2019年4月20日
光を感知する分子を用いて生体機能を調節する光遺伝学は、何も神経操作に限った手法ではないが、何と言ってもチャンネルロドプシンを特定の神経細胞に導入して神経興奮を短い時間間隔で変化させる技術のインパクトはダントツで、クリスパー/Casと並んで、ノーベル賞を受賞するのが時間の問題だろうと思える研究領域だ。
光遺伝学の難点は、光で刺激するためどうしても動物を光ファイバーで繋ぐ必要があり、自由に動けるといっても限界がある点だ。そのため目的によっては、光刺激の時間的特性を犠牲にしても、動物を拘束しない方法、例えば磁場を用いて神経を刺激したり、化学物質を用いる「化学遺伝学」などが開発されてきた。
今日紹介するハワードヒューズ財団の独自研究施設、ジャネリア研究所からの論文はこの化学遺伝学による神経操作法を飛躍的に高めるための開発研究で4月12日号のScienceに掲載された。タイトルは「Ultrapotent chemogenetics for research and potential clinical applications (研究及び臨床応用を目指した超高性能の化学遺伝学)」だ。
もちろんこれまでもcloza;ine-N-oxideに反応する受容体を用いた化学物質による神経操作法が開発されていたが、特異性も含めて様々な問題があり、新しいプラットフォームが待たれていた。この研究では、1)人間に投与してもほとんど副作用がない、2)脳へ速やかに移行する、3)血中濃度を長期間維持できる、という条件で、α7アセチルコリン受容体をベースに突然変異を導入し、最終的に禁煙のために使うVareniclineに極めて特異的に反応できるプラットフォームを開発した。
あとはこのシステムがどのように使えるかを示す目的で、マウスやサルを用いた実験を行なっている。
まずこのシステムが一番期待される、神経活動の抑制効果を調べる目的で片側の黒質のGABAニューロンにこのシステムを導入し、遺伝子興奮が下がるとマウスがくるくる回り出すという行動を用いてこのシステムの効果を調べ、低い濃度でも注射後20分で効果が発揮され、4時間続き、濃度が下がると行動は完全に元に戻ること、他の神経作用はほぼないことを示している。
次にvareniclineの方を改変して、新しいシステムにより高い結合力を持つリガンドを開発し、彼らが817と番号をつけたこのシステムにさらに100倍以上高い特異性を持つリガンドを開発している。
つぎにこのリガンドにフッ素18を結合させ、このシステムを導入した神経細胞を脳内でイメージングできるかを調べている。画像で見る限り、受容体が導入された領域だけでポジティブ画像が得られ、特異性が高いことが確認できている。
他にもサルの実験、海馬の神経興奮を抑える実験などを示しているが、割愛していいだろう。要するに、極めて特異性の高い、しかも副作用の心配が少ないリガンドを用いて神経を興奮させたり、抑制したりする方法が開発できた。
著者らは、この系を外科的に人間の脳に導入して、1)鎮痛剤では治せない痛みを抑制する、2)局所性の巣てんかんを手術なしで抑制する、3)舞踏病などの不随意運動の抑制などに利用できるのではと考えているようだ。この論文を読むと、確かに実現性は高いと思う。いよいよ、光遺伝学や化学遺伝学も臨床応用が始まる予感がする論文だった。
2019年4月19日
大きく分けて2型糖尿病は、インシュリン分泌が低下と、インシュリンに対する細胞の反応性の低下(インシュリン抵抗性)のメカニズムが関わる、多様な代謝機能が変化した状態と考えることができる。そして、インシュリンをシグナルとして細胞内に伝える受容体は、チロシンキナーゼタイプのインシュリン受容体だけしか存在しないことは確認されていた。従ってこの一つの受容体で生物のエネルギー代謝の根幹を全て調節することになるが、今日紹介するハーバード大学からの論文を読むまで、私はこの多様なインシュリンの機能がチロシンキナーゼの活性化に始まるPI3Kを中心としたシグナルカスケードで進むと思っていた。
この「Insulin Receptor Associates with Promoters Genome-wide and Regulates Gene Expression (ゲノム全体にわたってインシュリン受容体はプロモーターに結合し遺伝子発現を調節する)」と題された論文は、タイトルからわかるようにインシュリン受容体がチロシンキナーゼとしてではなく、なんと核内受容体のように働く新しい経路が存在することを示した研究で、4月18日号のCellに掲載された。
以前からインシュリン受容体が核内に移行する可能性は指摘されていた。このグループは細胞を溶解して核内タンパク質を調整する条件を工夫して、核内に存在するインシュリン受容体がどの分子と結合しているかを調べ、なんと転写を行うポリメラーゼ(PolII)と直接結合していることを発見する。この発見がこの研究のハイライトで、あとは核内へどのように移行し、どの遺伝子の発現を調節しており、これまでのシグナル経路とどこが違うのかを明らかにすればいい。
結果は、
- インシュリン受容体はαβの2種類のタンパク質からできているが、それがそのまま核内に移行する。
- この時、核膜はインポーティンを介して超える、
- 転写されている遺伝子のプロモーター上でPolII複合体の一部になっている。
- 多くの遺伝子のプロモーター上に存在するが、トップに来るのはインシュリンが関わるとされてきた脂肪代謝に関わる分子で、炭水化物の代謝に関わる遺伝子にはあまり関わらない。
- インシュリンの作用で核内に移行し、転写量を促進する。従って、インシュリンが存在しないと転写は変化しない。
- インシュリン受容体の作用は、全部ではないがほとんどの場合HCF-1の転写活性の調節を介して行われる。
- インシュリン抵抗性の肥満マウスではこの経路が低下している。
とまとめられるが、この結果はインシュリン受容体が、チロシンキナーゼ活性と、核内ホルモン受容体に似た転写促進活性の両方の経路を介して、複雑な代謝機能を調節していることを示している。肥満マウスを用いた実験から、いわゆるインシュリン抵抗性がこの経路に関わることが示されたことは、糖尿病研究がまた大きく変わる可能性を示している。さらに、インシュリン抵抗性に関わる炎症との関わりで見たとき、自然免疫に関わる細胞でこの受容体がどの遺伝子を調節しているのかを知ることは重要なテーマになるように感じた。
しかし、思いもかけないことが続々明らかになる。
2019年4月18日
ラクビーはボデイーコンタクトが激しいスポーツで、時に脊髄損傷が起こることすらある。しかし、サッカーと比べても頭への繰り返すショックはあまり強くないようで、慢性外傷性脳症(CTE)の頻度は低いと思う。そしてあらゆるスポーツの中でアメリカンフットボールは、CTEになるリスクが高く、2年前にはプロ選手の9割以上が何らかのCTEに悩まされていることが発表された。当然対策が必要だが、この確定診断は病理検査になるので、生存中にCTEを確定するマーカーが求められていた。
最近になってPETでTauの沈殿が検出できるようになり、CTEではアルツハイマー病などと同じようにTauタンパク質の沈殿が起こっていることが示唆され、今日紹介するボストン大学からの論文は、これを確かめる目的で26人のCTE症状を示す元フットボール選手を対象に、PETによりTauタンパク質の沈殿について調べた研究で、4月11日のThe New England Journal of Medicineに掲載した。タイトルは「Tau Positron-Emission Tomography in Former National Football League Players (元NFLフットボール選手のTau PET)」だ。
この研究では、26人の症状を示す元NFL選手と31人の対照をリクルートし、沈殿型のTauに結合するFlortaucipirと、βアミロイドに結合するFlorbetapirを用いたPET検査で調べている。
結果は予想通りで、元NFL選手では両側上前頭回、両側側頭葉内側部、および頭頂部に、対照群と比べ著しい蓄積が見られるが、βアミロイドタンパク質は対照群と比べて差が無かったという結果だ。さらに、フットボール選手を続けた長さと、PETで測定されるTauの蓄積は上昇しているが、症状の強さとTauの蓄積はあまりそう感がなかった。
以上、Tauの沈殿場所、βアミロイド沈殿が見られないことから、CTEがアルツハイマー病と関係しているというのははっきりと否定できるが、TauがCTEの神経変性にも関わっている可能性が示唆された。しかし、症状とTauの蓄積が創刊しないので、直接の神経変性の引き金かどうかははっきりしない。一方、プレーヤー生活の時間とTauは相関しているので、今後脳へのショックの繰り返しがなぜTauの沈殿につながるのか調べる必要があるだろう。また、PETの結果と病理との相関についての研究も必要だと思う。
どんなスポーツでも、プロになるということは文字通り体を担保にして初めて成り立つ厳しいことであることが理解できる論文だったと思う。
2019年4月17日
ミクログリアは発生の極めて初期に他の血液細胞系列から分離することで形成され、それが長期間脳の貪食細胞として機能している。この貪食機能は、老化とともに低下し、例えば沈殿アミロイドタンパクの除去機能低下が老化とともに発生する一つの原因は、このミクログリア機能の低下に起因するのではないかと考えられている。
今日紹介するスタンフォード大学からの論文は、ミクログリアが老化に伴って貪食機能を低下させる分子メカニズムを特定しようとする研究で4月11日号のNatureに掲載された。タイトルは「CD22 blockade restores homeostatic microglial phagocytosis in ageing brains (CD22阻害は老化脳でのミクログリア貪食機能のホメオスターシスを回復させる)」だ。
この研究では現在盛んに用いられるクリスパー/Cas9と薬剤の標的になりそうな遺伝子の機能をノックアウトするためのガイドRNAライブラリーを用いて、ミクログリア細胞株での貪食を抑える分子を探索し、その中から老化とともにミクログリアで発現が上昇する遺伝子を海馬から集めたミクログリアで調べている。
普通このようなスクリーニングでは、多くの分子がリストされてくるのだが、この研究は幸か不幸か、なんとこの基準に合う分子として、シアル酸と結合する能力がある細胞表面分子CD22だけが残っている。実際、若い時のミクログリアには全く発現がなく、老化とともにミクログリアで発現してくる。
そこで、CD22に対するリガンド(シアル酸をN-acetyllactosaminと結合させた分子)で処理すると、貪食能を強く抑えることができる。もちろんCD22が欠損したマウスではこのようなことは起こらない。以上の結果から、CD22がシアル酸が結合したリガンドで活性化されることで、貪食能が低下することが明らかになった。
次にこの逆、すなわちCD22のシアル酸結合を抗体で阻害する実験を行うと、ミクログリアの貪食を高め、脳からのミエリン分子の除去が高まることを示している。また、抗CD22抗体投与ではなく、CD22がノックアウトされたマウス脳もミエリン沈殿を除去する力が高いことを示している。すなわち、老化に伴ってCD22がミクログリアに発現してシアル酸からのシグナルを受けてしまうことで、貪食能が低下することが示唆された。
同じ抗体の老化マウス脳への投与を1ヶ月間連続的に行うと、ミクログリアの発現している遺伝子が、若いミクログリアタイプに戻ることが明らかになった。そこで、CD22ノックアウトマウスで老化に伴う学習能力の変化を調べると、正常マウスでは老化により失われる学習能力(迷路テストで調べる)がなんと正常に近いことも明らかにしている。そして、この記憶の正常化は、海馬の活動細胞の上昇と並行していることを明らかにしている。
すなわち。CD22の発現と活性化によりミクログリアの貪食能が低下、脳内に沈殿する様々なタンパク質を処理できなくなることで、老化に伴う海馬の神経活動が低下するが、この異常はCD22に対する抗体で正常化することができるというシナリオだ。
CD22に対する抗体はすでにリンパ性白血病の治療に用いられており、明日からでも治験ができそうだが、B細胞への影響を考えると、やはり脳内への持続注入が安全だろう。これがヒトで可能か、そう簡単ではないような気がする。本当は、なぜCD22が老化とともに発現するのかを明らかにして、それを標的にしたほうがいいような気がする。
2019年4月16日
CD8陽性キラー細胞によりガンを殺すためには、ガン抗原ペプチドがガン細胞状のMHCに提示されれば良いが、がん免疫が成立する過程ではがん細胞が発現する抗原だけで十分かどうかについてははっきりとした答えはない。多くの研究は、ガン自体も樹状細胞DCに処理され、免疫系を刺激した方が有効であるという可能性を示唆しているが、うまくコントロールされた実験系でそれを証明した研究は多くない。
今日紹介するマウントサイナイ病院Ican医科大学からの論文は、本来抗原提示能力が十分なはずのBリンパ系腫瘍をモデルに、それでもDCの関与が免疫成立に必要であることを示した論文でNature Medicineオンライン版に掲載された。タイトルは「Systemic clinical tumor regressions and potentiation of PD1 blockade
with in situ vaccination(腫瘍内への免疫による全身性の腫瘍退縮とPD1阻害効果の促進)」だ。
まずDCによるcross presentationが必要であることを示すため、DCのMHCと腫瘍のMHCの一致だけが異なる凝った実験系を用いてガン免疫を調べ、ガン自体が抗原を提示できていても、ガンと同じMHCを持ったDCが存在しないと免疫が成立できないことを確認している。また、このとき働くDCはCD103陽性タイプで、これがないとPD1阻害療法にも反応しないことも示している。
すなわち、腫瘍細胞がDCにより処理され、免疫系を刺激する必要があることがはっきりしたわけで、あとは腫瘍内にどのようにDCを誘導して、ガン抗原を処理させるかが問題になる。
私も全く知らなかったが、FLT3に対するリガンドFLT3Lを腫瘍内に注射するとDCが集まってくることが知られていたらしい。この研究では次に腫瘍内にFLT3Lを注射し、これにより多くのCD103陽性DCが腫瘍内に集積することを確認している。
次は、集まったDCに癌を処理させる必要があるので、局所に放射線をあててガンを殺すのと同時にFLT3Lを投与する実験を行い、期待通りDCによるガン抗原の処理が行われることを確認する。
最後に、このDCの免疫刺激能力をさらに高める目的でpolyICをアジュバントとして用いて効果が高まること、そしてFLT3、放射線、pICで処理した上にPD1阻害治療を組み合わせると強くガンを抑制することを明らかにしている。
この前臨床研究を受けて、この研究では最後に8人のノンホジキンリンパ腫の患者さん11名を同じ方法で治療している。ただ、PD1阻害療法は今回は組み合わせていない。この治療では、末梢血中のDCも分化型に変換され、腫瘍組織へのDC浸潤も著名に見られる。
結果としては、3年近く病気が進行しなかったのは2例だけだが、半分以上は病気の進行を止めることができている。しかも、著効を示した患者さんでは、局所に治療を行っただけなのに、全身の転移巣も消失しており、全身性の免疫が成立したことを示している。著者らによると、人で局所に対する免疫治療が全身にも効果があることを示せたのはこれが初めてらしい。おそらくこれを示したいため、あえてPD1阻害療法は使っていなかったのだろう。
話はこれだけで、免疫の入り口を操作することの重要性を示し、これにガンのネクローシスと、DCの操作が重要であることを示す、新たな例になったと思う。熊本で、自らの判断でオプジーボと温熱療法を組み合わせているお医者さんと知り合ったが、これまで問題があるとされてきた免疫療法も、科学的なプロトコルへと変換できる可能性が高まったと思っている。
2019年4月15日
心地よい、気持ちが良いという快感が、美しいという普遍的な美の認識へどう転換できるのかについて、「完全なイデアが、現実や認識を超えて存在するのだ」というプラトンの超越論的な考えから、「物の中に形相因として存在する」というアリストテレスのように、哲学の始まりから盛んに議論されてきた。
ただ現代の脳科学に近いのはカントの「判断力批判」からだと思う。単純化して言ってしまうと、普遍的な美に到達するためには、心地よい感覚インプットが個人の能力や経験を通した判断を通して目的化される必要があると考えたが、この目的化の過程に芸術の普遍性もあるし、個性もある。特に、個性になってくると先天的、後天的を問わず芸術家ならではの能力が存在し、これは脳の多様性として現れるはずだ。
先週土曜日、芸大の油絵科の学生達と話す機会があったが(不思議と全員女性だったが)、彼女たちと話していて驚いたのは、鏡で確認しなくても、自分の顔を思い出せるそうだ。もちろんこの能力は芸術家に限らないと思うが、私たち凡人は自分の顔は言うに及ばず、顔を空で思い浮かべることは簡単ではない。絶対音感もそうだが、一つづつこのような脳の多様性を解明していくことは芸術に関わる創造性、すなわち脳の多様性を理解するためには重要だ。
前置きが長くなったが、今日紹介するニューヨーク大学からの論文は、人間のリズム感についての差の脳科学的背景を調べた研究でNature Neuroscience4月号に掲載された(22:627, 2019)。タイトルは「Spontaneous synchronization to speech reveals neural mechanisms
facilitating language learning(話し言葉への同調能力から言語学習を促進する神経学的メカニズムが明らかになる)」だ。
この研究ではまず言葉のシラブルの持つリズムの認知能力を、言葉を聞かせて、それをもう一度繰り返させるという課題で調べている。すると驚くことに、繰り返して同じシラブルを話すとき、聞いたリズムと同調したリズムで話せる人と、そうでない人がはっきり分かれることがわかる。
この2つのグループで、今度はもう少し複雑なシラブルを聞かせながら脳磁図で活動を調べると、同調能力の高いグループほど、左脳のブロードマン44領域と呼ばれる言葉を話すときのタイミングに関わる領域の活動が、聞いているリズムに強く同調していることがわかった。すなわち、言葉のリズムの認識力が脳の機能の違いとして検出できることになる。
そこで、ではこの機能的違いが脳のネットワークの違いを反映しているか、神経繊維を通る水分子の動きを調べる拡散強調MRIを用いて前頭葉と聴覚野の結合を調べ、左側の聴覚野への神経結合が高まっていることを明らかにしている。そしてこの能力が音を聞いて言葉を覚える能力とも相関する事を明らかにしている。
話はここまでで、高次の機能を支える脳の構造的違いを一つ明らかにした面白い研究だ。こうして特定された違いを、日本人と中国人や米国人と比べたり、あるいは音楽家と素人で比べたりすることで、さらに面白いことが発見できるような気がする。
このような論文を読みながら、土曜日の会話を思い出すと、芸術を鑑賞するとき、自分が心地よいというだけでなく、作者や演奏家の脳の多様性を楽しめる境地まで達することができれば、芸術のあり方ももっと大きく変化するような気がする。その意味で、科学者と芸術家が常に対話することは重要だ。
2019年4月14日
最初デニソーワ洞窟で見つかった指の骨からその存在が確認されたデニソーワ人も、その後の研究で他の個体も発見され、ゲノムの解析が続いている。ただデニソーワ人の骨は今のところシベリアのこの場所以外では見つかっていない。しかし、現代人に受け継がれているデニソーワ人のゲノムを調べると、シベリアからアジアにかけての民族のゲノムにはほんの少ししか残っていないのに、なんと遠く離れたパプア・ニューギニアの民族では5%前後のゲノムがデニソーワ人由来であることが明らかにされている。この結果は、なぜメラネシアだけにこれほどのデニソーワ人ゲノムが維持されることになったのかという人類史の大きな謎を残した。
今日紹介するニュージーランド・Massey大学を中心とする国際チームの論文は、インドネシアに属する南の島々の住人161人の全ゲノムを新たに解読し、すでにデータベースに預けられているゲノムと合わせて解析することで、デニソーワ人の足跡を追いかけた研究で、5月2日発行予定のCellに掲載された。タイトルは「Multiple Deeply Divergent Denisovan Ancestries in Papuans (パプア人には多様な複数のデニソーワ人からのゲノムが存在している)」だ。
この研究では、多くのパプア人ゲノムとすでに存在するアルタイ洞窟のデニソーワ人ゲノムを統計学的に比べて、デニソーワ人ゲノムがメラネシアに伝わってきた様子を明らかにしようとしている。ただ、パプア人にはネアンデルタール人ゲノムも混じっており、確実にデニソーワ人から由来する遺伝子断片を特定する必要がある。この研究のハイライトは、確実にデニソーワ人由来と確定できる遺伝子断片を何千個もリストすることに成功したことだ。
このようにデニソーワ人由来であることがはっきりした長い断片を、元のデニソーワ人ゲノムとの違いを比べると、今度はデニソーワ人から流入したゲノムが多様化していくプロセスを追いかけることができる。この方法で、デニソーワ人とパプア人は最初は3万6千年前、次は2万8千年前の、少なくとも2回交雑を行なっていることが明らかになった。
それぞれのデニソーワ人ゲノムの地理的分布をさらに統合して、最終的に次の結論に到達している。
1)交雑が行われた時間帯や地理的分布から考えて、間違いなくデニソーワ人はメラネシアに存在していた。とすると、起源はともかく、デニソーワ人は海を越えてシベリアとメラネシアに分布できる能力を持っていた。
2)パプアでは、デニソーワ人は少なくとも3万年前、おそらく1万4千年前まで独立して生存していた。
3)交雑の様態から考えている、パプアに移動したホモ・サピエンスとデニソーワ人は、完全に独立して暮らしていた。
これ以外にも、デニソーワ人由来の免疫系遺伝子を含むいくつかの遺伝子が、パプア人の生存に貢献したこと、なども示されているが、なんといってもデニソーワ人が1万4千年前までパプアに生息していたという結論だけで十分だろう。
彼らがいつパプアに来たか調べるために、フローレンス人のゲノム断片が見つからないかなど探索はしているが、現在のところホモ・サピエンス、デニソーワ、ネアンデルタールのゲノム以外は見つかっていない。しかし、ジャワ原人、フローレンス人、あるいは最近発見されたフィリピン原人など、アジアの島々はアフリカに並んで、新しい人類研究の現場になること間違い無い。まず次のデニソーワ人の骨がこの領域から発見されることを期待している。
2019年4月13日
先日マウス自閉症モデルで見られる社会性の低下を、乳酸菌の一種ロイテリ菌が改善できること、そしてこの作用が迷走神経刺激を介したオキシトシン分泌によることを示したテキサス・ベイラー医科大学からの論文を紹介した(http://aasj.jp/news/watch/9990)。ただ、これらの結果はすべてマウスでの話なので、是非ヒトでも早く研究を進めてほしいと期待を述べた。それから何日も経ってはいないが、自閉症を健康人の便から分離してきた細菌叢を服用させて治療できる可能性を示した論文がアリゾナ州立大学から4月9日号で報告された。タイトルは「Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota (自閉症の症状と細菌叢に対する細菌叢移植治療の長期効果)」だ。
腸内細菌叢が自閉症の症状に寄与している可能性は従来から指摘されていた。とくに、自閉症の多くで消化管症状がみられ、生活を阻害していることは周知の事実で、以前自閉症の健康と題して、Autism Reportsによる論文を紹介した時(http://aasj.jp/news/watch/6791)、多くの家族の方から、消化管症状で困っていると言うメールをいただいた。このように、毎日の生活を悩ませる慢性の消化管症状を治療することは生活の質を上げるために必須で、対応が望まれていた。さらに、ロイテリ菌などの結果から、消化管症状を改善させることが、自閉症の症状を改善させる可能性もある。
この消化管症状を便から分離した細菌叢を用いて治療できないか調べたのがこの研究で、細菌叢を投与後18週目までの結果はすでにMicrobiome 5:10, 2017に報告されている。この論文には全く気づかなかったが、読んでみると健康人の便から分離した細菌叢の投与で消化管症状は著しく改善し、さらに自閉症の診断指標も有意に低下するという素晴らしい結果だ。
今回の研究はこのときの18人をさらに長期間追跡した2年目の経過報告だ。結果を紹介する前に、まずどんな治療かを短く述べておこう。ずいぶん昔このブログで、クロストリジウム感染を健康人の便から分離した細菌叢を用いて治療するマサチューセッツ総合病院からの論文を紹介した(http://aasj.jp/news/watch/6791)。これまで健康人の便の移植は行われていたが、カテーテルで腸に直接投与するので、医療としての普及が進んでいないが、これを飲み薬にしてしまうという発想の治療だ。
この研究でも、同じように調整した細菌叢を-80℃で保存し、同じ最近叢を全員に使っている。そして、投与前にすでに存在する腸内細菌叢を徹底的に抗生物質で処理し、また細菌叢を服用するときは胃酸を抑えて腸まで細菌が到達できるようにしている。そして最後に一回、大腸にも細菌叢を移植している。
18週目の結果も印象的だが、消化管症状の改善は2年目まで続いている。実際、この治療を受けた全員、消化管症状に悩まされていた人たちだが、半分以上で大きな改善が続いて生活の質が高まっている、もちろんこれだけでも素晴らしいと思うが、自閉症の症状、特に専門家が検査するスコアでは、18週よりさらに改善がみられるという結果だ。そして、患者さんごとに消化管症状と自閉症の改善度をプロットすると、消化管症状の改善と自閉症の改善がほぼ相関している。
以上の結果は、消化管での細菌叢の変化が、消化管症状だけでなく自閉症症状にも寄与していることを強く示唆しており、ロイテリ菌の結果も含めて腸内細菌叢が自閉症治療の重要な標的になる可能性を期待させる。とはいえ、この研究はオープンラベルで、対象者に対するプラセボ効果でこのような改善がみられていることは否定できない。そのため、できるだけ早く、適切な対象を選んだ治験を進めてほしいと思う。
しかし個人的には、ロイテリ菌といい、この治療といいかなり有望な可能性ではないかと期待している。
2019年4月12日
研修医の頃、京大に利根川さんが来られて、免疫グロブリン遺伝子再構成についてセミナーをされたのを聞いて、不思議な感動を覚えた。それが臨床を辞めてから、血液幹細胞からB細胞への分化を最初の研究テーマに選んだ理由だと思う。当時、免疫グロブリン遺伝子再構成はよくわかっていたが、それに関わる分子はほとんど分かっていなかった。そんな時、Baltimoreラボの若い研究者だったDavid SchatzがついにRAG1,RAG2の2つのタンパク質で遺伝子再構成が起こることを明らかにした。彼がRAGを見つけるまで、何回かミーティングで一緒になることがあったが、東海岸のエリート研究者を絵に描いたような印象は今でも忘れない。
あれからすでに30年以上経っているが、今日紹介するエール大学論文を読んでSchatzが今もRAGについて研究していることを知り懐かしく紹介することにした。タイトルは「Transposon molecular domestication and the evolution of the RAG recombinase(トランスポゾンの飼いならしによるRAGリコンビナーゼの進化)」だ。
免疫グロブリン遺伝子を正確に編集するRAG1/RAG2分子が、動く遺伝子トランスポゾンから進化しただろうことは当時から想定されたいた。その後、ショウジョウバエのゲノムからin silicoで再構成されたTransibがそのルーツで、その後ナメクジウオのRAG1/2プロトタイプを経て進化したことが明らかになっていたようだ。
この研究ではRAG1/RAG2の最も近い親戚と言えるproto(p)RAG1/proto(p)RAG2の、酵素活性、構造、トランスポゾン活性などを比較し、RAG1/RAG2のような正確な遺伝子編集酵素が進化してきたのかを調べている。
ほとんどの読者はもはや馴染みはないと思うが、RAGはゲノム上の極めて正確なシグナル配列セット(これもトランスポゾン由来と考えられる)を認識して、シグナル配列を切り出し、ゲノム側の断片はヘアピン構造を作らせた後、DNA修復で再結合させる一方、断片の方はシグナル部分で再結合させ新たなトランスポゾンになるのを抑えている。この辺りの研究については、1980年ごろ大変な競争があって懐かしいが、ナメクジウオのpRAGと比べると、まずRAGではシグナル配列の両端を必ずカットする一方、pRAGでは様々なタイプの断片ができてしまうこと、そしてpRAGでは切り出した後ゲノムの他の場所に挿入されるトランスポゾン活性が残っていることがわかった。
そこで、クライオ電顕を用いた構造解析を行い、トランスポゾン活性をどのように抑えている分子変化を特定している。詳細を省いて、この解析からわかった進化の過程をまとめると次のようになる。
これまではシグナル配列断片を環状に閉じることで、トランスポゾン活性が抑えられると説明されていたが、実際にはプロトRAG1,RAG2に起こった2つの変化によってトランスポゾン活性が抑えられたRAGが誕生する。一つは、RAG1の840番目のアミノ酸のアルギニンへの変化と、RAG2の酸性のC末の変化で、これにより再構成がシグナル配列に完全に縛られるようになり(12/23ルールと呼ばれている)、さらに切り出した後の細胞内過程を調節してトランスポゾン活性を抑えているというシナリオだ。
もう抗原受容体遺伝子の再構成に興味を持つ人は減ったと思うが、私にとってはSchatzの名前とともに懐かしく思わず紹介した。しかし、これほどマニアックなプロの研究がしっかりと進んでいることを見て、大変感銘を受けた。
2019年4月11日
いつも不思議に思うのだが、機能的MRIで脳が働いている領域を血流の変化で捕らえられるということは、脳の働いている領域へ血流が優先的に向けられるということを意味している。しかし、どの様な機構でこれは起こっているのだろうか。もし血管レベルで脳の領域レベルの活動が調節できるとすると、私たちが脳でイメージする個々のシナプスでの神経同士の結合ネットワークだけでなく、より大きな細胞集団を選択的に支える機構も、脳機能にとって重要になる。
この疑問は、最近の脳へ磁場を与えたり、直接電流を流す研究を読んでいると、ますます強くなる。すなわち、個々の神経回路のみならず、領域単位の変化で神経機能を変化させられるとすると、集団の活動と、個別の神経の活動がうまく調節されることで、脳が働いていることになる。今日紹介するボストン大学からの論文はこの領域間の同期がうまくいかないのが老化による作業記憶の低下の原因で、これを電流で治せることを示した面白い研究だ。タイトルは「Working memory revived in older adults by synchronizing rhythmic
brain circuits(高齢者の作業記憶は脳回路のリズムを同期させることで復活する)」で。Nature
Neuroscienceにオンライン出版された。
この研究では、最近海馬の記憶形成時にみられる、γ波という早い周期の脳波成分が、θ波という遅い周期の成分に同期するPhase amplitude coupling(PAC)に注目して、老化による作業記憶の低下とPACの発生に何らかの関係がないか、作業記憶を調べる課題を行いながら、脳波を記録して調べている。
結果は、作業記憶が正常に働いていると、側頭葉で記憶される脳波でPACが見られるが、これが高齢者で欠損していること。また、このPACの発生は、前頭葉と側頭葉のθ波の位相が一致することで発生することを特定する。
同じような結果はこれまでも示されていたと思うが、この研究では前頭葉と、側頭葉の2箇所を位相を合わせた電流で25分間刺激して、側頭葉にPACを発生させることに成功している。しかも、このPACの回復の程度に応じて、作業記憶能力が回復している。
すなわち、
- 前頭葉からの働きで、側頭葉が同調することで、側頭葉で発生したθ波にγ波がカップルすることで、作業記憶が維持されること、
- この過程が高齢者では阻害されており、その結果作業記憶が低下していること、
- そしてこれを領域レベルの操作で回復させることができること
が結論になる。
この研究では、極めて短期の操作による結果を調べているが、今後より長期の操作で、自然に前頭葉から側頭葉の同期が起こるようにすることが目標になるだろう。短期の操作を繰り返せば慣れで治るのか、あるいは他の刺激が必要なのか、興味が尽きない。おそらくスーパー高齢者での研究も必要だろう。しかし、私たち高齢者にとって一番気になる問題についても、着々と研究が進んでいるのは嬉しい。