気だからといって80を超してから手術を受けるのは大変だ。その時は経カテーテル(TAVR)もあるからなどと考えながら、経過観察を続けている。そんな時、今日紹介するメイヨークリニックからの論文を見つけ、全く個人的興味から読んでみた。タイトルは「Aortic valve replacement for severe aortic valve steoosis in the nonagenarian patients (90歳以上の重度大動脈弁閉鎖症の大動脈弁置換手術の成績)」で、Annals Thoracic Surgeryオンライン版に掲載された。この研究は、過去20年間にメイヨークリニックで行われた90歳以上の患者さんに対する大動脈弁置換術の成績をまとめた論文だ。59例のうち33例は開胸下弁置換手術を行なっており、残りの26例はカテーテルを用いるTAVRでより侵襲の少ない方法だ。結論的には、開胸下弁置換術を行なった33例のうち2例、TAVRのうち1例で手術による死亡が観察されているが、他の患者さんは退院までこぎつけている。術前の状態を見ると、通常手術例では、TAVR を受けた患者さんと比べると、動脈硬化症状の少ない患者さんが(自然に)選ばれている。逆に言うと、TAVRが使えるようになってから、より動脈硬化の激しい高齢者にも弁置換術が行なえるようになった事を示している。実際、TAVRを受けた患者さんの実に34%が冠動脈バイパス手術を受けている。このように、患者さんの条件に合わせて通常手術からカテーテルまで明らかに選択肢が増えている。ただ弁としての機能を見ると、当然ながら通常手術による方が結果は優れており、カテーテルだとどうしても逆流が残るようだ。それでも、心臓病症状の重症度を測る指標で半分以上の患者さんが、運動時の息切れ程度の所まで回復しており、高齢者でも弁置換術の効果ははっきりしている。これまでの臨床結果とも比較されている。90歳以上の通常弁置換手術の術後30日以内の死亡率は、今回は6%だったが、それ以前は17%と言う報告があったようだ。同じようにカテーテルによる置換術でも他の施設から出された論文より成績は良さそうだ。さすがメイヨークリニックと賞賛を送りたい。一方患者側から見ると、手術をするときはやはり病院を選ぶ必要のある事がわかる。是非、各病院に年齢別の手術成績を開示してくれる事をお願いしたい。幸いこの論文の筆頭著者は村下さんと言う日本人だ。もしメイヨークリニックでのコツ等があれば、我が国にも広めて欲しい。またTAVRも更に改良される事が十分期待できる。論文を読んでほっと安心した。
2014年10月30日
ALSは運動神経が徐々に変性して運動機能にとどまらず呼吸機能までを奪ってしまう難病だ。この病気は運動神経細胞自体の異常で変性が起こると考えられて来た。これに対し、ある突然変異型のSODを持ったマウスのALSモデルの研究から、運動神経の変性が周りのアストロサイトと呼ばれるグリア細胞がストレス刺激で炎症反応を起こし、それが神経細胞を障害していると言う仮説が支持を拡げて来た。この仮説が正しいと、アストロサイトの障害活性を抑制する事でALSの進行を遅らせる可能性が生まれる。8月11日に紹介したEgan達の論文もこの説に立ってプロスタグランジンD2の機能を阻害する事でアストロサイトの炎症反応を抑え、ALSの進行を遅らせられる事を示した研究だった。今日紹介するハーバード大学からの論文は、突然変異型のSODがアストロサイトを活性化するメカニズムを特定して治療薬を開発しようとする研究でNature Neuroscienceオンライン版に紹介された。タイトルは「An α2-Na/K ATPase/α-adducin complex in astrocytes triggers non-cell autonomous neurodegeneration(α2-Na/K ATPase/α-adducin複合体がアストロサイトで発現すると、神経障害性の変性の引き金を引く)」だ。断っておくが今日紹介する研究のほとんどはマウスモデルでの研究でヒトの病態との関わりはこれからだ。研究では最初からアストロサイトに焦点を当て、ALSが始まる頃にアストロサイトで起こる変化を追求し、α-adducinと言うタンパク質がリン酸化し、また病気の進展に関わっている事を突き止めた。Adducinは細胞骨格分子に分類されているが、Na/K-ATPaseと結合してシグナルに関わる事が知られていた。詳しい結果は割愛して一足飛びにこの研究から生まれた、ALS発症のメカニズムについてまとめると次のようになる。先ず突然変異型SOD1が細胞内でこのATPase/addicinの発現や活性を高め、細胞内でATPが異常に消費される。このため、ミトコンドリアがこれを補おうと酸素依存性の呼吸を高め、活性酸素が過剰になり、細胞ストレスがアストロサイトを刺激して局所炎症を起こし、最後に運動神経が障害されると言うシナリオになる。これが正しいとすると、最初の引き金がSOD1突然変異としても、このATPaseを抑制する事でそれ以降の経路を押さえる事が出来る。幸いこのATPaseには古くから強心薬として使われて来たジゴキシンやウアバインと言う薬が効く。マウスモデルでは、ジゴキシン投与により確かに運動神経の障害の程度を遅らせる事に成功している。人間のALSでも同じようにこれら分子の発現が上昇しているので、次はヒトの系でもこのシナリオが有効かiPSで確かめることが出来る。論文からは、この方法が万全で根治につながる効力があるようには思えない。しかし、運動神経の変性は確かに遅らせる可能性がある。ALSは極めて予後の悪い難病だった。しかし、研究者も多く、光は徐々に見えて来ていると感じている。
2014年10月29日
進化論は証明が難しいと考えている人が多い。その理由は種分化過程に長い時間が必要で、実験的に再現する事が困難だからだ。実際ダーウィンの種の起原の1章が遺伝可能な形質の多様化について育種の例を挙げているのも、進化過程を自分の目で確認できる可能性を強調するためだ。大腸菌を使った研究を見てみると、全く新しい形質の出現を記録したLensky達の研究がある。2012年Natureに掲載された論文だが、33000世代、何と25年を経てこれが可能になった事を報告している。(詳しくは私が生命誌研究館ホームページに連載している「進化研究を覗く」第6話を読んで下さい)。しかし、目撃出来たとは言え、25年大腸菌を飼い続ける研究者魂には頭が下がる。今日紹介するハーバード大学からの論文もその意味では長期間の観察を続けた点では称賛に値する。タイトルは「Rapid evolution of a native species following invasion by a congener (同種の侵入後起こる固有種の早い進化)」で、10月24日号のScienceに掲載された。研究ではフロリダ州に侵入したキューバのトカゲによって、固有種のトカゲに起こってくる足の変化を調べている。フロリダのトカゲは緑色のトカゲで、外来種の侵入がないと地上から木の上まで広く分布している。この外来種のいないフロリダの3つの島に、1995年、このグループは茶色の地上に住むキューバのトカゲを移植して様子を見た。同じ様な3つの島はそのままにしてコントロールとして観察している。すると、同種の競争が起こって、緑のトカゲは地上から追いやられ、木の上で生活するようになる。実際この変化は外来種を移植後2ヶ月で起こるため、進化と言うより適応だ。しかし、3年位すると、住む高さは外来種の有無で60cmも違ってくる。次に、2010年になってから、今度はトカゲの身体の変化を調べ、高い木の上に追いやられたトカゲは指の裏が厚くなり、またギザギザも増えている。即ち枝につかまるための身体変化を起こしている。これが実際に遺伝する変化かどうかが最後の問題になるが、それぞれの島から卵を集め、それを研究室の庭で孵化させてみても、同じ身体変化を受け継いでいると言う結果だ。他にも色々実験をしているが、15年、20世代程で遺伝可能な同じ形態変化が、独立した島で起り得ると言うのが内容の全てだ。残念ながら実際この変化がどの遺伝子変異に基づくかなど全く研究されていない。15年間ご苦労さん。新しい実験系を作ってくれて有り難うと感謝を込めて掲載しているのだろう。実際、遺伝的変化か、世代を超えるエピジェネティック変化か、あるいは両方が合わさった変化かなど解明しなければならない点は多い。ただ、このグループが面白い材料を手にした事は確かだ。苦言を呈するとすれば、今回の実験も外来種を移植すると言う極めて人為的なモデル系を用いている事だ。育種であれば金魚でも鳩でも遺伝可能な形質の出現を目撃する事は容易だ。種の起原の第一章を引用して終わろう。「・・・最高の育種かであるサー・ジョン・セブライトは、ハトに関して、『どんな羽でも3年あれば作れるが、頭とくちばしだと6年かかる』と吹聴していた。」。(光文社古典新訳文庫、種の起原、渡辺政隆訳)
2014年10月28日
細胞が一回分裂すると、新しく出来た2個の細胞のゲノムは違っているのが普通だ。分裂時のDNA複製には低いが一定の不正確さがあり、これが生命の進化には必須の要素だ。同じように、がんが伸展し、治療に抵抗する細胞が進化するのも、がんのゲノムが分裂ごとに変化するからだ。実際、がんのゲノムやエクソームとして検出しているのは、多様ながん細胞の集まった集団としての平均値だ。ゲノムの大きさが30億塩基対もあるため、がん発生に重要な部位以外の突然変異が繰り返し見られる事はほとんどない。それでも同じがんの違う場所を取り出して調べると、がんが多様化している事が腎臓がんなどでわかっていた。このためがんの多様性と再発の関係を調べる研究が始まっている。今日紹介するMDアンダーソンがんセンターからの論文は、初期肺腺癌の手術組織の多様性を調べた研究で、10月10日号のScience誌に掲載された。タイトルは「Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing (同一がんの複数の場所から採取したがんの配列決定により初期の肺腺癌の多様性が明らかになる)」だ。読んだ印象はScienceに掲載するほど質が高いか疑問に思ったが、がんの臨床には重要な結果だ。研究では、11例のステージIIAまでの肺腺癌で、通常検査では転移がないとして手術が行なわれた患者さんのがん組織の複数箇所から細胞を集め、全エクソーム(実際にタンパク質などへ翻訳される遺伝子部分で全ゲノムの1.5%程度)を高い精度で解読している。結果は明瞭で、全てのがん組織で元のがんから変異した数種類の集団が特定できる。肺腺癌では、多様化していても全て同じ起源へと元を辿れる事から、最初から多様ながんが発生するのではなく、先ずもとのがんが発生してそこから多様ながんが発生すると考えられる。即ち、先ずがん化で染色体の安定性が損なわれ、多様化が始まる事を示している。これほど初期から多様化していたら治療も打つ手がないのではと心配になるが、幸い75%程度の突然変異は全てのがん細胞共通に見られ、この研究で発見された、肺腺癌発生に関わる事の知られている14種類の遺伝子突然変異の内13種類は全てのがん細胞に存在する事から、多様化はしていても起源は同じで、薬剤に対する反応も同じだろうと予想できる。とはいっても、術後21ヶ月経過を見るうち再発した3例は、再発のなかった例と比べると明らかに多様化の程度が大きい。従って、初診時に多様化が著しい場合は再発予備軍としてより注意深い観察をする必要があるだろう。突然変異の種類についても解析している。明らかにタバコが原因と思われる突然変異は、確かに喫煙をやめても長く存在する事から、肺の中でゲノムに蓄積している事は明らかだ。この解析から肺の腺癌ではガン化までの変異と、がん化後の変異が明らかに違い、多様化はガン化後加速される。この加速時期にはAPOBECと呼ばれる分子が関わっている事もわかった。臨床的に重要な点は、初期がんで発見できれば、がん全体の性質を変える所までは多様化も進んでいない事だ。いずれにせよ、11例と言う少数の解析だけから結論を急ぐと大きな落とし穴があるかもしれない。しかし、がんは知れば知るほど対応の可能性も見える事ははっきりした。それにしても、アメリカやヨーロッパのがんゲノムへの取り組みは徹底している。それと比べると我が国のこの分野のシェアは低いと言わざるを得ない。心配している。
2014年10月27日
免疫担当細胞も嗅細胞も化学物質を探知する仕組みだ。細胞上での化学物質を探知するのは、抗原に対する受容体であり、嗅覚受容体だ。ただ探知した後の細胞の反応は全て同じで、従ってこの反応は特異的な認識を一般的な細胞反応に転換する事で行なわれている。このため一つの細胞は一つの受容体だけを発現するよう制限されている。抗原受容体も、臭い受容体もゲノム中には1000種類以上存在する。このため、一つの受容体を選んで、他の受容体が発現できないように抑制するフィードバックメカニズムが細胞に存在している。嗅覚受容体でも、トランスジェニックマウスを用いた仕事などから、一つの受容体がオンリーワンとして選ばれ、その分子が発現すると、それがシグナルになって染色体構造を変化させ、他の全ての負け組受容体の発現が抑制される仕組みになっている。しかし、最初に一つの受容体だけが選ばれオンリーワンとして君臨できるのかの仕組みは良くわかっていなかった。今日紹介するコロンビア大学からの論文はこの謎に挑戦した研究で、10月23日号のCell誌に掲載された。タイトルは「Enhancer interaction networks as a means for singular olfactory receptor expression(エンハンサー相互作用ネットワークが単一の嗅覚受容体の発現の手段になっている)」だ。タイトルにあるエンハンサーとは、遺伝子発現を正に調節するためのゲノム上の領域で、その領域に様々な分子が結合し遺伝子の発現を高める役目をしている。論文を読むと、このグループは本当にあらゆるテクニックを駆使してこの問題に取り組めるプロ集団である事がわかる。まず、ゲノム内でエンハンサーとして働いている部分を特定する(DNAse感受性領域)方法と、染色体構造を調べる方法を組み合わせて、嗅覚受容体に関わるエンハンサー部位を35種類特定する。次にこの中から嗅覚受容体エンハンサーとして活性のある部位をゼブラフィッシュを使って12種類特定する。その上で、この12種類の部位が嗅覚細胞でどう働いているかを調べる。ただ、嗅覚細胞は何千種類もあるため、特定の受容体を発現する細胞だけを集める必要がある。この目的のために、ある受容体を発現する細胞が蛍光を発するマウスを作成し、このマウス鼻粘膜から特定の受容体だけを発現する細胞をセルソーターで集めて、この受容体の選択にこのエンハンンサーがどうか変わっているか検討している。この時に用いた方法が、4C-seqと呼ばれる方法で、この受容体発現に関わるために集められた全てのエンハンサーを特定する方法だ。この結果、単一の嗅覚受容体の発現には数カ所に散らばっているエンハンサーが集まって協力している事がわかった。実際、核内でそれぞれのエンハンサー部位が一か所に集まってくるかどうかを調べるために、FISHと呼ばれる方法で、別々の染色体上に離れて存在するるエンハンサーが受容体遺伝子の近くに集められている事を示している。また核内3次構造が維持できない様、嗅細胞で遺伝子改変すると受容体の発現がなくなる事も示している。まとめると、発生過程ではそれぞれの受容体が自分の近くにエンハンサーを幾つ集められるかの競争を行っており、必要な数のエンハンサーを最も早く自分の近くのエンハンサーに集められた受容体だけが勝ち組として発現でき、今度はその受容体からのシグナルを介して他の受容体遺伝子を抑制すると言うシナリオが、嗅覚受容体が一つだけ選ばれる仕組みとして提案されている。結局オンリーワンを選ぶには、競争に頼るのが最も安全なだというのが生命の原則の様だ。しかし同じ事はこの論文そのものにも感じる。染色体構造解析を中心にここまで多様な最新の技術を駆使できる研究室はそう多くないだろう。エンハンサーを集めるのと同じで、この様なテクノロジーを一点に集中させて競争に勝つ典型がこの論文に見られる。これに若手が対抗するには、自発的に離れた所に散らばっているエンハンサーが集まる仕組みを作るべきだろう。これほど手の込んだ研究には往々にして穴がある事が多い。若い人からまた違ったシナリオを聞ける事を願っている。
2014年10月26日
組織的合抗原(MHC)は免疫系の認識様式を決める重要な分子で、勿論免疫学独特の研究対象として考えられて来た。そんな時突然2000年カーラ・シャッツさんたちから、MHC1が神経発達に必要だと言う論文が出た。当時神経科学の論文を読む事はなかったが、何かの賞の選考でたまたま彼女の論文を調べる事になり、こんな仕事があるのかと驚いた。元々シャッツさんは、感覚神経回路の形成には、感覚刺激が入る前から自発的に刺激し合う事が必要だとする仮説を提案していた。同じ様な考えは免疫学でも刺激前に形成される内部イメージ説として提唱された時期があった。さらに、その時自己と他を区別する鏡になるのがMHCだった。2000年の論文では、シャッツさんはMHC1が細胞膜に発現できないマウスでは、この刺激前に出来る回路の形成が遅れているとする結果を示していた。ほんとかな?と思いつつその後この話をフォローする事なく今まで来たが、今年の9月になってMHC1の神経系での機能を研究しているプリンストン大学からの論文を目にした。論文は8月27日号のJ.Neuroscience誌に掲載され、「MHC classI limits hippocampal synapse density by inhibiting neuronal insulin receptor signaling (クラス1MHCは海馬のインシュリン受容体シグナルを抑制してシナプス密度を減少させる)」だ。少し古くなったが是非紹介したい。色々実験が行なわれているが、全て割愛してこの研究で明らかになった結果をまとめると次のようになる。1)MHC1の発現が低下している特殊なノックアウトマウス(β2マイクログロブリン、及びTAPの欠損したマウス)の海馬神経細胞ではインシュリンシグナルが更新している、2)この結果正常と比べてシナプス形成が更新し、シナプス密度が上昇する、3)インシュリンシグナルを抑制する阻害剤をノックアウトマウスに投与すると、正常に戻る、4)MHCとインシュリン受容体は結合しているが、同じ細胞内ではなく、異なる細胞との接着面で結合している。この結果に基づいて、海馬神経細胞ではインシュリンシグナルが常に入っているが、シナプスを形成して相手方の細胞と結合すると、その細胞が発現するMHC1とインシュリン受容体が結合し、インシュリンシグナルを抑制する。この抑制がないと、インシュリンシグナルが入りっぱなしになって、シナプス密度が上がると言うシナリオが示されている。なぜシナプスが出来て困るのか?と問われるかもしれないが、発生過程では刺激を受けたシナプスだけを維持して、あまり刺激の来ないシナプスを淘汰するプロセスが重要だ。おそらく、この淘汰がうまく行かないために、シャッツさんたちが最初見つけた様な現象が起こったのだろう。MHCは脊髄動物から見られる分子だ。これが神経系でも機能するとすると、脊髄動物の神経系が大きな機能的ジャンプを遂げる原因になっているかもしれない。しかしどんな現象もしっかり研究が進んでいる事を知り感心している。
2014年10月25日
局所感染が起こるとその近くのリンパ節が腫れる。外界からの異物に対して免疫系の細胞を動員して速やかに免疫反応を誘導するための仕組みだ。以外と知られていないが、リンパ節はほ乳動物にしか存在しない高等システムだ。京大に在籍していたとき、助教授の横田君(残念だが今年2月に膵臓がんで亡くなった)がId2遺伝子をノックアウトした時、乳腺とリンパ節の両方が消えてしまった。論文を書く段になって、Id2はほ乳動物を決める遺伝子と言うタイトルにしたらと勧めたが、そんな作り話をすると審査員が通してくれないとはねつけられたのを覚えている。これまでリンパ節が腫れたり縮小したりするメカニズムは、ケモカインと呼ばれる免疫細胞をリンパ節へリクルートする分子と、リンパ節の血管や間質に発現する接着因子によって調節されていると考えられて来た。今日紹介する英国がん研究所からの論文はこれに加えて、間質細胞の隙間を拡げたり縮めたりしてリンパ節内の免疫細胞の量が調節されていると言う新しいメカニズムを提案しており、10月23日号のNature誌に発表された。タイトルは「Denderitic cells control fibroblastic reticular network tension and lymph node expansion(樹状細胞が線維芽細胞様細網細胞ネットワークの緊張性を調節しリンパ節腫大をに関わる)」だ。この研究の発端は、免疫細胞のリクルートに関わるCLEC-2受容体とそれに結合するポドプラニンの関係が、受容体・リガンドと言う一方向ではなく、リガンド・受容体でもある双方向関係ではないかと言う可能性に気づいた事だ。これを示すために、普通の線維芽細胞株にポドプラニンを発現させると、細胞が収縮する。よく調べてみると、ポドプラニンからシグナルが確かに入り、エズリン、GEF-H1,RhoA, を介して細胞内の収縮分子アクチンを収縮させる事を突き止めた。さらに、この反応がポドプラニンの受容体と考えて来たCLEC-2により完全に抑制され、結果細胞は伸展する。予想通り、ポドプラニンはシグナル受容体として働き、CLEC-2がリガンドとして働く。次の問題は、このシグナルが実際のリンパ節でも働いているかどうかだ。リンパ節ではCLEC-2は血液系の樹状細胞、ポドプラニンは線維芽細胞系の細網細胞(FRC)に発現している事だけ頭に入れていただいて、他の実験を全て割愛して結論だけ述べる。リンパ節のFRCはポドプラニンを強く発現しており、そのため収縮状態にある。免疫刺激が入ると先ずCLEC-2を発現した樹状細胞が移動して来てポドプラニンに結合し、細胞を伸長させる。これによってFRCが存在する部位の細胞の隙間が拡がり、多くの免疫系細胞が入って来ても収容できると言うシナリオだ。実際樹状細胞のCLEC-2遺伝子を欠損させるとリンパ節の大きさは全般的に小さくなる。論文を読むと、実際には差はそれほど大きくないので、やはりケモカインと接着分子の協調作用が基本的にリンパ節への細胞リクルートの主役だろう。しかし、間質側の形態も細胞のリクルートに寄与できる事を示したこの論文は、新しい見方を示してくれたと言える。おそらく、いわゆる造血系のニッチと呼ばれる細胞についても、同じ様な視点から再検討が行なわれる様な気がする。