過去記事一覧
AASJホームページ > 2024年 > 3月

3月21日 アルツハイマー病は脂肪代謝病か?(3月13日 Nature オンライン掲載論文)

2024年3月21日
SNSシェア

アルツハイマー病(AD)に何らかの形で脂肪代謝が関わることは、APOE4 が AD のリスク因子になっていることからわかる。このブログでも APOE4 が AD に関わるメカニズムに関する研究を何度も紹介してきた。問題は、研究が進んだ結果、特定のメカニズムに集約するのではなく、現在のところ神経細胞が直接 LDL に結合する説、血管説、アストロサイト説、さらにはオリゴデンドロサイト説が発表されている。おそらく、中核となるメカニズムの様々な表れを見ているのではと思うが、まだまだ手探り状態と言えるだろう。

今日紹介するスタンフォード大学の論文は、もともと AD による炎症誘導の主役として研究されてきたミクログリアと脂肪代謝について再検討を行い、ミクログリア由来の脂肪が神経細胞に伝達され、神経変性を誘導する可能性を示唆する研究で、3月13日 Nature にオンライン掲載された。タイトルは「APOE4/4 is linked to damaging lipid droplets in Alzheimer’s disease microglia(APOE4/4はアルツハイマー病のミクログリア内の傷害性脂肪滴と関連する)」だ。

この研究では、APOE4/4 タイプと、APOE3/3 タイプの AD 患者さんの脳細胞を single cell RNA sequencing で解析し、特に APOE4/4 のミクログリアで脂肪滴形成に関わる ACSL1 遺伝子が上昇していることを発見する。そして、ACSL1 陽性細胞が AD で指摘されてきた脂肪滴形成ミクログリアであることを組織学的に確認している。また、脂肪滴形成ミクログリアの数と AD 症状とが比例することも示して、ミクログリアでの脂肪形成こそが AD の進行を決めると結論している。

次に、Aβ プラークから神経細胞死までの過程とミクログリアでの脂肪形成を調べるため、ミクログリアを沈殿 Aβ で刺激する実験を行い、Aβ 刺激により ACSL1 を始め様々な脂肪代謝に関わる分子発現が誘導されるとともに、自然炎症に関わる分子が発現することを明らかにしている。

この研究のハイライトはここからで、このように Aβ で活性化した APOE4/4 ミクログリアの培養上清を神経細胞に加えると、Tau 分子のリン酸化が起こり、さらに神経細胞自体に脂肪滴が現れるとともに、細胞死が誘導されるという結果だ。

すなわち、ミクログリアで脂肪滴が合成されると、LDL 粒子が形成されミクログリア外に分泌され、これが神経細胞に取り込まれて、Tauリン酸化や直接の毒性を介して、神経変性を誘導するというシナリオだ。そして、APOE4/4 はこの LDL分泌を促進する役割を演じていることになる。

以上が結果で、これが正しいと、APOE4 リスクの神経説、アストロサイト説などとも矛盾はないので、なんとなく集約してきたかなと言う感じがする。いずれにせよ、ミクログリアの脂肪形成自体は PI3K 阻害剤などでも抑制できる創薬標的になるので、期待したい。

カテゴリ:論文ウォッチ

3月20日 肝臓再生を促進するが、ガン細胞は抑える薬剤の開発(3月14日 Cell オンライン掲載論文)

2024年3月20日
SNSシェア

肝臓は2葉に分かれているが、生体肝移植のドナーでは、大きい方の右葉を切除してレシピエントに提供する。凡人ならドナーを優先して左葉にしておこうと躊躇するのを、過小グラフト症候群を防ぐためにも右葉と決意した開発者の田中先生はさすがだと思う。いずれにせよ、この時ドナーもレシピエントも、肝臓の再生が促進できれば、術後の肝不全の心配は大きく減る。

移植だけでなく、肝臓再生を促進する方法の開発は最も重要な課題の一つだが、今日紹介するドイツ・チュービンゲン大学と米国メイヨークリニックからの論文は、MKK分子阻害剤を開発し、肝切除に伴う問題解決に大きく近づいた研究で、3月14日 Cell にオンライン掲載された。タイトルは「First-in-class MKK4 inhibitors enhance liver regeneration and prevent liver failure(MKK4阻害剤として最初に認可された薬剤は肝臓の再生を促進し肝不全を予防する)」だ。

元々このグループは肝臓特異的に存在する map-kinase の一つ MKK4 に着目して研究し、全身でこの分子の発現を siRNA で阻害すると、他の臓器や正常肝臓には全く影響なく、肝臓再生だけが促進されることを明らかにしていた。

MKK4 はキナーゼなので当然阻害化合物を開発できる可能性がある。そこで、MKK4nと結合し機能を阻害する、現在メラノーマの治療に使われている B-Raf 阻害剤 vemurafenib をスタートに、様々な化合物を設計し、主に NMR を用いた構造解析にもとづいて、MKK4 特異的な化合物を開発し、最終的に HRX215 と名付けた、他のキナーゼと比べて MKK4 への結合が数十倍高い、経口可能な化合物を開発している。

この薬剤を投与すると、肝臓切除後の再生細胞数をほぼ3倍に増加させることが出来る。一方、正常肝臓に対してはほとんど増殖効果がない。また、肝臓切除だけでなく、四塩化炭素による肝障害からの回復も促進できる。

次に安全性、特に細胞増殖を誘導するので発ガン性などについて注意深い研究を行っている。正常マウスに1年半薬剤を投与し続ける実験でも、特別な副作用は認められていない。

面白いのは、脂肪肝が誘導されるシステムでこの薬剤を投与すると、脂肪肝が改善する。また、この系で発生する腫瘍や、メタピラジア(化生)を起こした前ガン状態発生を調べると、この薬剤により発生が抑えられる。

最後に、ブタでなんと85%の肝臓を切除する実験を行い、ほぼ全てのブタにおこる急性肝障害をこの薬剤が抑えることを明らかにしている。

この結果を受けて、既に安全性を確かめる第一相の試験も行っており、現在のところ副作用は認められないようだ。

以上、どのような症例で治験を行うか重要になるが、おそらく腫瘍による肝切除などを対象に、治験が行われるように思う。動物実験と同じ効果が確認されると、移植や腫瘍外科、さらには脂肪肝抑制など、これまであまり存在しなかった肝臓特異的な薬剤として大きく発展しそうな気がする。

カテゴリ:論文ウォッチ

3月27日19時半から「言語の誕生」についてのジャーナルクラブのお知らせ。

2024年3月19日
SNSシェア

最近大規模言語モデルの誕生で、言語発達や言語の誕生についての研究は大きく変化しようとしています。幸い医学部学生に「言語誕生」について講義する機会があったので、今月のジャーナルクラブはこの講義内容を使って行います。いつものように、まずZoomで開催し、それをYouTubeにアップロードする予定です。直接参加したい方は連絡してもらえれば、Zoom URLを送ります。

日時は27日19時半からで、いつもよりは長い時間のジャーナルクラブです。

カテゴリ:セミナー情報

3月19日 中国からの細菌叢研究2題(3月14日 Cell オンライン掲載論文他)

2024年3月19日
SNSシェア

最近論文を読んでいて感じるのは、中国からの論文のかなりの割合が意外性を狙っている点だ。普通誰の論文か気にせず読んでいくのだが、読んでいるうちに「中国からかな?」と感じてアフィリエーションを見て納得するケースが多い

今日紹介する2編の論文は、ともに細菌叢からスタートして、病気の治療に役に立つ菌を特定し、最後にそのメカニズムを明らかにする研究だが、思いもかけないメカニズムに落ち着いている。

最初は浙江大学からの論文で、マウスの系でチェックポイント治療を助ける細菌叢を調べたら Johnsonii乳酸菌に行き当たり、さらにこの菌が他の菌と協力して合成するインドールプロピオン酸が免疫を助けるという話で、3月14日 Cell にオンライン掲載されている。タイトルは「Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer(細菌由来の代謝物がT幹細胞を変化させてほとんどのガンに対する免疫治療を高める)」だ。

この研究は人間ではなく、マウスに移植したガンを PD-1 抗体で治療したとき反応した群と、しなかった群に分けて、反応した群だけに認められる細菌を探索し、少なくともヨーロッパではプロバイオに用いられている Johnsonii 乳酸菌 ( Lj ) に行き着き、実際正常マウスに Lj を投与すると PD-1 知要項かを高められることを示している。

Lj が出てきたのも意外だが、この作用機序を調べる中で、Lj によるトリプトファン代謝の結果出てくるインドールプロピオン酸(IPA)が、クロマチン変化を通じて自己再生能を持つ CD8T細胞を活性化し、キラー細胞を供給し続けることを示している。ぱっと見には不思議に感じないのだが、IPAを合成できる細菌はこれまでClostridium sporogenesに限るとされていたので驚く。

これについては、Ljが合成したインドール乳酸(ILA)をClostridium sporogenesに引き渡していると結論し、Lj によって ILA が提供されることで Clostridium sprogenes の増殖を促すというシナリオを提案している。

いずれにせよ IPA というゴールに集約している感じだが、この筋が正しければ IPA は現在アルツハイマー病など様々な病気で効果が調べられているので、プロバイオより、IPA 服用が正解という話になる。

次は中山大学からの論文で、最近のメタボライトにより高尿酸血症を直す話で、意外な目的だが、内容は面白かった。タイトルは「Alistipes indistinctus-derived hippuric acid promotes intestinal urate excretion to alleviate hyperuricemia(Alistipes indistinctus由来馬尿酸は腸管での尿酸分泌を促し、高尿酸血症を抑える)」で、3月14日 Cell Host & Microbiome に掲載された。

この研究も、まず高尿酸血症の患者さんで特異的に上昇している細菌としてAlistipes indistictus(Ai)を特定し、これを無菌マウスに投与して高尿酸血症を誘導すると、Aiを投与された群は血中尿酸値が低下することを発見する。

次に Ai 感染により起こる便中の代謝物の変化を調べ、馬尿酸に行き着く。驚くことに、馬尿酸を投与するだけで、高尿酸症を抑えることが出来る。すなわち、馬尿酸を飲むことで血中尿酸が下がるという意外な結果だ。

代謝経路をたどると、Aj は馬尿酸を直接合成するわけではなく、Benzoate と Glycine をフェニルアラニンとケトグルタル酸から合成し、これが肝臓へ移って馬尿酸になる。

そして馬尿酸濃度が高まると小腸上皮の 0PPARγ 転写因子が活性化され、尿酸をくみ出すシステムの小腸上皮の内腔面での発現が高まり、尿酸をくみ出す。マウスの話だが、実際 Aj 投与や馬尿酸投与で血中尿酸は大きく下がっているので、馬尿酸の毒性がないとすると、高尿酸血症の新しい治療になる可能性はある。

Aj の場合、benzoate とグリシンが供給され馬尿酸が作られるが、同じ量の馬尿酸なら投与可能ではないだろうか。

いずれにせよ、このような意外な筋を示す論文は中国からの確率が高い。

カテゴリ:論文ウォッチ

3月18日 ヒストンのアルギニンメチル化の膵臓ガン悪性化(3月19日号 Cell Reports Medicine 掲載論文)

2024年3月18日
SNSシェア

ガンゲノム解析でほとんど違いはないのに、同じ治療の効果が全く違うという症例は多い。当然、エピジェネティックな違いがこの違いを決めていると思われるが、まだまだよくわかっていない。

今日紹介する韓国テジョンのKAISTからの論文は、膵臓ガンの悪性化に手を貸すエピジェネティックメカニズムに、ヒストンのアルギニン部位のメチル化酵素が関わる可能性を示した研究で、3月19日号 Cell Reports Medicine に発表された。タイトルは「PRMT1 promotes pancreatic cancer development and resistance to chemotherapy( PRMT1 は膵臓ガンの発生を促進し化学療法への抵抗性に関わる)」だ。

私の頭の中はヒストンメチル化というと、リジンのメチル化がインプットされてしまっているが、実際にはアルギニンもメチル化され、基本的にはクロマチンをオープンにする働きがあるらしい。

この研究では多くのガン、特に Ras変異によるガンでアルギニンメチル化酵素が上昇していることに注目し、マウス膵臓ガンモデルで single cell RNA sequencing を行い、特に PRMT1 の上昇が著しいこと、人間のガンで PRMT1 の発現が高いと予後が悪いこと、そして PRMT1 阻害剤で膵臓ガン細胞の増殖が抑えられることを明らかにしている。

次に、膵臓ガン発生を誘導するモデルで、膵臓特異的に RPMT1 ノックアウトマウスと正常マウスを比べると、PRMT1 ノックアウトマウスではガンの発生が遅れることも示している。

このように PRMT1 はガンの状態を最適に整える役割を演じているようで、そのメカニズムを遺伝子発現やクロマチン構造変化の解析を用いて調べると、GLUT1 やヘキソースキナーゼなど、グルコース代謝を高める酵素の遺伝子のクロマチンをオープンにすることでガンの増殖を助けることを示している。

最後にこの結果の臨床応用への可能性を調べる目的で、膵臓ガンに処方される率の高いゲムシタビンとPRMT1 阻害剤フラミジンを組みあわせた治療効果を、マウスに移植した膵臓ガンモデルで調べている。

結果は、それぞれ単独では得られない高い腫瘍抑制効果が見られるが、用いられた実験系ではガンの増殖を完全に止めるまでには至っていない。

以上が結果で、完治を望めないとはいえ、ゲムシタビンとの併用剤としての PRMT1 阻害剤の可能性を示している。最近では、膵臓ガンの患者さんからオルガノイド培養が可能になっており、実際の治療経過をもう一度試験管内で確かめることも可能なので、症例ごとに解析してみるのも重要だと思う。阻害剤は存在するようなので、是非臨床応用の可能性を追求して欲しい。

カテゴリ:論文ウォッチ

3月17日 胸腺びっくり動物園を可能にする転写メカニズム(3月13日 Nature オンライン掲載論文)

2024年3月17日
SNSシェア

胸腺でT細胞が作られる時、胸腺上皮が身体中のさまざまな自己分子を発現することで、自己抗原に対するトレランスが維持される事を示した Dian Mathis グループからの論文を、「胸腺びっくり動物園」と表現して紹介したのは2020年6月のことだ(https://aasj.jp/news/watch/19920)。この動物園は、AIRE と呼ばれる分子により決定されていることは、自己抗原を提示する動物園が成立せず、自己免疫病が起こる AIREノックアウトマウスからわかるのだが、では AIRE がどうしてそれほど多様な分子の転写に関わるのかは謎のままだった。

今日紹介する同じ Mathis グループからの論文は AIRE がさまざまな組織抗原の胸腺上皮での誘導を可能にするメカニズムを明らかにした、素晴らしい研究で3月13日 Nature にオンライン掲載された。タイトルは「AIRE relies on Z-DNA to flag gene targets for thymic T cell tolerization(胸腺でのT細胞トレランスに際して AIRE は Z-DNA を転写する遺伝子の印に使う)」だ。

AIRE により多くの遺伝子が胸腺上皮で発現する。すなわち転写、翻訳が行われるわけだが、この時使われるプロモーターモチーフが特定できなかったことが、メカニズムの解明が進まなかった理由だ。そこで Mathis らは転写モチーフを含む DNA配列でプレトレーニングを行った Basenji と呼ばれる AIモデルを、AIRE により転写される DNA配列でファインチューニングすることで、CA繰り返し配列と NFE2-MAF結合領域を、AIRE転写に関わる配列候補として特定することに成功している。ここでも、従来のモチーフ探索を超えるパーフォーマンスが AI に存在することが明らかになった。

次に、B6マウスと、自己免疫糖尿病マウスNOD を掛け合わせた Fiマウスで、それぞれの染色体からの転写のアンバランスが見られる遺伝子で、AIRE の標的になる遺伝子上流を詳しく調べ、AIRE転写に関わるとして特定した領域の変異が、このアンバランスに関わる事を確認し、この領域が AIRE による遺伝子発現をガイドする領域である事を明らかにしている。

あとは、どのように転写のスイッチが入るかだが、タイトルにあるように CA繰り返し配列が、いわゆる左巻きの Z-DNA 構造を形成することに注目し、この無理な構造により発生する DNA 切断が転写の開始を決める可能性を追求している。詳細は省くが、さまざまな実験から、CA繰り返し配列で実際に DNA切断が起こり、これを修復するために染色体構造が緩み、そこにトポイソメラーぜが結合することが転写のスイッチを入れる事を示している。実際、AIRE がなくても Z-DNA 構造を安定化させるだけで、低いレベルの AIRE依存的遺伝子の転写が起こる。

このように DNA切断をきっかけに弱い転写を始めた遺伝子調節領域に AIRE は結合して、転写を助ける役割がある。さらに Z-DNA の境に存在する NFE2結合領域への NEF2結合も、Z-DNA構造を維持して転写を助けるために機能している。

以上が結果で、これまで AIRE が強く結合する領域と考えて転写領域を特定する研究が進んでいたが、蓋を開けてみると AIRE が補助的だが必須の役割をしているという、予想外の結果が示された。

Dian Mathis 研の力量を感じるとともに、またまた核酸情報の解析が LLM のような AIモデルに傾斜している事を実感した。

カテゴリ:論文ウォッチ

3月16日 セルロース分解菌を基礎にした文化人類学(3月15日号 Science 掲載論文)

2024年3月16日
SNSシェア

腸内細菌叢は人間の環境や食の影響を強く受けているため、文化人類学にも利用されている。ただ、これまでは細菌叢の多様性や量と言った指標が中心で、工業化した社会で我々が失ってきた野生性を示すのに使われる程度だった。

これに対し今日紹介するイスラエル・ベングリオン大学からの論文は、セルロース分解系システムを持つ細菌だけに焦点を当てることで、これまでとは違う文化人類学に仕上げることに成功している研究で、3月15日号 Science に掲載された。タイトルは「Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans(工業化社会の人間に見られる隠れたセルロース分解性腸内細菌多様性)」だ。

我々の身体はセルロースを代謝する能力がない。このため、セルロースは全て腸内細菌叢に依って分解される以外に方法はない。私もこの点についてよくわかっていても、セルロース分解はいくつかの細菌が酵素を分泌して行われるのだろうぐらいの理解しかなかった。

この論文を読んでよく理解できたが、細菌には、セルロースに接着し、マトリックスのようなスキャフォールドを形成し、そこでセルロースを分解するシステムが存在している。そして、このシステム全体を有する細菌は Ruminococcus(R) 属に限られている。この研究ではまず scaC と呼ばれるスキャフォールド分子の遺伝子配列を、人間、類人猿、サル、動物などの細菌叢ゲノム解析データから拾い出し、さらに分解酵素の解析も合わせて、人間や動物に存在する R属を分類した。

すると、これまで分類されていたより詳しい分類が可能になり、また人間に存在する R属はほぼ3種類で、ホミニン型、サル型、反芻型に大きく分けられること、そしてそれぞれは独自に多様化していることを発見する。他にも動物には Champanellensis と名付けた属が存在するが、現在の人間には存在しない。

まず、R属の細菌叢に占める割合を見ると、ゴリラ、サル、そして古代人の便の細菌叢では大体4割ぐらいを占めるが、現代人では、狩猟民や農村で2割ぐらい、さらに都市の人間では4%に低下する。すなわちセルロースを壊す必要がなくなってきている。そして、古代人には現代人に見られないChampanellensis も存在する。

R属の系統樹と反芻動物、サル、人間の系統樹を重ね合わせると、サル型が最も先祖に近く、ホミニン型はまず反芻動物で進化し、家畜化とともに人間に入ってきたことがわかる。すなわち、人間の R属はサル型と反芻型がまじりあっており、まさに生活の歴史を反映していることがわかる。

あとは、他のセルロース分解や糖分解に関わる遺伝子について詳しく調べ、他の細菌の遺伝子も取り込んで、それぞれの生活圏に適応した多様性を獲得しているのがわかる。例えば、人間では米や麦の含むヘミセルロース分解システムを取り入れているし、サルではキチン分解システムを取り入れており、これらは他の動物では見られない。

以上が結果で、細菌叢全体ではなく、食に関わる一つの属に絞ったことで、これまで以上のことが見えたという面白い例だ。

カテゴリ:論文ウォッチ

3月15日 深部組織の変化を超音波で的確につかむ技術:Good idea (3月8日 Science 掲載論文)

2024年3月15日
SNSシェア

手術後の縫合不全など、不断にモニターしたい状態は数多くあるが、傷を開放にして常に除くというわけには行かない。今日紹介する米国Northwestern大学からの論文は、超音波診断機を用いて組織内の様々な状態をモニターできる面白いアイデアで、3月8日号 Science に掲載された。極めて臨床的な材料研究が Science に掲載されたのは、そのシンプルさとアイデアの卓越性によること間違いない。タイトルは「Bioresorbable shape-adaptive structures for ultrasonic monitoring of deep-tissue homeostasis(深部組織のホメオスターシスを超音波診断機でモニターできる生体吸収性で形態適応性の構造)」だ。

生体に適合し、最終的に吸収されるハイドロゲルなら何でもいいのだが、この研究のアイデアは、それに一定数の金属粉末を円形に塗って超音波診断機で検出可能にしたことだ(百聞は一見にしかずで MedicalXpress の写真をご覧あれ:https://medicalxpress.com/news/2024-03-shifting-ultrasound-stickers-surgical-complications.html)。

要するに円形の金属粉を超音波で周りの組織から際立たせて超音波診断機で検出する。あとは、ハイドロゲルの特性を変えることで、pH の変化で膨張したり、溶けて無くなるように設計すると、深部組織で起こっている組織変化をリアルタイムで簡単にモニターできるというアイデアだ。

実際には pH が低くなると急速に膨張するハイドロゲルや、逆にアルカリ性で膨張するハイドロゲルを使うと、前者は胃の縫合部からの胃液の漏れを、後者は膵臓からの膵液の漏れによるハイドロゲルの漏れを、金属粉サークルの半径の拡大として検出できる。

設計通り pH に反応するかを試験管内で確認した TRAIL 、今度はラットの胃壁に設置して蠕動する胃でも、例えば縫合部位を跨いで切歯したセンサーを十分な解像度で検出できるか確認している。

その後、胃に穴を空けて胃液が流出するようにし、時間ごとに超音波診断機でこのハイドロゲルをモニターすると、20分ほどでふやけて拡大するのを超音波診断機で検出できる。ハイドロゲルの特性を変えてそれぞれの組織に会わせると、腸や膵臓でのリークを検出することが出来る。

最後に人間に近い大きさのあるブタで同じ実験を行うと、全ての臓器でラットよりはゆっくりしたペースで拡大するのを観察できる。実際ハイドロゲルを取り出して見ると、2倍ぐらいに拡大しているのがわかる。

勿論深いほど解像度は落ちるが、画像についてはコンピュータを使って様々に改良することが出来るはずだ。またこの程度の鉄粉や亜鉛粉で組織に問題が起こるはずはないと考えると、ただただ Good Idea というほかない。

カテゴリ:論文ウォッチ

3月14日 試験管内での皮膚幹細胞維持と分化誘導(3月8日号 Science 掲載論文)

2024年3月14日
SNSシェア

細胞培養は生体を反映できない人工物という考えは根強くある。しかし、Austin SmithがES細胞の様々な状態を誘導する培養法を開発し、実際の胚と詳しく比較した研究によって、多能性幹細胞の多様性とともに、実際の胚発生過程の理解も大きく進展した。このように、細胞培養と実際の組織の比較の重要性は、腸の幹細胞オルガノイド培養を開発した慶応の佐藤さんの業績からもわかる。

今日紹介するロックフェラー大学 Fuchs 研究室からの論文は、皮膚幹細胞培養を、ES細胞や腸上皮幹細胞培養法のレベルに一段と高めた研究で、3月8日号 Science に掲載された。タイトルは「Vitamin A resolves lineage plasticity to orchestrate stem cell lineage choices(ビタミンAは細胞分化可塑性を解消して幹細胞分化決定を指揮する)」だ。

Fuchsは皮膚幹細胞培養で有名な Green 研出身で、いわば幹細胞培養の先駆者だ。しかし、皮膚幹細胞の培養と、それを用いた皮膚移植治療まで実現しているが、ES細胞や腸管細胞の培養と比べると、皮膚幹細胞培養は大きく見劣りしていた。その結果、未だに培養皮膚はエピスキンのような単純なシステムで我慢しなければならない。

これを根本的に変えようと、オルガノイド培養を基礎に、培養と生体を対応させるための様々な分子マーカー標識を使い、また培養からの結果を生体内で確かめる操作を繰り返したのがこの研究で、妥協を許さない執念の研究だ。

その結果、血清入りで培養した幹細胞は、毛根(HF)と上皮(Ep)両方の分化能を持つ可塑性の高い幹細胞が中心になっていたこと、そして血清抜きの培養では毛根特異的幹細胞(HFS)と上皮幹細胞(EpS)が分離することを見いだす。

次に EpSマーカーを抑える培養条件を検討し、最終的にレチノイン酸(RA)が EpS への分化能を抑え、HFS を選択的に培養するのに必須であることを見いだす。そしてこれに PKC阻害剤 PKCi を加えることでほぼ純粋な HFS を培養できることを明らかにする。

後はここから培養条件を変えてHFで見られる細胞を選択的に誘導できるか調べている。ここまで来ると、毛根についての研究は厚く、結局WntとBMPが分化の方向性を決めることを明らかにしている。

詳細を飛ばしてまとめると次のようになる。

  1. BMP6はRA存在下で細胞周期をG0休止期へ誘導する。すなわち、バルジ領域の幹細胞への分化を誘導する。
  2. BMP の影響がなくなると、細胞周期への移行が可能になり、Wnt が増殖を維持する。
  3. この時、RA の影響がなくなると毛包細胞や Ep への分化が起こる。
  4. 毛球細胞は特に強い Wntシグナル存在下でRAの影響がなくなることで形成される。
  5. 皮膚損傷では一過性にRA刺激が消失するため、HFS から可塑性幹細胞、そしてEpへの分化が促進されることで皮膚損傷治癒が促進される。
  6. これら試験管内の結果は、生体内の毛根で全て検証できる。例えば RA を塗ることで、毛根の維持形成が促進され、逆に RN が阻害されると皮膚損傷治癒は促進されるが、毛根の形成は抑えられる。

以上、HFS の試験管内維持と、そこからの決まった方向への分化誘導、さらにそれを移植して毛根再構成など、完全な分化増殖の試験管内コントロールに大きく近づく一歩だと思う。大分はしょって紹介しているので、是非論文を読んで欲しい執念の研究だ。

カテゴリ:論文ウォッチ

3月13日 外来DNAの許容性から見えるゲノムの個性とコスモポリタニズム(3月6日 Nature オンライン掲載論文)

2024年3月13日
SNSシェア

真核生物のゲノムは mRNA に転写され、アミノ酸に翻訳されたり、翻訳されなくても様々な機能を持つことは、今や、小学生にも教えられていると思うが、翻訳という観点で見ると、ゲノムの7割以上が低いレベルで mRNA に翻訳されていることが何回も報告されている。そしてこの低いレベルの翻訳が重要な機能を持つと考える人も多い。

この問題に答える面白い研究が、酵母の合成生物学を強力に進めているニューヨーク大学の研究グループから3月6日 Nature にオンライン掲載された。タイトルは「Synthetic reversed sequences reveal default genomic states(合成された逆配列はゲノムの初期状態を明らかにする)」だ。

昨年11月このグループの研究を紹介したが、DNA合成機で作成した DNA で酵母ゲノムを置き換えたり、あるいは新たなゲノムを導入する、合成生物学の分野を強力に推進しており、既存の生物と向き合うだけでは得られない面白い視点をいつも示すグループだ(https://aasj.jp/news/watch/23318)。

今回このグループは、完全に合成した長い DNA を我々のゲノムは受け入れることが出来るかどうかを調べている。ただ、完全合成と言っても長い DNA ストレッチをデザインするのは簡単でない。そこで、ヒト HRPT1 遺伝子がコードされている 100Kb の大きな DNA を完全合成するとともに、その配列を逆から並べた裏返しの人工ゲノムを作っている。ここでは 正DNA 逆DNA と呼ぶが、正DNA は合成されたとはいえ進化の過程で形成された配列で、逆は完全に人工的と言える。ただ、逆配列に転写可能な遺伝子がないか、あるいはサイレンシングされてしまう配列がないかを注意深く調べ、一応完全合成 DNA 配列として利用できることを確認している。

次に、表と逆の 100Kb 遺伝子を酵母とマウス ES細胞に導入し、それぞれの遺伝子が細胞にどのように受け入れられているのか、転写や染色体構造をベースに調べている。

勿論人工合成されたとはいえ、正DNA は酵母でもヒトでも正常に転写され、また HRPT1 遺伝子領域以外でも低い転写活性を認める。

さて逆配列だが、酵母では問題なく受け入れられる。しかも、ATACsequencing やヒストンコードから見て、オープンな染色体構造が逆配列にも維持され、その結果、配列中に存在する弱いプロモーターを利用して多くの領域が RNA として転写される。

ところが ヒトES細胞に導入された逆配列は、正配列とは全く異なり、全くサイレントで、ATACseq やヒストンコードから、完全にクローズな染色体構造を持ち、RNAポリメラーゼの結合も全くない。

特徴的なのは導入されたゲノムの境を中心にポリコムによる H3K27me3 ヒストンコードの修飾を受けている。このため、ES細胞のポリコム遺伝子がリクルートされクロマチンが閉じられているのではと考えられる。

しかし、ポリコム分子と結合すると考えられる CpG を逆配列から除いて導入しすると、期待通りH3K27me3 ヒストンコードの結合は抑えられる。にもかかわらず、逆配列の染色体構造は閉じたままで、転写も抑えられたままだ。

結果は以上で一般の方には少し難しかったと思う。ただ、少なくとも ヒトES細胞では、ゲノムが一つの個性にまとまっており、異なる個性の遺伝子を区別して染色体を閉じるメカニズムがあることがよくわかる。

一方、酵母にとってはこのような個性派ない。どんどん外来の遺伝子を取り込んで、それが発現するRNA から役に立つ RNA を進化させる、コスモポリタンゲノムが維持されている。この酵母の培養を続ければ、面白い遺伝子が進化してくる可能性があり、合成生物学としても重要な材料になる気がする。

カテゴリ:論文ウォッチ
2024年3月
 123
45678910
11121314151617
18192021222324
25262728293031