私たちの体のすべての細胞は父母から染色体を一対づつ受け継いでいる。この染色体は体の細胞ではほぼ不変で、両親から受け継いだままの構造を保っているが、精子や卵子を作る過程で母親と父親からの染色体の部分・部分が交換され、母親と父親の染色体が入れ子状に混じり合った新しい一本の染色体が子供に受け渡される。これを遺伝子組み換えと呼んでいる。私にとってこの現象は、異なる歴史を経てきた両家の経験が組み換えによって一つの染色体に統合されるように見え、感動的だ。組み換えにはDNAの2重らせんを切断し、また修復するという複雑な過程が必要だが、この過程によって、両親から受け継いだ染色体に新しい変異を導入することができ、生命の進化を進める大きな力になっていると考えられている。この過程は逆に、危険なゲノム変化をきたすこともあり、遺伝病の原因となる。この組み換えに必要な分子過程はかなり詳しく理解できているが、全ゲノムレベルで見たとき、どこに組み換えの起こりやすい点があるのかなど、研究が待たれていた。今日紹介する米国国立衛生研究所からの論文はこの問題に挑戦し、生殖細胞形成時の遺伝子組み換えに関する様々な問題に答えようとした研究で、なかなかの大作だ。タイトルは「Recombination initiation maps of individual human genomes (個人レベルの組み換え開始点のゲノム地図)」で、11月14日号Science誌に掲載された。すでに述べたように組み換えが始まるためにはまずDNA2重鎖の切断が必要だが、このためにまずDNAに結合しているヒストンのメチル化酵素PRDM9がDNAに結合して位置決めをし、そこにDNA2重鎖切断のための分子複合体が集められる。したがって、組み換えは全くランダムに起こるのではなく、PRDM9結合の起こりやすい場所があり、これをホットスポットと呼んでいる。これまで組み換えのホットスポットは、人間集団の中で連鎖不平衡の頻度や家族内でのSNP(一塩基多様性)分布などもっぱらDNAの配列側から調べられていたが、この仕事では代わりにPRDM9結合部位に集まって2重鎖を切断するDMC1分子を細胞から生成して、DMC1が結合していたDNA断片の配列を調べる、染色体免疫沈降法と呼ばれる方法で特定している。この方法を使うと、ある時点でDMC1が結合していた遺伝子部位が全ゲノムレベルで特定できる。重要な点は、DMC1がPRDM9の結合場所に集まることから、PRDM9の結合の特異性を直接調べることができる。ともかく膨大な実験が行われており、ここでは重要な結果だけをまとめて紹介しておく。1)PRDM9は遺伝子の中でも多様性が高いが、この論文では3種類の遺伝子型が比べられ、PRDM9の型の違いに応じてホットスポットの違いが生まれることがはっきりした。2)XY染色体同士の組み換えホットスポットも人間ではほとんどがPRDM9にガイドされている、3)これまで得られている連鎖不平衡を利用した組み換えマップと今回のマップを比較すると対応性は高く、確かに一見PRDM9結合と無関係に見える連鎖不平衡もあるが、おそらくこれはPRDM9の多様性のせいだろうと結論している。4)PRDM9がほんの少しだけ違うような組み合わせでホットスポットを比べると、3%ぐらいの箇所で差が出てくる。おそらくPRDM9を多様化させることで、集団として組み換え部位を多様化させることに成功しているのだろう。5)期待通り、組み換えホットスポットには新しい変異が蓄積している。このメカニズムを調べると、遺伝子の小さな部位同士の変換と切断や切断部位の再結合時に導入される突然変異が変異の中心になる。また、遺伝子間の大きな乗り換えもホットスポットで起こりやすいことから、PRDM9が、様々な変異の生成が全く無茶苦茶にならないよううまく調節している姿が浮かんでくる。6)最後に大きな遺伝子変化を伴う遺伝病とPRDM9型を比べてみると、全てのPRDM9で病気が発生するのではなく、特定のPRDM9を持っている人だけに特定の病気に繋がる組み換えが起こることがわかる。したがって、PRDM9の多様性を知ることは、このような病気の理解に必須であり、また診断にも利用できることが明らかになった。膨大な仕事でまとめ切れたかどうかは判断が難しいが、私にとっては学ぶことの多い論文だった。この研究のように、特定の過程をゲノム全体で調べる研究が最近特に多くなったように思える。今週末はそんな論文を取り上げて紹介する予定にしている。ただ、一般の方には少しハードルが高いと思うのでごめんなさい。
11月22日:遺伝子組み換えホットスポット(11月14日発行Science誌掲載論文)
11月21日:ガンのエクソーム検査でガン免疫を予測する(11月19日号The New England Journal of Medicine掲載論文)
これまで様々な機会に、敵を知って戦うという意味では、ガンのゲノム検査が現在最も頼りになる手段になることを紹介してきた。というのも、ガンが発生するためには、異常増殖を支えるドライバー遺伝子の活性型変異、増殖を止めようとするガン抑制遺伝子の欠損、細胞死を防ぐ遺伝子の抑制変異など幾つかの鍵となる遺伝子変異が必要だ。ゲノム解析によりこれらの変異を明らかすることで、うまくいくとガンの増殖だけを抑える薬剤を特定できるかもしれない。ただガンゲノム解析が進むことで、ほとんどのガンでガン化に直接関わる遺伝子変異だけでなく、数多くの遺伝子に突然変異が蓄積していることがわかっている。これらの変異のほとんどは細胞の増殖や生存とは無関係な偶然起こった中立的変異で、ガン化に関わる変異と区別する意味でパッセンジャー変異と呼ばれている。しかし細胞の増殖や生存に関係がなくても、このようなパッセンジャー変異は個々のガンを正常細胞から区別するための印となって、ガン細胞特異的な免疫反応の抗原として働く可能性がある。これを検討したのが今日紹介するスローンケッタリング研究所からの論文で、11月19日付のThe New England Journal of Medicineに掲載された。タイトルは「Genetic basis for clinical response to CTLA-4 blockade in melanoma (悪性黒色腫に対するCTLA4抑制の臨床効果の遺伝的背景)」だ。タイトルでCTLA-4とあるのはT細胞が発現している免疫反応抑制因子で、通常は免疫反応が強すぎないように調節している。ただ、ガンに対する反応は強い方が望ましいはずだという考えに基づいて、この分子の機能を抑制する抗体をガン患者さんに投与してガン免疫を高める治療が行われている。同じような機能を持つ分子としてPD-1があり、これに対する抗体も高い効果が確認されている。ただ、この治療が成立するためには、ガン細胞に対する特異的免疫反応がまず誘導されている必要がある。このガン特異的免疫反応を誘導する抗原として働くという観点からガンに蓄積したパッセンジャー変異を調べたのがこの研究だ。まずCTLA4抗体が効いたガンと効かなかったガン細胞のたんぱく質に翻訳される遺伝子部分(エクソーム)の全塩基配列を解読し、突然変異と抗体の効果の相関を調べている。まず、一般的な傾向として突然変異の数が多いガンほどCTLA4抗体が効く。とはいえこれはあくまで傾向で突然変異が1000に近いのに全く抗体が効かない例も多い。突然変異が新しいガン抗原ができなければこれは当然のことだ。より高い精度でCTLA4抗体の効果を予測するため、次に突然変異の中から新しい抗原性獲得にむすびつく変異を発見するための解析ソフトを作成し、この方法で特定される「ネオペプチド:新しいペプチド」の発現と、CTLA4抗体の効果を比べると、ネオペプチドを発現しているガン患者さんの多くは長期生存できているのに、発現していないガンの患者さんではこの治療を行っても5年生存率は10−15ヶ月に限られるという結果だ。ネオペプチドとして特定されたペプチドに患者さんのT細胞が反応しているかどうかについても試験管内で確認している。まとめると、予想どおりCTLA4抗体が効くためにはまずガン免疫が成立している必要があり、ガン免疫が成立しているかどうか(すなわちCTLA4が効くかどうかを)ガンのエクソーム解析とネオペプチド発現を特定するソフトで予測ができるという結果だ。同じことは抗PD1抗体についても言えるはずだ。これまでガン免疫というと、効くかどうかやってみてから判断するという場合が多かった。しかし、ガンゲノムが解読できるおかげで、抗体治療の予後についても予測できるとなると、ガンのエクソーム検査はもっと真剣に早期導入を考える必要がある。それと同時に、この膨大なデータを解析してくれる人材の育成も重要だ。高価な抗体薬をただ気休めに使うことは問題だ。その意味で将来を示す極めて重要な研究だと思う。
11月20日:多発性骨髄腫の経口新薬(11月14日号JAMA Oncology掲載論文)
うれしい悲鳴だが、多発性骨髄腫の治療が今めまぐるしく変わろうとしており、数多くの治験が同時進行している。今年9月7日には副作用の強いアルキル化剤を使ずに、レナリドマイドとデキサメサゾンだけを併用する治験について紹介した。その時、プロテアソーム阻害剤という新しい薬剤の治験が進んでいることについても触れた。事実今年8月号のBlood誌 (Blood 124:987,2014)にcoming soonと期待を込めて論評されたixazomibの第I/II相治験の結果がついにJAMA Oncologyに発表された。メイヨークリニックからの論文で、タイトルは「Safety and tolerability of ixazomib, an oral proteasome inhibitor, in combination with lenalidomide and dexamethasone in patients with previously untreated multiple myeloma: an open-label phase 1/2 study(経口プロテアソーム阻害剤のレナリドマイド+デキサメサゾンとの併用療法の未治療患者に使った時の安全性と許容性。非盲検第I/II相治験だ)」。プロテアソーム阻害剤が骨髄腫に高い効果を示すことはすでに知られており、武田薬品の子会社ミレニアム製薬のベルケイドなどの治験が進んでいた。ただこれまでの薬は経口投与ができず、同じミレニアムが開発した経口投与可能なixazomibに期待が集まっていた。Ixazomib単剤の治験、及びデキサメサゾン併用での治験も現在進んでおり、これまでのところ期待が持たれる結果が得られているようだ。今回の治験では、すでに骨髄腫治療のスタンダードの地位を固めたレナリドマイドをさらに加えた三者併用を試みた治験だ。昨年12月8日にここで紹介したようにレナリドマイドはIKFZ1,3と呼ばれる骨髄腫の生存に必須の分子を特異的に分解してしまう薬剤だ。一方、プロテアソーム阻害剤は様々なタンパク質を分解する過程を阻害するのがメカニズムだ。作用機構は特異的ではないが、骨髄腫がこのメカニズムに強く依存していることから、他の細胞より感受性が強い。このため正常細胞と骨髄腫との効果の差がはっきり見られる用量を決めることが重要だ。今回の研究ではその点に重点を置いた第I/II相研究で、I相15人、II相50人の小規模な研究だ。無作為化などの統計的な大規模治験とは全く違い、言ってみればさじ加減を許す研究と言える。副作用とのバランスを見ながら用量を決め、服用時に4mg経口投与を、28日を1サイクルとした時、1、7、15日に3回投与するというプロトコルを決め、副作用、効果などを調べている。さじ加減は自由に行っており、副作用が強い場合は用量を医師の判断で減らしている。まず副作用だが、薬剤の標的は特異的ではなく、したがってほとんどの患者さんに様々な副作用がみられ、一人は副作用で亡くなっている。ただ、これまでのベルケードでの結果と比べるとそれでも副作用は軽く、また用量を減らすことで対応できることが分かった。さらに重要なのは、高齢者と他の年代で副作用の出方にあまり大きな差がないことだ。高齢者の多い病気であることを考えると期待が持てる。今回の治験は効果を調べることが目的ではないが、ほぼ9割の患者さんに治療効果が認められ、35%には完全ではないが高い効果、そして27%には完全寛解が見られ、期待通りの結果になっている。論文の内容をよく見てみると、患者さんに合わせたさじ加減を行えばさらに高い効果が得られる用法も開発できそうだ。また、どのタイプの骨髄腫に最も効くかなど、ゲノム検査も重要だ。時間がかかるが、効果の高い治療法に発展する期待が膨らむ。Ixazomibも武田薬品の子会社ミレニアム製薬の開発品で、我が国でも同じ3剤併用の治験がすでに走ろうとしているはずだが、できるだけ早く使えるようにして欲しいと思う。次から次へと新薬が生まれ、骨髄腫患者さんにとっては素晴らしいことだ。しかし、製薬企業にとっては安心しておられないことも事実だ。プロテアソーム阻害剤が骨髄腫に効く理由としてNFkB分子活性抑制が最も重要な標的経路として理解されているが、10月15日に紹介したように、この経路に特異的な新しい新薬の開発が進んでいる。効果が同じでも、副作用が低ければ新しい薬剤で置きかわる。しかし患者の立場からいうと、このような競争は嬉しい競争だ。どんどん進めてほしい。
11月19日:ガン細胞からのハイテクミサイル(11月10日号Cancer Cell誌掲載論文)
論文の中には「え。ほんと?」と思う一種のキワモノ論文がある。特に、特定の概念が流行しているとき、その概念が思いもかけない方向へ進みうることを示す論文がそうだ。少し抽象的になったが、今日紹介するテキサスMDアンダーソン病院からの論文は、エクソゾームと呼ばれる細胞から分泌される小胞についての研究で、11月10日号のCancer Cell誌に掲載された。タイトルは、「Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis (ガン細胞が分泌するエクソゾーム内ではマイクロRNAが生成されガンを促進する)」だ。細胞内には小胞体、リソゾーム、エンドゾームなど様々な小胞が存在しており、それぞれの小胞に分子を分配し閉じ込めることで、分解や分泌が行われる。これは細胞学の中でも最も重要な分野で、ここで簡単に紹介するのは不可能だ。細胞内には機能の異なる多くの小胞体が存在すると思っておいてほしい。さてこの小胞の中に、さらに小胞の入った多胞体と呼ばれる比較的大きな小胞体が存在するが、この多胞体の中にある小さな細胞膜で囲まれた袋が細胞外に分泌されたものをエクソゾームと呼ぶ。エクソゾームは細胞膜で囲まれていることから、他の細胞に融合し、中の分子をその細胞に送り込む可能性がある。実際、狂牛病やアルツハイマー病で異常タンパクを他の細胞へと伝搬するのに一役買っていることが明らかになってから、エクソゾームは急に注目されるようになった。このようにエクソゾームには様々なタンパク質、あるいは核酸が含まれており、これを細胞間のコミュニケーションの積極的は方法として位置づけることが流行っている。最近になって、ガン細胞が、RNAの翻訳を抑制することのできるマイクロRNAを送り込んで自分の周りの細胞を変化させる手段となっていることを示す論文が発表され、さらにこの分野が賑やかになってきた。この仕事もこの延長にあるが、これまでの研究の集大成的な位置にあるように思う。この研究を一言でまとめると、少なくとも乳ガン細胞から分泌されるエクソゾームには、マイクロRNAをプロセスし、標的RNAに結合させ、その標的を破壊する全ての酵素系が、マイクロRNAと共に濃縮されており、このエクソゾームを取り込んでしまった乳腺上皮細胞の多くの分子の発現が抑制される。その結果、正常乳腺細胞株のガン化が促進されるという結果だ。論文のポイントとしては、1)初めてエクソゾーム内でマイクロRNAがプロセスされ、活性のある成熟型へと転換されること、2)これら分子のエクソゾームへの濃縮はCD43分子を介する能動的過程であること、3)血中に流れるエクソゾームにがん化自体を促進する活性があること、4)実際の乳ガン患者さんの血液中にも活性のあるエクソゾームが見つかることなど、従来のガンのエクソゾームの研究をさらに進展させたものになっている。特に、患者さんの血中エクソゾームが、まだガン化はしていない乳腺細胞株(長期に培養されているので完全に正常とは言えないだろうが)のがん化を促進するという点は重大だと思う。しかし、この結果をガンが、ガンを誘発するという簡単な話として捉えると間違うことになる。マイクロRNAが送り込まれて細胞の増殖プログラムが変わったとしても、遺伝子変化は起こらない。すなわち、実際にはガンがガンを誘発するわけではない。もしこのようなメカニズムが乳ガンに関わっているなら、おそらくそれは初期段階の話だろう。正常上皮の中の一個のガン細胞が、自分の足かせとなる周りの上皮細胞を変化させるには優れたメカニズムになるはずだ。いずれにせよ、ガンのエクソゾームはさらに流行りの分野になるような予感がする。
11月18日:蚊が人の血液を吸えるための進化の鍵(11月13日号Nature掲載論文)
もう下火になったが、一時大騒ぎをしたデング熱は蚊が媒介する。しかし、蚊は昔から人の血液を吸う昆虫だったのだろうか?現在人間+家畜+ペットの総重量は、地球に生息する全ての哺乳動物全体のなんと98%に達するという。それなら、蚊も当然人間や家畜を利用する方が効率がいい。しかし、1000年前にはこれが0.5%しかなかったのではと推定されている。まあ、人間の支配が急速に進んだと言えるが、蚊の方も必要に応じて急速に進化する必要があった。今日紹介するロックフェラー大学からの論文は、まさにこの問題、すなわち蚊が人間に対する指向性を獲得するようになるのに必要だった分子を探した研究だ。タイトルは「Evolution of mosquito preference for humans linked to an odorant receptor(蚊が人類への親和性を獲得する進化は一つの嗅覚受容体に関連させることができる)」で11月13日号のNatureに掲載された。しかしこれまで馴染みのなかった昆虫の論文は全てが勉強だ。まず世界には約一万種類の動物の血を吸う昆虫が生息しているが、そのうちの高々100種類が人間の血液を吸う。この研究では、様々な病気を媒介するネッタイシマカで、ヒトの血を吸うグループ(K14)と、全く吸わないグループ(K27)をケニヤから採取している。両者は交配可能で、種として分かれているわけではない。K14、K27を研究室で繁殖し実験に用いている。人間の手と、モルモットのどちらに惹かれるかを調べると、期待通りK14は人間の手、K27はモルモットに指向性を示す。両方の遺伝的バックグラウンドを揃えるために、K14、K27を交配した子供をさらに交配し孫世代の中からヒト型と動物型のメスを選んで、両者の発現している遺伝子の違いを探した結果、最終的にOr4と呼ばれる嗅覚受容体の発現レベルの差がヒトに惹かれる遺伝子変化であることを突き止める。次にOr4をショウジョウバエに導入して、ヒト特有の匂いを構成する分子に対する反応を調べ、Or4がスルカトンと呼ばれる化学物質に反応する受容体であることを突き止めた。K14がヒトへの指向性を持つようになったのは、Or4発現が上昇する調節領域の変異が起こったためと推定されるが、ではOr4遺伝子自体にも変化はないのか、実験室で確立したネッタイシマカのコロニーの遺伝子を調べたところ、7種類の変異を認め、それをショウジョウバエに導入してスルカトンとへの反応を調べると、大きな変化があることを明らかにしている。まとめると、ネッタイシマカがヒトへの指向性を持つ原因となる嗅覚受容体Or4を特定し、またその受容体が感知するニオイ物質を決定し、さらに確かにOr4の変異で蚊がヒトへの指向性を持つよう進化することを示した大変な仕事だ。ヒトへの指向性を持つ他の蚊についても研究が進むと、代々木公園の蚊を惹き寄せて一網打尽にすることも可能になるだろう。しかしこの仕事が行われたロックフェラー大学というと、野口英世ゆかりの大学だ。ネッタイシマカはもちろんデング熱だけでなく、野口英世を斃した黄熱病も媒介する。大学に息づく伝統を感じる仕事だった。
11月17日神経芽腫の犯人MYCNを抑制する新しい道(11月20日発行Cell誌掲載論文)
乳児期の腫瘍で最も多いのが神経芽腫だ。網羅的にガンのエクソームを調べる国際プロジェクトの結果を見ると、突然変異はほとんど見つからない腫瘍だ。しかし、突然変異はなくともMYCNと呼ばれる遺伝子が増幅することで腫瘍化していることが確認されている。最近この腫瘍もゲノム解析が進み、MYCN以外にも腫瘍化に関わると推定される遺伝子の変異が発見されてはいるが、やはり治療の本命はMYCNの機能を抑制することだ。しかし乳児期に最も多い腫瘍とは言っても、大人のガンと比べると創薬標的としては商業的魅力が少なく、大手の企業はなかなか薬剤開発に参入しない。さらに、MYCNをはじめ、MYC,MYCLの3種類のMYCファミリー分子は転写因子で、しかも多くの遺伝子の発現に関わっており、創薬標的としては極めてハードルが高い分子だ。しかしMYCファミリー分子はRASと並んで多くのガンの原因となっていることが確認されている分子で、この機能を抑制できるとガンの治療可能性は一段と拡大する。今日紹介するボストン小児病院からの論文は、スーパーエンハンサー説としてYoungらが提唱しているメカニズムを標的として創薬に成功したとする面白い仕事だ。当然のことながらYoungも著者に名を連ねている。タイトルは「CDK7 inhibition supperss super-enhancer-linked oncogenic transcription in MYCN-driven cancer (CDK7はMYCNによりガン化した細胞のスーパーエンハンサーに関わるガン遺伝子の転写を抑制する)」で、11月20日号のCell に掲載された。研究の内容は極めて専門的で、どこまでうまく説明できるか心もとないが、重要な仕事でありなんとか紹介してみようと思っている。まず、タイトルにあるCDK7はDNAからRNAを転写するRNAポリメラーゼの特定の部分をリン酸化して、転写を開始させる働きがある。この機能を抑制すると、転写は全般的に低下するが、特に寿命の短いRNAの転写が強く影響を受け、抑制に選択性が現れる。神経芽腫でのMYCNもCDK7抑制で選択的に転写が抑制されるのではと期待して、神経芽腫のCDK7RNAをshRNAで抑制すると期待通り、MYCNの転写が下がり、細胞の増殖も抑制された。そこで、同じグループが開発していたCDK7と共有結合して機能を抑制するTHZ1を神経芽腫の培養に加えると増殖が止まる。特に、MYCNが増幅している腫瘍でより高い効果が得られ、嬉しいことに、マウスに神経芽腫を摂取してガンの抑制実験を行うと、副作用なく腫瘍細胞を殺すことができる。またこの効果のほとんどが、MYCNを間接的に抑制した結果であることも確認している。おそらくこの仕事は最初にこの薬剤の開発があり、その後このMYCN抑制の解析に進んだと思われる。創薬研究としてはかなり有望に見える。したがって、患者さんにとっての情報としては、ここまでで十分だろう。神経芽腫のほとんどは自然治癒するが、一部は今も治療法がない。この薬剤そのものでもいいし、さらに改良した後でもいいが、早期にCDK7に対する標的薬が副作用の少ない神経芽腫治療として利用できるようになることを願う。一方、なぜCDK7のようなあらゆる転写に関わる分子を標的とする薬剤が、MYCNの機能を選択的に抑制するように見えるのかは基礎的には重要な課題だ。この研究の後半は、このMYCNの転写、特に増幅したMYCNの転写がYoung達が提唱しているスーパーエンハンサーに依存していること、スーパーエンハンサーによる高いレベルの転写は、普通のエンハンサーの転写よりCDK7の抑制の影響を受けやすいことを示そうとしている。実際、MYCNは27番目のリジンがアセチル化したヒストンの密度が高いことから、スーパーエンハンサーに依存するガン遺伝子発現の典型かもしれない。しかし、これがCDK7抑制の効果をより強く受けるかどうかについては正直なところ説得力が弱いと思った。当然流行りの話を取り込んだ方が論文は通りやすい。しかし、メカニズムはともかくTHZ1は間違いなく患者さんの光明であることは確かだ。期待したい。
11月16日遺伝子検査の有効性を検証する(PlosOne11月号掲載論文)
YahooやDeNAが個人向け遺伝子サービスを始めた今年は、我が国のDTC (Direct to consumer:個人向けの遺伝子サービスをこのように表現している)元年と呼んでいいかもしれない。しかし、DTCに対しては様々な批判がある。ここでも紹介したが、年齢を重ねると遺伝的な傾向は生活習慣などで変化したエピジェネティックな傾向にマスクされてしまう。他にも、一般の人のゲノムに対する理解がどこまで進んでいるかもわからない。このため、DTCを商業的に提供することを規制すべきであるという声が様々な筋から聞こえてくる。しかし、はっきり言ってどちらの意見にも一理あり、結局議論を続けるしかないと思う。ただ大事なことは、議論を常に科学的土俵の上で行うという点だ。欧米では将来を見越して、DTCからリスクを知ることで私たちの生活態度が本当に変わるかどうかを調べるための臨床研究が行われ、論文も出始めている。例えば診断や治療について常に検証を怠らないコクラン財団ではすでに遺伝子診断に基づくアドバイスが生活習慣を改めさせられるか調べた研究を行い、効果がないと厳しい結論を出している。今日紹介するトロント大学からの論文は、コクラン財団の調査を踏まえた上で、自分の遺伝子を知ってアドバイスを受けた方が、知らずに一般的栄養指導を受けるより効果があるかどうか調べた研究で、11月号のPlosOne誌に掲載された。タイトルは、「Disclosure of genetic information and change in diet intake: A randomized controlled trial (遺伝情報の開示と食習慣の変化:無作為化比較研究)」だ。研究では呼びかけに応じた1600人ほどのボランティアの中から、最終的に様々な条件に適った157人を選び4種類の遺伝子検査を行っている。遺伝子は、カフェインを摂りすぎると心筋梗塞になる危険がある遺伝子、ビタミンC欠乏症に陥る遺伝子、糖分の摂りすぎになりやすい遺伝子、そして食塩を摂りすぎると高血圧になる遺伝子が選ばれているが、だいたいそれぞれの検査で50−70%の人がリスク遺伝子を持っている。この人たちを無作為に2群に分け、片方には遺伝検査の結果リスクがあることを知らせ、栄養指導を行い、もう一方には結果を知らせずに栄養指導を行い、1年間経過を観察し、食生活を変えるかどうか調べている。結果は、最初の3種類の遺伝子については遺伝子検査結果を教えたか否かにかかわらず、実際の食生活はどれもほとんど変わることはなかった。一方、食塩を摂りすぎると高血圧になりやすいACE遺伝子については、遺伝子検査の結果とリスクを知らせて指導すると、食塩摂取量を1日1.5g以下に制限した人が、遺伝子検査結果を知らせない場合より1.5倍ほど増加し、はっきりとした有意差が出たという結果だ。この結果は、心筋梗塞や、ビタミンC欠乏症のようなあまり身近でない病気については、諦めるのか、信用しないのか、指導を受けても食事生活を変えることはあまりない。一方、高血圧のような身近な病気だと、DTCが確かに効果があることを示している。これに習って、我が国でもDTCの効果について議論するとき、効果の検証をしっかり行い、エビデンスに基づいた議論が行われることを期待する。間違っても、有識者がエビデンスのない意見を押し付けるということはやめたほうがいい。一方、リスク管理に有効としてDTCを提供する側は、結果に応じて様々なアドバイスを提供できる体制を構築するよう努力することが必要だろう。さて私の意見だが、役に立つ、立たないを問わず、個人ゲノムを自分の意思で読むことが、21世紀では当たり前になると確信している。この観点から、是非議論を進めて、我が国でもDTCを根付かせるべきだと思っている。
11月15日:長寿の秘密はそう簡単に姿を現さない(11月号PlosOne掲載論文)
長寿が遺伝することを示唆する多くの論文がこれまで報告されている。ところがゲノム解析時代に入って100歳を超える長寿の人達のエクソームやゲノムの配列が決定され始めたが、期待に反して長寿に関わるとはっきり特定できた遺伝子はまだないようだ。今日紹介するスタンフォード大学からの論文は、おそらく人間の寿命の限界に近い110歳以上の長寿者を調べれば遺伝子が特定できるのではという期待で始まったと思われる研究で、11月号のPlosOneに掲載された。タイトルは「Whole-genome sequencing of the world’s oldest peoplee (最も長寿の人達の全ゲノムシークエンス)」だ。世界には74人の110歳以上の高齢者が生きておられるようだが、そのうち17人がアメリカ在住だ。研究では、この方々から血液の提供を受け、全ゲノム配列を同じ場所を最低40回以上は繰り返して調べる精度で決定している。この中には1人だけアルツハイマー病の人が含まれているが、心臓病や糖尿の人は誰もいない。また、110を超えて生きるような人はカクシャクとしており、一人は103歳まで現役で仕事を続けており、また107歳まで運転をしていた人までいる。さて結果だが、残念ながら結局長寿と有意に相関する遺伝子変異は何も見つからなかったというのが結論だ。言ってみればこの論文は、膨大な失敗記録と言える。事実、相関がないということを結論することは簡単ではない。「うまくいかないのは、方法が間違っているからだ」とか「データは本当に正しく取られているのか」とかいくらでも文句がつけられる。このため、この論文には結局徒労に終わった様々な検討が正直に全て示されている。普通、ネガティブデータは論文にならない。しかし本当はこのようなネガティブデータも論文として残す価値が大きい。データベースに登録しておけばいいと考える人もいるだろうが、後で調べるとき、論文として残っているだけで格段に検索がしやすくなる。その意味で、このネガティブデータを論文として掲載したPlosOneには敬意を払う。何れにしても失敗の連続が正直に記録されている珍しい論文だ。例えば、長寿者とそれ以外とを比べても統計的には優位差がないが、それでも疑わしいと思える、呼吸のリズムを決める神経回路形成に関わるTSHZ3と呼ばれる遺伝子を探り出して、他のデータベースを加えた解析まで行って、その結果を示している。100歳以上の人ではアミノ酸の配列が変化する変異が4%に対し、一般のポピュレーションでは2.5%だ。ただし、有意差検定をすると統計的には両者に差がないことになる。他にも、今回対象となった人たちには心臓病の経歴は全くないのだが、一人だけ右心室肥大を伴う不整脈と密接に関係する変異を持っている。おそらく多くの遺伝子検査でこの変異は使われていると思うが、陽性となっても110まで生きている人もいると思えば安心できるだろう。多大な努力を払って調べた著者たちには申し訳ないが、やはり長寿の秘訣は日々の節制ということだろう。
11月14日:眠っているうちにタバコをやめる(J. Neuroscience12月号掲載論文)
実を言うと、私は大学入学以来長く喫煙を続け、この習慣から抜け出したのは京大分子遺伝に移って少ししてからだ。この時、ニコチンパッチを処方してもらって、やめるまで2ヶ月近くかかったと思う。今日紹介するイスラエル・ワイズマン研究所からの論文は、やめるのに苦労した私にとっては驚きの研究だ。タイトルは「Olfactory aversive conditioning during sleep reduces cigarette-smoking behavior (睡眠中に臭いの嫌悪条件付けを行うとタバコが減る)」だ。この論文を読んで最初の驚きは、この研究が神経科学の専門誌では格の高いJ.Neuroscience12月号に掲載されていることだ。確かにタバコの数が減ることは脳の問題だろうが、これを神経科学とみなしでいいのか少し戸惑う。ただJ.Neuroscienceは懐の深い雑誌であることは実感した。この研究は極めて単純な実験プロトコルで行われている。まず愛煙家を選び、これまでの喫煙歴、毎日の喫煙本数などを自己申告してもらう。次に、1週間の喫煙日記を付けてもらい、筋金入りの愛煙家であることを確認する。次に腐った魚の匂い、硫酸アンモニアの匂いを嗅がして、これを不快な臭いと判定するのかどうか確かめる。このような条件をくぐり抜けて残った愛煙家に、一度研究所に来てもらい、起きているとき、あるいは睡眠中にタバコの匂いと一緒に、不快な臭いを嗅がして条件付けを行う。この条件付けは1日で終了し、終了後もう一度条件付けに使った臭い匂いを実験前と同じように不快に感じているか確かめ、実験により感覚に対する身体的変化が起こっていないことを確認する。その後は帰宅させ、1週間喫煙日記を付けてもらって、喫煙本数を条件付け前と比べて実験は終了だ。この実験の詳細を読んで次に驚くのが、脳波を取りながら条件付けの臭いを嗅がす装置を鼻につけて本当に寝ることができるのかという疑問だ。写真が出ているが鼻の先からチューブが出ているのを見ると、まず私なら寝付けないなと思う。そして最後に驚くのが結果だ。まず、タバコの匂いと不快な臭いを睡眠中に同時に嗅がして条件付けを行うと、なんと次の週のタバコの本数が半分に減る。起きているときに同じ条件付けを行っても全く効果がない。さらに、寝ている時条件付けをするとタバコの本数は必ず減るようだが、熟睡しているときに嗅がしたほうがより大きな効果がある。あとは、タバコの匂いと、臭い匂いを同時に嗅がすのではなく別々に嗅がしたり、あるいはタバコの匂いを全く嗅がさない条件でタバコが減るかも調べている。しかし示されている実験のほとんどはコントロール実験で(もちろんコントロール実験が最も重要だが)、つまるところ寝ている時を狙ってタバコと臭い匂いを嗅がして条件付けをした時だけタバコが減るという結論だ。しかもタバコの本数は条件付けた次の日から、50%近く減っていのもまた驚きだ。思いついたら科学的に確かめて、結果が出たら論文にする根性には恐れ入った。しかし、こんな実験を思いつく責任著者は、愛煙家か、嫌煙家か一番気になる。
11月13日:ヒトゲノム解読は終わっていない(Nature オンライン版掲載論文)
これまで紹介してきたように、ヒトゲノムが解読できたおかげで、私たちは基準として参照できる下敷きを手に入れることができた。現在次世代シークエンサーで調べた個人ゲノム配列はこの下敷きの上に並べ直すことで一つのゲノム構造へと再構築されている。こうして再構築された何千人ものゲノムがデータベースに蓄えられ、新たに読まれた個人ゲノムの個別性が判断されている。この意味で、下敷きとなる基準ゲノムがどこまで完全かを理解しておかないと、様々な間違いが起こる。実際、基準を作る時に遺伝子を大腸菌の中で増幅しているが、大腸菌が嫌う配列はそれだけで取り除かれ、基準ゲノムには反映されないことになる。すなわち実際には完全な手本があるわけではない。さらに、現在使われている次世代シークエンサーにも読める長さが短いという限界がある。このような限界・不完全性のため、遺伝子の病気が疑われているのに、全ゲノム解析で原因遺伝子が特定できない場合は数多くある。このように、現在使われている基準やテクノロジーの不完全性について頭ではわかっているのだが、次世代シークエンサーから続々生まれる輝かしい結果を目にすると、この限界をすっかり忘れてしまっていた。今日紹介するワシントン大学からの論文は、PacBioという会社により開発された、さらに次の世代の一分子シークエンサーと呼ばれるシークエンサーを用いて、私たちが下敷きとして使っている基準の不完全性をはっきりと思い出させてくれる研究で、Natureオンライン版に掲載された。タイトルは、「Resolving the complexity of the human genome using single-molecule sequencing (一分子シークエンサーを使ってヒトゲノムの複雑性を明らかにする)」だ。DNA一分子の配列をそのまま解読するということは、増幅が必要ないということで、現在の次世代シークエンサーより格段に長いDNA鎖を一気に読むことができる。論文を読むとなんと5000塩基対も読めるということで、現在のシークエンサーの読める長さの10−50倍になる。この研究では、母親の核が失われ、父親の遺伝子だけで異常発生してしまった胞状奇胎のDNAを調べている。このゲノムはほぼ精子のゲノムに等しいので、2本づつある染色体の片方だけ(ハプロタイプ)を調べることができる。あまりに専門的なので全て割愛するが、驚くべき結果で夢が覚めたというのが読後感だ。要するに、新しい技術を使わないと解読でないため、これまで全く検出されてこなかった遺伝子領域が20000箇所以上存在し、この中にはたんぱく質へと翻訳される遺伝子部位や、遺伝子の発現を調節している部分も多く含まれている。とすると、まず早急に下敷きとして使っている基準を改定する必要がある。この研究でこれまで繋がっていなかった部分を50箇所も埋めることができており、また40箇所についてはギャップの長さを短くできている。当面は、新しい機械で解析されるゲノムの数を増やすことが必要だろう。しかし、もう少し長い将来を見据えるなら、現在の次世代シークエンサーも、最終的に一分子シークエンサーで置き換えられるだろうと予想される。ただその時PacBioが笑っているかどうかはわからない。センサーになっている穴の中をDNAに通過させて塩基を読み取る方法の開発も進んでいる。10年先、研究室でどのシークエンサーが使われているかは予測できない。いずれにせよ、めまぐるしくイノベーションが進む分野は間違いなく将来性のある分野だ。とすると、我が国はこのイノベーションから取り残されてしまったのではと心配になる。