「2023年の生命科学ニュースを振り返る」のYoutube配信をアップロードしました。
AASJホームページ > 新着情報

「2023年の生命科学ニュースを振り返る」のYoutube配信をアップロードしました。

2023年12月24日
SNSシェア

Youtubeは以下のURLからご覧ください。

カテゴリ:セミナー情報

12月24日 自閉症スペクトラムへのロイテリ菌の効果(12月18日 Cell Host & Microbiome オンライン掲載論文)

2023年12月24日
SNSシェア

自閉症スペクトラム(ASD)の症状発生に腸内細菌叢が関与していることは、いくつかの細菌叢移植治験から示されているが、安全に子供の細菌叢移植を行える施設は限られている。代わりに期待されるのがプロバイオで、特にマウスのASDモデル実験から、有名なロイテリ菌がASDの社会性を回復させることが示されてきた。

今日紹介するイタリアのローマ大学とスタンフォード大学の共同論文は、100人のASDへのロイテリ菌タブレットの効果を調べた無作為化偽二重盲験治験の結果で、12月18日 Cell Host & Microbiome にオンライン掲載された。タイトルは「Precision microbial intervention improves social behavior but not autism severity: A pilot double-blind randomized placebo-controlled trial(細菌叢への厳密な介入は社会行動を改善するが自閉症の程度には影響しない:試験的無作為化二重盲験治験)」だ。

この研究では100人の平均6歳のASD児を集め、最終的に57名を無作為化して、2系統のロイテリ菌を含むタブレット、あるいは偽薬タブレットを6ヶ月服用させ、ASD症状や、免疫、細菌叢について調べている。

6ヶ月も服用するとしっかりロイテリ菌は腸内に居着くのではと思うが、便中のロイテリ菌の割合は多い人で0.02%で、ほとんどは検出が難しいレベルにとどまっている。プロバイオで投与する菌がホストで持続することの難しさがよくわかる。

それでも社会的コミュニケーション及び社会的モティベーションについては、治療効果が明確に現れていることが確認され、二重盲検治験でこれまで動物で観察されてきたことが人間にも当てはまることが確認された。

一方、ASDの症状からみる重症度指標や、免疫細胞、サイトカインなどにはロイテリ菌の影響は全くない。また、ASD児によく見られる消化器症状についても、ロイテリ菌でも改善できない。

実際、便中の細菌叢への影響を調べると、個々の被験者で細菌叢の変化が見られることもあるが、何か決まった方向への変化が見られると言うことはない。従って、これまで言われてきたようにロイテリ菌自体が持つ効果をこの治験では検出していると考えられる。

この治験に使われたタブレットは2種類のロイテリ菌が含まれているので、最後にそれぞれの菌についてマウスモデルを用いて調べると、PTA6475と呼ばれる菌だけに効果が見られた。おそらく、2系統の差を調べることで効果の原因を突き止めることが出来る可能性がある。

結果は以上で、同じような研究は、今年3月に16人という少ない対象者ながら米国で行われており、やはり社会性の改善が確認されている。この時は、人数が少なすぎるので本当か少し心配だが、今回のように人数が増えてくると、ロイテリ菌は安全な自閉症治療の一つとして推奨されるようになるのではないだろうか。

カテゴリ:論文ウォッチ

12月23日 K-Rasの徹底的解析(12月20日 Nature オンライン掲載論文)

2023年12月23日
SNSシェア

今日の4時からZoomで今年の生命科学を振り返ることにしている(https://aasj.jp/news/seminar/23522)。ただ各雑誌が選んだ内容を見てみると、今年はちょっと物足りないかなと思ったので、Nature、Scienceの記事を紹介した後は、私が読んだ中から今年の注目を紹介する予定にしている。

今年の創薬分野で私が注目したのは、新しいメカニズムのRas阻害剤が開発され始めたことだ。これについてはZoomで詳しく述べようと思っているが、今日紹介するスペイン・バルセロナ科学技術研究所からの論文は、K-ras分子に1-2アミノ酸変換が起こる変異を導入して、主にRaf蛋白質との結合を丁寧に調べ、Ras分子機能阻害や機能亢進に関わる部位と、その生物物理学的特性を調べた力作で、12月20日 Nature にオンライン掲載された。タイトルは「The energetic and allosteric landscape for KRAS inhibition(K-ras阻害のエネルギー的、アロステリック的構造マッピング)」だ。

この研究ではRas遺伝子にランダムに切れ目を入れ作成した、26000種類以上の変異ライブラリーから合成されるRas蛋白質とRafの結合反応を protein fragment complement assay(RasとRafが結合すると機能的蛋白質が形成され、細胞が増殖したり蛍光を発することでRasとRafの結合定数が計算できる)定量している。

こうして2241種類のアミノ酸置換がRaf結合性の低下を示すが、この多くは変異によりRas蛋白質自体が3次元構造を取れず分解されてしまうためで、残りがRaf結合に影響する変異と特定できる。

こうして得られるRaf結合マップから、Rasの機能的構造を描いていくと、これまで構造解析だけではわからなかった新しいポケット構造、そしてRasの構造変異により遠隔部位の構造を変化させるアロステリック効果マップを作ることが出来る。また、Rafだけでなく、他のRas結合分子との結合定数の変化も一部の構造について計算し、Ras分子構造の機能的解剖マップを完成させている。

このマップから得られる結論をまとめると、

  1. K-Rasには多くの阻害的アロステリック変化を起こす部位が存在し、これらは新しい創薬ターゲットになる。
  2. ほとんどのアロステリック阻害部位は、Rafだけでなく他の分子との結合も阻害する。
  3. 他の分子との結合部以内にはより多くのアロステリック阻害部位が存在する。
  4. これら部位の変異の種類でK-Ras分子と他のパートナーの結合阻害の特異性が決まる。
  5. K-Rasには4種類のポケットを特定できるが、アロステリック阻害活性はアロステリックな効果が高い。

以上のことは、K-Ras分子標的薬の開発をもう一度新しい方向から見直すことが十分可能であることを示している。

この論文を読んで思い出すのは、紹介しなかったが今年10月中外製薬の研究所からJournal of American Chemical Societyに掲載された環状ペプチドを用いた創薬プラットフォームと、これを使った新しいK-Ras阻害剤の開発だ。

最終的に開発されたLUNA18は経口投与で2-4割が血中に入り、なんとサブナノモルレベルでほとんどの変異K-Rasを阻害する。これについては、今日の今年を振り返るで日本の可能性として是非取り上げたい。いずれにせよ、現在使われているRas阻害剤を越える薬剤が続々出てくる時代を迎えそうだ。

カテゴリ:論文ウォッチ

12月22日 海馬嗅内野の生後発達はヒト特異的(12月20日 Nature オンライン掲載論文)

2023年12月22日
SNSシェア

海馬の嗅内野(EC)は、海馬に入る様々なインプットの入り口として働くだけでなく、海馬の神経細胞の供給基地としても記憶に重要な働きをしている。さらに、アルツハイマー病(AD)では最初に神経変性が明確になる部位とされており、実際 AD早期に興奮神経と抑制性神経のバランスが壊れて、EC でてんかん様発作が頻発することも知られている。

今日紹介するカリフォルニア大学サンフランシスコ校からの論文は、ヒト胎児の固定標本の丁寧な検討から、ECへの神経細胞の供給が人間だけで生後1年以上にわたって続くことを示した研究で、12月20日 Nature にオンライン掲載された。タイトルは「Protracted neuronal recruitment in the temporal lobe of young children(幼児の側頭葉で見られる持続的神経供給)」だ。

ほとんどの興奮神経細胞は脳の各領域で発生するが、抑制性の介在神経細胞は ganglionic eminence(GE)と呼ばれる基底核で分裂し、その後大脳各部位へと移動する。この時前頭葉への移動するのは L(lateral)GE、M(medial)GE で増殖する神経で、胎児発生でほぼ完成するが、後方への供給は C(caudal)GE から行われ、生後も続くとされてきた。

この研究では、生後の幼児で起こる CGE から海馬EC への神経供給がいつまで続くかに焦点を当てて調べている。ただ、神経解剖学の常で、様々な分子マーカーと、解剖学的部位の名前が次から次へと現れ、正確な知識がない私たちにはついていくのが難しい論文なので、最終結論だけをまとめる。

  1. まず、EC で見られる未熟細胞が移動している像は、人間では生後1年まで続く。しかし、アカゲザルでは生まれた後の EC には全く未熟細胞が存在せず、人間では神経発達が他の動物と比べ生後も続くという概念を支持している。
  2. 移動している細胞のほとんどは抑制性の介在神経細胞で、CGE で増殖した細胞が、増殖しながら EC へと移動する。
  3. この移動は、前方への移動と同じで脳室に近いゾーンを通る神経の流れを形成して行われる。このEC への経路形成には、人間で側頭葉が融合して脳室がなくなる過程が重要で、サルではこの経路形成が出来ないことが、生後の移動が見られない原因と考えられる。
  4. 一方、生後3ヶ月を過ぎると、EC 内での移動は単一細胞レベルの移動に限られるが、1年あるいはそれ以上続く。

以上が主な結果だが、組織学的実験だけでなく、固定標本から核を分離し、単一核レベルで RNAsequencing を行い、組織学的結果をバックアップし、また発展させるという作業を繰り返しいる。おそらくこれに組織上での RNAライブラリー形成などを加えると、組織学が急速に進化していることがわかる。

結論としては、海馬EC などの側頭葉介在神経の発生が生後も続くことがはっきりさせたことが最も重要な発見だ。今後この過程の可塑性を利用することで、子供の脳発達異常を少しでも軽減するための糸口を示す結果だと思う。

カテゴリ:論文ウォッチ

12月21日 糖尿病でウイルス感染が重症化しやすい原因(12月13日 Nature オンライン掲載論文)

2023年12月21日
SNSシェア

Covid-19で一般にも知られるようになったことの一つは、糖尿病患者さんはウイルス感染が重症化しやすいことだった。抗ウイルス薬が使えるようになったときも、糖尿病患者さんは優先的対象に選ばれている。私もなぜかとしばしば問われたが、正確なメカニズムについては答えられなかった。

今日紹介するイスラエル・ワイズマン研究所からの論文は、秋田マウスと呼ばれる糖尿病マウスを主に用いてウイルス感染症が重症化する過程を解析し、古くから知られている問題に一つの回答を示した研究で、12月13日 Nature にオンライン掲載された。タイトルは「 Lung dendritic-cell metabolism underlies susceptibility to viral infection in diabetes(肺の樹状細胞の代謝異常が糖尿病でのウイルス感染重症化の背景にある)」だ。

秋田マウスは、秋田大学で開発され、Ins2遺伝子変異が特定された、いわゆるMODY(若年発症糖尿病)で、肥満を伴わない糖尿病のモデルとして使われる。この研究では、まず秋田マウスにインフルエンザウイルスを感染させ、重症化率が高いことを確認した後、免疫システムを調べると、インターフェロン上昇、ヘルパー及びキラーT細胞減少、B細胞減少、そして抑制性T細胞上昇と、ウイルスに対する免疫が低く、炎症が強いというプロフィルを示すことを明らかにする。秋田マウス以外にも他の糖尿病モデルでも同じ結果で、高血糖の影響によるウイルス抵抗性の低下は一般的現象であることも確認している。

次に、この変化に最も重要なインパクトを示す細胞について探索し、最終的にDC1と呼ばれる樹状細胞の増殖が強く抑えられ、また遺伝子発現プロファイルから、樹状細胞としての機能も低下していることが明らかになった。

そこで、DC1細胞に絞って高血糖の影響を詳しく調べると、高血糖であるにもかかわらず乳酸の合成が低下しており、代わりにTCAサイクルとピルビン酸をつなぐアセチルCoAが上昇していることを発見する。すなわち、ピルビン酸から乳酸へのルートが阻害され、アセチルCoA濃度が高まり、その多くはTCAサイクル・ルートへと流れるという、可能性を示唆する。実際、ピルビン酸キナーゼを阻害すると、同じようにDC1の機能異常が誘導されることから、高グルコースのDC1への影響は、ピルビン酸キナーゼの機能低下の要因が最も大きいことを示している。

以上の結果は、アセチルCoAが上昇すると、それ自体でヒストンアセチル化を高め、またTCAサイクルを通して合成されるαKGを介して脱メチル化反応を高めることが知られている。そこで、高グルコースに暴露されたDC1のエピジェネティック状態を調べると、ヒストンアセチル化が高まり、その結果クロマチンが変化し、DC機能の慢性的低下が誘導されることが示唆される。

そこでヒストンアセチル化阻害剤を高グルコース処理したDC1に加えると、機能を復活させられることを確認し、秋田マウスにインフルエンザを感染させ、ヒストンアセチル化阻害剤で処理すると、ウイルスの抵抗性を回復させ、キラーT細胞もある程度回復することを示している。

結果は以上で、代謝異常からエピジェネティック変化という、現在最もガン領域で注目のプロセスが糖尿病でも起こっていることを示し、これが全てではないにせよ、糖尿病でウイルス感染が重症化しやすい理由を説明できていると思う。

カテゴリ:論文ウォッチ

12月20日 オキシトシンは交感神経でも発現して脂肪代謝を調節する(12月13日 Nature オンライン掲載論文)

2023年12月20日
SNSシェア

オキシトシンは視床下部で合成されるペプチドホルモンで、授乳行動に代表される個体の社会行動を調節するホルモンとして、自閉症の治療にも使えるのではと研究が続いている。ところが、オキシトシンを投与すると、脂肪代謝にも影響があることがわかってきた。

今日紹介するハーバード大学からの論文は、オキシトシンの脂肪細胞への影響を調べる中で、オキシトシンが交感神経でも分泌され、脂肪細胞での脂肪分解を誘導していることを明らかにした研究で、12月13日 Nature にオンライン掲載された。タイトルは「Control of lipolysis by a population of oxytocinergic sympathetic neurons(オキシトシン合成性の交感神経による脂肪分解の調節)」だ。

この研究では脂肪細胞でオキシトシン受容体が発現していること、さらにオキシトシン受容体を脂肪細胞特異的にノックアウトすると、肥満にはならないが、白色脂肪細胞が肥大し、刺激による脂肪分解が強く抑制されることを示し、確かに脂肪細胞にオキシトシンが作用していることを確認している。

次にオキシトシンによる脂肪分解のメカニズムを調べると、分解を調節するペリリピンやリパーゼへのオキシトシンシグナルの直接関与は少なく、代わりに脂肪分解刺激を誘導するカテコールアミンへの反応性を高めることを明らかにしている。

実験の詳細は省いてメカニズムをまとめると、オキシトシンにより脂肪細胞が刺激されると、ERKシグナル分子を介して交感神経のカテコールアミンへの反応性が高まり、この結果脂肪滴の周りに存在するペリリピンの脂肪滴への動因、リパーゼの活性化が誘導され、脂肪分解が始まるというシナリオだ。

そこで重要になるのが「ではオキシトシンはどこから来るのか?」で、血中オキシトシンの変動を調べた結果、脳からではなく局所、おそらく脂肪を支配している交感神経由来ではないかという結論に至る。

そこで、オキシトシンの発現を見ることが出来るレポーターマウスを用いて調べた結果、脂肪に接合している交感神経の一部にオキシトシンを分泌する細胞が存在することを確認する。あとは、光遺伝学的方法を用いて、交感神経刺激によりオキシトシンが合成され、脂肪分解が高まることを明らかにしている。

結果は以上で、オキシトシンが交感神経で発現し、脂肪代謝に機能していることは驚きだ。神経系の病気の場合、脳内にオキシトシンを到達させるために、全身投与は選択肢にないが、今後受容体のアゴニストなどを利用するようになる場合は、脂肪代謝への影響も考慮する必要があるだろう。しかし、ケトーシスなどを考えると、代謝的にも自閉症には良い影響を持つ可能性はある。

カテゴリ:論文ウォッチ

12月19日 腸内の原虫による自然免疫誘導(12月13日 Cell オンライン掲載論文)

2023年12月19日
SNSシェア

昨日は腸内の溶菌ファージウイルスが喘息発症に関与している可能性についての研究を紹介したが、今日は腸内の原虫による複雑な自然免疫刺激について調べた、スタンフォード大学からの論文を紹介する。タイトルは「Metabolic diversity in commensal protists regulates intestinal immunity and trans-kingdom competition(常在原虫の代謝多様性が腸内免疫と細菌叢との競合を調節する)」で、12月13日 Cell にオンライン掲載された。

原虫は単細胞動物と理解して貰えばいいが、アメーバ、トリパノゾーマ、そしてこの論文で研究されたトリコモナスなどを指している。元々原虫は原生動物の中の病原性を持つものを指すが、ここでは病原性に関わらず原虫という名称を使う。

この研究ではまず原虫DNAを選択的に増幅するプライマーを用いたPCRを用いて、マウスとヒトで腸内に存在する原虫の種類を特定し、マウスでも人間でも数は多くないが複数の常在原虫の種類が存在すること、また都会化にしたがって種類が減ることをまず明らかにしている。

あとは、マウスに存在するメージャーな2種類、Trichomonas.casperi(Tc)とTrichomonas musculis(Tm)の2種類の原虫を人間の腸内も反映する代表として、腸内免疫および細菌叢への影響を調べている。

原虫の存在しないマウスに、Tm、Tcを移植し、腸内を調べると、どちらも大腸で増殖して、Th1 およびTh17型T細胞を誘導することを明らかにする。この増殖は細菌叢があっても影響されない。ところが小腸を調べると、Tmを移植したとき小腸Th2型T細胞が誘導されるのに対し、Tc移植では逆にTh2細胞の数が減ることを発見する。

なぜこの違いが発生するのか?これについては、小腸のタフト細胞が増加していることに注目し、原虫のコハク酸分泌能の差によるのではないかと仮説を立て(この辺は私の様な素人にはわかりにくい)、仮説通りTmだけがコハク酸を分泌するたことを確認する。すなわちTmはコハク酸によりタフト細胞を刺激し、その結果小腸でのTh2反応が誘導できると結論している。ただ、ゲノムレベルで比べると、コハク酸合成能の違いを明確には特定できていないが、原虫のTh2免疫誘導能を考えるとき、コハク酸合成能力は重要な要因であることがわかる。

次に、食事と原虫の腸内増殖について調べ、Th2免疫誘導能の高いTmの増殖は環境に存在する繊維成分に完全に依存している一方、Tcは全く依存性がないことを明らかにする。この結果、繊維成分の少ない食事を摂ると、Tmは粘液中のグリカンを消費してしまい、その結果細菌叢を大きく歪めてしまうことを発見している。

以上の結果から、同じTrichomonas科に属する原虫でも、栄養要求性、および代謝物分泌に関して大きな違いがあり、この結果腸内免疫環境および腸内細菌叢への影響が全く異なることが示された。この結果は全てマウスでの話だが、今後人間の腸内での影響を考えるとき、それぞれの原虫の代謝システムを理解することが重要であることを示している。

病原原虫はともかく、常在原虫などこれまでほとんど考えられていないと思うが、病原性がなくても一つの原虫でこれだけの効果があるとすると、今後原虫を用いたプロバイオによる免疫調節も、「免疫ケア」乳酸菌よりずっと面白いかもしれない。

カテゴリ:論文ウォッチ

12月18日 腸内の溶菌ファージと子供の喘息(12月15日 Nature Medicine オンライン掲載論文)

2023年12月18日
SNSシェア

喘息やアトピーなどの子供のアレルギー疾患と腸内細菌叢の発達の相関については多くの論文があり、腸内での免疫活性化機構についても理解が進んでいる。これに対し、ウイルスや真菌、あるいは原虫についてはあまり研究が進んでいない。たまたま先週、腸内のウイルスと原虫の免疫機構への影響についての研究が発表されていたので、今日から2回に分けて紹介する。

最初はウイルスと喘息の関係について研究したコペンハーゲン大学からの論文で12月15日 Nature Medicine にオンライン掲載された。タイトルは「The infant gut virome is associated with preschool asthma risk independently of bacteria(幼児の腸内ウイルス集団は細菌叢とは独立に就学前の喘息と関係している)」だ。

UKバイオバンクと並んで、デンマークのコホート研究は徹底して計画されており、データが蓄積されると様々な角度から研究し直すことが出来る。この研究では647人の1歳児を集め、長期観察した研究で、そのうち133人(21%)が就学前に喘息を発症しており、喘息の原因を様々な角度から調べることが出来る。

事実、同じポピュレーションを用いて、腸内細菌叢と喘息の相関が調べられ、論文として発表されている。今回は、これに加えて同じ便由来DNA配列解析データを、既に知られているウイルスデータと照らし合わせて、腸内ウイルスと喘息との相関を調べ直している。この研究でのウイルスとは、我々の細胞に感染する様々なウイルスではなく、腸内細菌叢をホストにするウイルスを指す。

これらのウイルスは caudovirs、microvirus、そして inovirus の3種類に大別でき、喘息との関係で言うと、microvirus の量が少ないと喘息になりにくい傾向が見つかるが、ウイルス自体の研究が進んでおらず、解析は難しい。

そこで、大きなグループの caudovirus に絞って喘息との関係を調べると、量が多いほど喘息の発生が高い。特に、様々な要因で誘導されバクテリアを溶菌する溶菌ファージの量と喘息とは明確な関係がある。

ただ、個々の系統と喘息との相関を調べると、不思議なことに相関がはっきりする19種類の溶菌ファージは、喘息発症と逆の相関を示す。おそらく、プロファージから溶菌ファージへと変換すること自体が免疫系に影響することから、溶菌ファージの量が喘息と相関するが、個々のウイルスレベルでは、それが存在しないことが影響するという複雑な関係になっている。

溶菌ファージはそれぞれ特定の細菌とセットになっており、細菌叢を変化させる可能性がある。ただ標的細菌と喘息との相関を調べても、ほとんど相関はない。従って、細菌叢と溶菌ウイルスは別々に喘息リスクに関わっている。

この研究では相関を詳しく検討して、ウイルスは特に一過性の喘息と相関している一方、細菌叢はより持続性の喘息と関係することを示している。また、ウイルス自体が原因であることを、ウイルスに対する自然免疫受容体TLR9 の一塩基変異が違うと、ウイルスと喘息との相関が見られなくなることから結論している。

結果は以上で、重要な結論としては子供の場合、細菌叢とウイルスデータを組みあわせると喘息リスクをさらに正確に診断できることで、残念ながら明確な介入方法示唆には至っていない。

ただ、このようなウイルス集団検索は、病気との相関だけでなく、今後の細菌叢操作にとっては極めて重要で、今後急速に発展する予感がしている。

カテゴリ:論文ウォッチ

12月17日 Christchurch型変異APOE3がアルツハイマー病でのTau異常症を抑制するメカニズム(12月11日 Cell オンライン掲載論文)

2023年12月17日
SNSシェア

2019年11月、早期にアルツハイマー病(AD)が発症するプレセニリン遺伝子変異を持っているにもかかわらず、さらに脳にはアミロイドプラークが蓄積しているにもかかわらず、ADを発症しない70歳の女性が発見され、ADが抑制される理由がAPOE3のChristchurch型変異にあることを示した論文を紹介した(https://aasj.jp/news/watch/11677)。

今日紹介するワシントン大学からの論文は、この変異をマウスに導入してAD抑制のメカニズムを詳しく検討した研究で、12月11日 Cell にオンライン掲載された。タイトルは「APOE3ch alters microglial response and suppresses Ab-induced tau seeding and spread(APOE3chはミクログリアの反応を変化させAβにより誘導されるTauの播種と伝搬を抑制する)」だ。

マウスAPOE3にChristchurch型変異を導入し(APOE3ch)、Aβが沈着しやすいように遺伝子改変したマウスを掛け合わせると、人間のケースと同じようにAD発症を抑えることが出来る。すなわち、症例を再現することが出来る。そこで、このマウスを詳しく調べて、APOE3chの作用を解析したのがこの研究になる。論文はマウスでの現象を解析し、細胞レベルの異常へと落とし込むことでメカニズムを明らかにするというスタイルになっているが、最初から結論を知った方がわかりやすいので、結論から述べる。

結論だが以下のようにまとめられる。

ミクログリアはアミロイドβにより活性化される異常Tauを貪食するのだが、TauとAPOE3が同じ受容体を使っているので、正常マウスの場合Tau取り込みが抑制される。勿論Tau異常症が起こらなければ問題はないが、Tau沈殿が始まるとこの問題がはっきりする。しかし受容体と結合力が低い変異を持つAPOE3chの場合、ミクログリアはより強くTauと結合できるので、Tau処理が適切に行われ、AD発症が遅れる。

この結論を頭に置いて、モデルマウスを見てみよう。まず、患者さんと同じで血中コレステロール異常が見られ、vLDLが上昇している。これは脂肪キャリアーを形成するAPOE3chが白血球のLDL受容体との結合力が低いため、コレステロールが血中からクリアされにくいからと説明できる。

次に、ヒト異常TauをAβ変異マウスの脳内に注射してTau異常症を誘導する実験を行うと、AβもTauもともに蓄積を強く抑制することが出来る。これはミクログリアの異常蛋白質処理能力の上昇で説明できる。実際、APOE3chマウスではアミロイドの周りのミクログリアの数が増え、活性化マーカーが発現している。

ただ、完全に説明できないのが、Aβ異常の存在するときだけ、異常Tauへの反応が高まっている点で、もしAPOE3chのLDL受容体への結合力低下だけなら、Tauだけでも処理して良いはずだ。おそらく、アミロイドによりミクログリアが活性化されることが異常Tau処理を活性化するからと考えられる。

事実、異常Tau貪食は骨髄白血球でも観察でき、またこの貪食はAPOE3を加えると抑制できる。すなわち、異常Tauの白血球への結合はAPOE3と同じレセプターを使っている。そして、APOE3の阻害活性はAPOEchでは強く低下しており、ミクログリア、APOE3、そして異常Tauの関係を再現できる。面白いのは、骨髄白血球のTau取り込みもアミロイドβの存在により活性化される。

また、アミロイドβで活性化された白血球の細胞内でのTau処理能力は強く、その結果、処理できずに遊離された異常Tauが病気を拡大させる危険性も減じる。

以上が結果で、ADではアミロイド、Tau、そしてAPOEが複雑に絡み合って発症することがよくわかる研究だ。いずれにせよ、ミクログリアを活性化し、Tauとの結合力を上昇させることで、AD発症を抑えることが出来ることが示されたことは新しい治療へとつながる。

カテゴリ:論文ウォッチ

今年最後のジャーナルクラブのお知らせ:

2023年12月16日
SNSシェア

12月23日(土曜日)午後4時各紙が選んだ生命科学今年のブレークスルーを振り返る。

科学雑誌で、今年を振り返る記事が発表される時期になってきました。今年も、12月23日(土曜日)までに発表されたニュースについて、集まった皆さんと話し会う会を開催しますので、是非皆さんの参加をお待ちします。

基本的にはZoomで行いますので、参加希望の方はメールをお送りいただけば、Zoomアカウントをお送りします。時間は午後4時から開催します。参加をお待ちします。

カテゴリ:セミナー情報