12月27日:スプライシングを止めて刺激に備える(12月21日号Neuron掲載論文)
AASJホームページ > 新着情報 > 論文ウォッチ

12月27日:スプライシングを止めて刺激に備える(12月21日号Neuron掲載論文)

2016年12月27日
   刺激に対する細胞の反応は多岐にわたるが、必要なメカニズムに応じて反応の時間スケールが異なる。もっとも長い時間かかるのがクロマチンを変化させるエピジェネティックリプログラミングだが、次はシグナルにより新たな遺伝子転写を誘導する過程で、immediate early geneと呼ばれる遺伝子でも発現に30−60分はかかる。この時間遅延は、神経細胞のように早い反応を必要とする細胞では重要な問題になる。
   一部のリンパ球ではこれに備えるため、mRNAの翻訳開始を止めて、刺激に備えている。ただmRNAの選択性はないため、静止期、活動期の区別には向いているが、特定のタンパク質を迅速に供給する目的には向いていない。
   今日紹介するスイスバーゼル大学からの論文は、神経細胞はmRNAのスプライシングを途中で止め刺激に備え、シナプスからの刺激によってスプライシングを完成させることで、mRNAの転写をスキップして新しいタンパク質を合成できることを示した研究で、12月21日号のNeuronに掲載された。タイトルは「Targeted intron retention and excision for rapid gene regulation in response to neuronal activity(特定のイントロンの保持・除去の調節による神経活動に反応する迅速な遺伝子調節)」だ。
   これまでスプライシングが途中で止まって一部のイントロンが残ったmRNA(IR)の存在が知られていたが、このグループはIRが迅速なタンパク質合成の鍵だとにらみ、まず脳内細胞に存在するIRを包括的に調べる方法を開発し、約5%ぐらいのイントロンがIRとして残ることを突き止めている。次に新しいmRNA転写を止めてIRが実際に細胞内に安定に維持されるか調べ、不安定、中間、そして安定の3グループに分類している。安定なIRでは実に2時間以上細胞内で保持される。
   次に脳から分離した皮質細胞のGABA受容体やグルタミン酸受容体を刺激し、刺激後のカルシウムの流入依存的に、保持されたIRからイントロンが切り出されることを示している。
   最後に、スプライスを逃れて残されるイントロンの特徴を調べ、短く、スプライスシグナルの弱くGCの割合が中程度という特徴を割り出している。ただ、IRは3000近く存在するが、神経刺激でスプライスされるのは350程度であるため、この差をさらに調べると、神経活動に反応する方はより強いスプライシングシグナルを持っていることが明らかになっている。
   以上をまとめると、神経細胞では一定の特徴を持つイントロンが常にスプライシングを免れ、IRとして保持されているが、その中で比較的スプライシングされやすい部分が、神経刺激に続くカルシウム流入依存的にスプライシングされ、核外に放出されタンパク質へと翻訳される。このような特徴的なイントロンを持つ遺伝子は神経細胞のシグナルに関わる分子が多く、これにより神経細胞に必要なタンパク質の迅速な供給が実現しているという結論だ。
   話はなるほどで終わるが、もしこのイントロンがそれほど特異的な性質を持つなら、いつこのメカニズムを動物は獲得したのか、進化的には面白い課題になる。神経細胞が見つかるのはクシクラゲや刺胞動物からだが、ゲノム解析が進めばIRが必要になるほどの神経活動がいつから生まれたのかもわかるだろう。
カテゴリ:論文ウォッチ

12月26日:mRNAメチル化の機能:生化学のプロとアマ(1月9日発行予定Cancer Cell 掲載論文、及びNatureオンライン版掲載論文)

2016年12月26日
   遺伝子改変技術のおかげで、特定の分子の機能について、細胞レベル、個体レベルでの調べることが容易になり、私自身もそうだが生化学についてそれほど知識がない研究者も容易に分子の話をすることができるようになっている。しかし、個体レベルでの研究と言っても、解析が進むと生化学の知識不足が目立ち始め、思わぬほころびにつながることがある。先週mRNAの脱メチル化酵素FTOについて生化学のプロとアマの違いを見せつける2つの論文が発表されたので、これらを紹介することにした。
   tRNAにはメチル化を始め様々な修飾が加わっていることはよく知られていたが、最近mRNAのメチル化が、mRNAの安定化メカニズムとして注目され、研究が加速している。しかし、生化学的に見るとこれまでの結論、例えばメチル化はmRNAの中央部で起こり、N6-メチルアデノシン(m6A)がメチル化mRNAのほぼ全てを代表するとする結論、には様々な問題があり、mRNAのメチル化を生化学的に検討し直すことの重要性が認識されていた。
   今日紹介する最初のの論文はシカゴ大学を中心とする、mRNAの脱メチル化酵素として特定されたFTOの白血病との関わりを明らかにした研究についての論文で1月9日号のCancer Cellに掲載された。タイトルは「FTO plays an oncogenic role in acute myeloid leukemia as a N6-methyladenosineRNA demethylase (FTOはm6Aの脱メチル化酵素として急性白血病発生に関わる)」だ。
   このグループはもともと白血病の研究をしており、mRNAのメチル化を調べたいと思って研究を始めたのだろう。次の論文でわかる、FTOがm6Aの脱メチル化酵素であるという話を鵜呑みにして、あとはFTOの発現量を変化させて白血病の増殖がどうなるかという、細胞学的検討を行い論文にしている。ざっとまとめると、MLL遺伝子の転座を持つ白血病ではFTOが高く、これをノックダウンすると増殖が低下する。また、白血病発症モデルでも、FTOを過剰発現させたマウスでは白血病発生が促進し、低下させると発症が遅れる。FTOで変化する分子を探索すると、ASB2,RARA発現の低下がその原因として浮上し、白血病のレチノイド治療時と同じ効果をFTOが持つことを示している、というのが結論になる。
   研究の過程で、FTOがm6Aを低下させることについても抗体を用いたブロッティングで示しているが、次の論文で明らかになるように、この方法はm6A特異的ではない。他のデータも仔細に見ると、それほど大きな効果はなく、論文自体は結論先にありきでなんとかまとめたという印象が強いが、来月には堂々とCancer Cellに掲載されることになる。
   著者にとってはめでたしめでたしだっただろうが、コーネル大学からメチル化RNAの生化学を重視した論文がNatureにオンライン発表されたおかげで、喜びが冷や汗に変わったと思う。
   次に紹介するコーネル大学からの論文のタイトルは「Reversible methylation of m6Am in the 5’ cap controls mRNA stability(mRNAの5’キャップに存在するN6,2’-O-ジメチルアデノシン(m6Am)の可逆的メチル化によりmRNAの安定性が調節される)」だ。
   前の論文と違って、さすがと思わせる生化学のプロの論文だ。まずFTO分子が本当にm6Aの脱メチル化酵素かどうかを調べている。まず、これまで検出に用いられた抗体がm6Aだけでなくm6Amも認識することから、この2種類のメチル化RNA を区別して生化学的に調べ、FTOがm6Aではなくm6Amを選択的に認識していることを明らかにする。さらに、これまで考えられていたのとは異なり、配列の最初の塩基がm6Amである時、キャップにあるm7Gを認識して脱メチル化すること、さらにメチル化によりキャップのm7Gをm6Amから切り離す酵素に対して耐性が生まれることでmRNAが安定化すること。さらに、m6Aの脱メチル化酵素はFTOではなく、ALKBH5であることも証明している。最後に、m6AmによりmiRNAの作用に抵抗性が生まれることを示しており、これは白血病を考える上でも面白い。
   今後メチル化RNAのこれまでの研究は、この新しいシナリオを元に再編成されると思う。しかし、Natureの論文を知ってから白血病の論文を書いておれば、全く違った論文になったかもしれない。ただ、新しい概念に全く気づかず論文を出してしまうと、冷や汗だけが残ってしまう。
カテゴリ:論文ウォッチ

12月25日:臨床例から基礎研究へ(Natureオンライン版掲載論文)

2016年12月25日
    これまで特定の遺伝子の機能を個体レベルで調べるためには、遺伝子操作による逆向き遺伝学や、突然変異を多くの遺伝子に誘導した系統を作成し、遺伝子と形質を対応させる前向き遺伝学が使われてきた。研究の性質上、当然様々なモデル動物を用いて研究が進められてきたが、昨日述べたようにゲノムの塩基配列が解析された人間の数が増えてくると、ほとんどの遺伝子について、欠損個体が存在し、しかも動物と比べてさらに詳しい症状が解析可能という状況が生まれている。即ち、様々な異常を訴えてくる患者さんの病院での観察から、特定の遺伝子の機能を明らかにする基礎研究が、シームレスにつながっている。
   このことを物語る典型例と言える論文が、英国、ブラジル、カナダ、オランダ、ドイツの研究者たちからNatureオンライン版に発表された。タイトルは「XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia(XRCC1の突然変異はPARP1の過剰活性と小脳性運動失調を誘導する)」だ。
   論文は一人の小脳性運動失調症を訴える47歳女性患者の症例報告から始まる。28歳までは正常だったが、それ以後運動障害が始まり、来院時にはMRIで強い小脳萎縮が認められている。萎縮の原因を特定するため様々な検査が行われ、最終的にエクソームを検査してXRCC1遺伝子の突然変異が両方の染色体(片方は1293番目、もう片方は1393番目のアミノ酸)で起こっていることが判明する。
   Xccr1は酸化ストレスなどで起こるDNAの一本鎖切断を修復する多くの分子を束ねる重要な分子であることがわかっており、遺伝子が欠損したマウスは生まれてこない。一方、この分子と複合体を作る修復酵素の多くが小脳細胞死を誘導することも明らかになっており、この患者さんの解析を進めれば、なぜDNA修復酵素の機能異常が小脳性の運動失調症を誘導するのか研究することができる。
   そこでこの患者さんから細胞株を樹立して検討し、患者さん由来の細胞株では発現タンパク質が5%程度に低下しているが、一応存在していることが30歳近くまで正常の生活を送れた理由であることがわかる。しかし、DNA一本鎖切断時の修復が遅れ、その結果組換え確率が高まるなど、染色体異常が誘導されることが明らかにされる。
   これらの線維芽細胞による結果から、一本鎖の修復が遅れるため、修復箇所を特定する役割を持つPARP1タンパクが働きすぎて、ADP-リボシル化が起こり、NADが余分に除去されるため、神経細胞が死ぬのではないかと仮説を立て、患者由来細胞や、遺伝子ノックアウト線維芽細胞を用いて確認している。
   さらにこの仮説を証明する目的で、神経特異的XRCC1ノックアウトマウスとPARPノックアウトマウスを掛け合わせ、運動失調が消失することを明らかにしている。
   この結果は、XRCC1及びその結合タンパク質の異常に起因する運動失調はPARP1阻害剤で治療できる可能性を示唆する。さらに、アルツハイマー病など神経変異性疾患でもDNA修復遅れが細胞死を誘導している場合でも同じようにPARP1阻害剤が効く可能性がある。
   このように、臨床から基礎、そして臨床というサイクルが患者を救えることが証明されれば、医学研究冥利につきるだろう。
   この論文のような臨床と基礎の連携がうまくいく一つの要因は、DNA修復異常研究領域は昔からヒトの突然変異を使って研究を行う伝統があったからだと思う。ただ、ゲノム解読が進むことで、良き伝統は様々な分野にも広がると期待できる。
   なぜ小脳症状が強いのかなど理解できないところもあるが、私にとっても、脳と修復の関係を理解させてくれる面白い論文だった。
カテゴリ:論文ウォッチ

12月24日:第二段階に入った個人ゲノム(12月23日号Science掲載論文)

2016年12月24日
    我が国でも個人の遺伝子検査が普及してきているようだが、まだサービスを受けた人たちは10万人を超えたぐらいだろう。また、サービスの内容はSNPアレーを用いて50万から100万の部位の遺伝子多型を調べる方法が主で、会社ごとにそのプラットフォームが異なる。したがって、新しい事実が報告されても、その結果を取り込んで個人に情報として返すことができない。結果、一回検査を受けるとあとは何もできないで終わる。
   この問題を解決するのが、ゲノムの塩基配列を調べてしまう方法で、完全なのは全ゲノムを解読してしまうこと、次がタンパク質をコードする遺伝子の全てを解読するエクソームだ。
   私たちのNPOの役員の一人、安河内は全ゲノム解析を終えており、私が紹介した論文が報告している新しい方法を常に自分のゲノムで確かめて、その有効性を検証しておいる。このデータについてはいつか紹介したいと思っているが、個人ゲノムの第二段階が必ずくることを予見しての活動だ。我が国だけを見ていると、第二段階は当分先のことと思うが、アメリカでは急速に進んでいる。
   ゲノムの塩基配列を解読するサービスを基盤に個人の遺伝子検査サービスを行う個人ゲノムの第二段階が今始まっていることを示す論文が12月23日号のScienceに、バイオベンチャーのリジェネロンと米国で電子化された患者記録を基盤に病院を含む様々な健康サービスを展開するGeisinger健康システムから発表された。タイトルは「Distribution and clinical impact of functional variants in 50,726 whole exome sequences from the DiscovEHR study.(DiscovEHRプロジェクトに参加する50726人のエクソーム配列解析に見られる機能的変異の分布と臨床医学的インパクト)」だ。
   Geisinger Health Systemでは、患者さんのデータを電子化して保存、患者さんがどの医者にかかってもPCからデータ取り出せるようにしている。このサービスが積極的にエクソーム配列解読サービスを進めた結果、電子カルテとエクソームデータをリンクさせることができ、今回インフォームドコンセントの得られた5万人強のデータを解析し、論文にしている。この5万人のうち40%近くが、子供や親のゲノムデータも得られ、家系解析まで可能なビッグデータが生まれている。この事実が、この研究のハイライトで、今後同じデータを使って順々に検査項目を調べれば、新しいデータが無限に得られるという話だ。
   一端だけを紹介すると、一人の個人はタンパク質をコードする遺伝子全体で、2万を超す多型を持っており、そのうち遺伝子の機能が欠損する変異はなんと平均21個も持っている。はっきり言って、全て正常な人などまずいない。5万人も調べると、全体で18万近い遺伝子機能が失われる変異をリストすることができ、1313個の遺伝子では両方の染色体でノックアウトされている個人が特定できる。これまでショウジョウバエ、ゼブラフィッシュ、マウスと突然変異を誘導するプロジェクトが進んできたが、これを上回る数の変異を人間で特定できるようになったことになる。
  この研究では高脂血症や高尿酸値など様々な検査項目についての解析も示しているが、全て省略する。この論文の重要なメッセージは、患者さんの視点に立ってpeer to peerサービスを目指してきた健康サービスとゲノム検査サービスを組み合わせることの重要性、およびこれが民間主導で行われていることだ。これこそが、ゲノム検査第二段階の重要な要件になる。
   こうして明らかになった遺伝子リスクの進行状態をエピジェネティックな状態として評価する可能性を肥満について示した論文がドイツのヘルムホルツセンターからNatureオンライン版に掲載された。タイトルは「Epigenome-wide association study of body mass index and the adverse outcomes of adiposity」だ。詳しく紹介しないが、ざくっとまとめるとメタボリックシンドロームにより、末梢血のメチル化状態が変化し、これが肥満の進行を反映するという話だ。
    ゲノムサービス第三段階では、全ゲノム解析に基づき、遺伝子リスクを明らかにし、その進行状態を血液細胞のエピジェネティックな状態からチェックするというスキームかもしれない。
   これから考えると、我が国はようやく第一段階入り口と言っていいだろう。なぜこうなったのか、最も大きな要因は患者さんの本当のサービスのためにゲノムを調べるという観点が研究者や役所に欠けていたことだと思う。再建のためにはまず反省が必要だ。
カテゴリ:論文ウォッチ

12月23日:KRASとストレス顆粒(12月15日号Cell掲載論文)

2016年12月23日
   増殖中の細胞は高いストレスにさらされる。このようなストレスを解消できないと増殖を続けることができないため、がん細胞はこのストレスを和らげる様々なメカニズムを開発している。
  今日紹介するニューヨーク大学医学部からの論文は、ドライバー分子としては最も多くのガンで働いている変異型KRASが、増殖中の細胞で増加する翻訳が途中で止まったタンパク質によるストレスを解消するストレス顆粒形成のメカニズムについての研究で12月15日号のCellに掲載された。タイトルは「Mutant KRAS enhances tumor cell fitness by up-regulating stress granules(変異型KRASはストレス顆粒形成を高めて腫瘍の適応性を促進する)」だ。
   翻訳が途中で止まってしまったタンパク質とmRNAを速やかに処理するために大きな複合体にするメカニズムだと考えられている。この研究では、ストレス顆粒が高まるガンがないか探索し、KRAS変異を持つガン特異的にストレス顆粒が見られることを発見している。そして、KRASの様々な変異体を使った実験から、ストレス顆粒は活性化されたKRASがRAF経路を介して誘導されることを突き止める。
   この発見がこの研究のハイライトで、あとはKRAS下流のシグナルを一つ一つ検討し、KRAS活性化がRAF経路を介してプロスタグランジン合成に関わる分子の転写を上昇させ、これにより細胞内のプロスタグランジンが上昇すると、mRNAをリボゾームにリクルートして翻訳を開始するプロセスを調節している分子の一つelF4Aを不活性化し、ストレス顆粒を誘導するというシナリオを示している。
   またプロスタグランジンを加えるとストレス顆粒が上昇し、またプロスタグランジン合成阻害剤でストレス顆粒形成が抑えられることを示してこのシナリオを確かめている。
   最後に、ストレス顆粒合成とがんの関係を知るため、プロスタグランジン合成酵素の発現量で膵臓癌を分けて予後を調べ、合成酵素が高い患者さんでは予後が悪いことを示している。
   話はこれだけで、正直物足りない。ガンでのストレス顆粒形成のメカニズムを明らかにできたことはわかるが、この経路ががん治療の結びつくかどうかを明らかにできていない。モデル実験でもいいから、プロスタグランジン合成阻害剤により、膵臓癌の治療成績が上がるかどうかを調べて欲しかった。決して難しい実験でない。がん患者さんの生存率とストレス顆粒を調べた結果も、これを標的にすることで治療法が改善するという期待を持たせるほどではない。
   憎きKRASの弱点がわかったかと期待を持ったが、最後にがっかりしてしまった。
カテゴリ:論文ウォッチ

12月22日:サルの声道には言葉を使える能力が備わっている(12月12日号Science Advance掲載論文)

2016年12月22日
   パースの記号論的にいうと、言葉は究極のシンボルだ。対象と何の関係もない音の並びが具体的対象と関連づけられ、それが多数の個体によって共有される。「なぜ人だけにこれが可能になり言葉を話すようになったのか?」はおそらく21世紀最も重要な科学の課題として研究されるだろう。何とか書こうと準備を続けている本でも、ニューラルネットワークから言語への道について納得いくシナリオを探すことが今後2−3年の課題だと思っている。おそらく論文ウォッチにもこの分野が多く登場するのではと思う。
   まだまだ皆が納得できるシナリオのないこの分野で、これまで誰もが疑わなかったドグマが、サルは解剖学的に複雑な音、特にコミュニケーションのキーになる母音を生成する能力が欠けているとする1969年Liebermanらにより発表された研究だ。確かにチンパンジーやゴリラを見ていても、鼻からうなるような音は出ても、複雑な音が出てくるとは思えない。
   今日紹介するオーストリア・ウィーン大学からの論文はこのドグマに対して、アカゲザルはいくつかの母音を生成することができる、と真っ向から挑戦した研究で、12月9日号のScience Advancesにオンライン出版された。タイトルは「Monkey vocal tracts are speech-ready(サルの声道は話す準備ができている)」だ。
   現在受け入れられているLievermanらの結論はサルの死体の解剖学的特徴から導かれている。これに対しこの研究ではアカゲザルの体だけを固定し、あとは自由に動かせる条件でX線ビデオを使って頭部を撮影し、様々な条件で声道の構造を撮影し、この画像から声道の実際の構造を再構築している。これまで、声帯から口腔までサルは短いため複雑な音が出ないとされていたが、実際にはサルも機能的に十分長い声道を持つことが判明した。
   あとはさすが音楽の国だけあって、再構築した3次元モデルから、共鳴等の様々な音声学的特性を計算し、最後に声帯からの音がどう聞こえるかシンセサイザーで再現している。こうして得られた音域は人間と比べても充分広く、複雑な音の生成が可能だ。コントロールとして、Liebermanらの声道モデルを使って音域を調べると、彼らの結論通り極めて出せる音の種類が限定される。要するに、生きて声をあげているサルの声道と死体の声道は全く別物だったという話になる。
   最後にI will marry youという言葉をサルの声道モデルで再現して、一般の人に聞いてもらったところ、十分理解できたという確認を行っている。
   正直に明かすと、3次元モデルを作ってからの計算やシンセサイザーについては全くの門外漢で、この部分を評価することは私には難しい。この論文での計算が正しければ、サルも複雑な母音を発音できるという新しいドグマが誕生したことになる。
   もちろん、全く音を出せなくとも、ニカラグァの聾唖の子供が自然発生させた新しい手話言語のように、人間には対象をシンボル化して共有する能力が備わっており、その解明ができないと言語の誕生は理解できない。それでも、私自身は音声が言語誕生の鍵を握ると思っており、その意味では重要な研究だと感心した。
カテゴリ:論文ウォッチ

12月21日:RB1はサイレンサーの一部だった(12月15日発行Cancer Cell掲載論文)

2016年12月21日
今年7月10日、Alfred Knudson博士が亡くなった。研究の上では全く接点を持ったことはなかったが、Knudsonさんが2004年京都賞を受賞したとき、たまたま私が選考委員会の座長を務めた関係で、感慨深く悲しいニュースを聞いた。
   Knudsonさんといえば、いうまでもなく網膜芽腫の発症を統計学的に解析しガン抑制遺伝子の概念にたどり着いた偉大な研究者だ。この網膜芽腫発生を抑制した遺伝子こそRb1で、現在では細胞周期の進行に必須のE2F分子と結合することで、細胞増殖を抑制することがガン抑制のメカニズムとして解明されている。
   今日紹介するカナダ小児健康研究所からの論文は同じRb1がなんとゲノム中の繰り返し配列のサイレンサーとして働いているという研究で12月15日号のCancer Cellに掲載された。タイトルは「An RB-EZH2 complex mediates silencing of repetitive DNA sequences(RB-EZH2複合体は繰り返しDNA配列のサイレンサーとして働く)」だ。
   Rb1が細胞周期以外の過程、特に転写抑制にも関わるとは想像だにしたことがなかったが、Rb1がポリコム遺伝子と結合して遺伝子発現を抑制しているという論文はこれまでも数多く発表されていたようだ。おそらく著者らには今回の結論は見えていたのだろう。まずRb1が結合しているゲノム領域を免疫沈降し調べ、細胞周期とは全く関わりのない領域、特にレトロトランスポゾンや内在性のレトロウイルス領域、そしてこれ以外の繰り返し配列に結合していることを見出している。
   次に、細胞周期調節には関わらない832番目のアミノ酸の付近の領域でE2Fと複合体を作ることが繰り返し配列への結合に必要であることを明らかにする。この832番目のアミノ酸を変異させたRb1を持つマウスの系統を作成し、このマウスから樹立した線維芽細胞株を用いて遺伝子発現を調べると、この領域でE2Fとの結合ができないと、細胞周期には影響ないが、本来なら抑えられている繰り返し配列の転写が上昇していることを明らかにしている。
   次に繰り返し配列のヒストン修飾を調べると、Rb1の突然変異では繰り返し配列特異的に抑制型のH3K27me3が消失していること、そしてこれにはEZH2を含むポリコム遺伝子複合体が予想通り関わることを明らかにしている。
   繰り返し配列特異的にポリコム遺伝子複合体をリクルートするメカニズムについては今後の研究が必要だが、Rb1はE2Fと結合することで繰り返し配列特異的にポリコム遺伝子複合体をリクルートし、これにより抑制型のヒストン修飾を誘導することで、繰り返し配列の転写を抑制していることが明らかになった。
   最後にこのRb1突然変異を持ったマウスを長期間観察すると、100%でリンパ腫が出現することを示し、繰り返し配列の転写が抑制されないと腫瘍発生の契機になることを示している。しかし私にとって不思議なのは、繰り返し配列の転写抑制が取れてもガンの発生に1年半以上かかることだ。これについては、繰り返し配列は外来抗原として免疫系に認識され排除されるのではと著者らは考えているようだが、まだ研究が必要な問題だ。
   しかし、Rb1=細胞周期という単純な思い込みで満足せず、様々な可能性を探る研究者がいてくれるおかげで、新しい発見がある。ドグマにとらわれない若い研究者を育てることの重要性を認識する。
カテゴリ:論文ウォッチ

12月20日:レジデント・インターンの交代時期と患者死亡率(12月6日米国医師会雑誌JAMA掲載論文)

2016年12月20日
    他の制度と違い、医療に関わる制度はその性質上たえず改善される必要がある。例えば現在問題になっている薬価もそうだし、医療と医療スタッフの関係など、多岐にわたる。ただ、制度の変更による結果を客観的に評価することは重要だ。おそらく我が国でも評価が行われていると思うが、できればその結果が審査をへた論文として発表されるのはもっと望ましい。
   そんな例とも言える論文がコロラド大学を中心とする研究グループから12月6日発行の米国医師会雑誌に掲載された。タイトルは「Association between end-of-rotation resident transition in care and mortality among hospitalized patients (ローテーション終了によるレジデントの交代と入院患者さんのケアや死亡率との相関)」だ。
   米国の医療や公衆衛生学の論文を見ていると、インターンやレジデントの燃え尽き症候群や自殺が大きな問題になっているのがわかる。大学を終えて間もない医師にとっては、精神的にも肉体的にも過酷な労働であることは、自分の経験からもよくわかる。実際、1日16時間を超える労働が当たり前だったようだ。ようやく2011年に1年目のレジデントやインターンの労働時間が16時間を超えてはならないという卒後教育評議会からの勧告が行われ、勤務シフトが行われるようになった。おそらく一般の方から見たら16時間はなんとブラック労働かと驚かれると思うが、私には納得できる。
   ただ、16時間であれ勤務シフトが行われると引き継ぎがうまくいくかどうかが問題になる。これについては、インターン、レジデントのシフト制度導入前後で入院患者さんの死亡率が調べられ、特に問題ないことが確認されている。
   この研究の目的は、インターンやレジデントのローテーションが終わり、次のグループに引き継がれるとき、患者さんに影響が出ていないかを調べることだ。私も経験があるが、我が国では医師免許が交付されるとすぐに研修医が始まる。これを起点として、研修プログラムが設計されているため、必ず患者さんを引き継ぐ必要がある。この境で、引き継ぎがうまくいっているかどうかを調べるものだ。
  舞台はニューヨークにある退役軍人を対象にする医療施設で、大学の研修機関になっている。この研修プログラムで引き継ぎは、直接医師が出会って行うのではなく、ほとんどが文書による引き継ぎになっている(少なくとも私の時代も同じだった)。
   この引き継ぎ期間と、それ以外での患者さんの死亡率を比べると、インターンだけ、レジデントだけ、そしてインターンとレジデントが同時に交代するプログラムで、オッズ比でそれぞれ12%、7%、18%と上昇している。また、退院後30日目、60日目の死亡率で見ても高い。このことから、インターンやレジデントが患者さんのケアの中心になっており、その引き継ぎが極めて重要であることがわかる。
   さらに重要なのは、この引き継ぎリスクが、16時間労働制限が守られるようになってから大きく上昇している点だ。例えばレジデントの交代時期で言えば、オッズ比1.01が、労働制限後1.13に上昇している。すなわち、労働を削ると引き継ぎがうまくいっていないという実態が明らかになった。
  この結果を受け、他の機関でも検討が行われ、引き継ぎがスムースに進むプログラムが考えられるだろう。
   この論文を読んで、私が一番驚くのは結果ではない。このような調査に医療施設が協力し、あまり好ましくない結果をトップジャーナルに掲載することができるという点だ。さらに、このような調査が、病院のコンピューターにある記録を抽出することだけでできることだ。この公開性こそ、医療制度改善の基盤になる。自分の働いている病院で、同じ研究が可能か考えてみることが重要だと思う。
カテゴリ:論文ウォッチ

12月19日:最新技術を統合する(12月15日号Cell掲載論文)

2016年12月19日
   CRISPR技術は、我が国ではもっぱら特定の遺伝子のゲノム編集及びそれに関連する倫理問題との関連で注目されるが、その真価は種を問わず多くの遺伝子を同時に編集する道を開いた点にある。これまで前向き遺伝学として突然変異を誘導して行っていた研究が、この方法により効率が上がり、変異遺伝子の特定も何千倍も容易になった。例えばiPSと組み合わせれば、分化の過程に関わる遺伝子の特定が容易になる。とはいえ、これを実現するためには、様々の最新技術を組み合わせて誰でもが使える技術に仕上げる研究者の能力が問われる。
   今日紹介するマサチューセッツ工科大学からの論文は、CRISPR技術、遺伝子バーコード技術、単一細胞からのバーコード化cDNAライブラリー形成方法、次世代シークエンサー、そして新しいインフォーマティックスの全てを組み合わせ、これまで一つ一つ調べていた転写因子の機能を、セットで調べる方法を開発したという報告だ。タイトルは「Perturb-seq:dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens(Perturb-seq :細胞集団を用いた遺伝子探索で得られる大規模化可能な単一細胞RNAプロファイリングを用いて分子間相互作用を解析する)」で、12月15日号のCellに掲載されている。またこの論文掲載された同じ号のCellに、この方法を用いてERストレスに関わる転写因子群の解析を発表して、この方法が確かに使えることを示している。
   この研究の目的を簡単に表すと、これまで遺伝子変異を導入して解析を行っている研究者のストレスを全て解消できる方法の開発と言えるかもしれない。
   CRISPR法のおかげで、何十種類もの遺伝子をノックアウトすることは簡単になった。この研究ではCas9を発現するトランスジェニックマウスにレンチウイルスを用いて、何十種類もの遺伝子に相当するガイドRNAを導入している。問題は遺伝子ノックアウトの結果をどう解析するかだが、バラバラに遺伝子がノックアウトされた細胞が混じっている状態では、何もわからない。そこで、水滴の中に一個づつ細胞をトラップし、そこでmRNAライブラリーを作るときにバーコードをつけるという単一細胞の遺伝子発現解析のための方法と組み合わせている。これによって、ガイドRNAと、それによりノックアウトされる遺伝子の影響下で発現が変化したmRNAを対応させることができる。バーコードによりノックアウトした遺伝子とその結果としての遺伝子発現を対応させることができるため、細胞ごとの遺伝子発現を保存しないで、得られた全てのデータを一つのストーレージにまとめておける。ただ、何万個もの細胞に対応する個別のデータがまとめて一つのデータベースに存在しているため、大変なビッグデータだ。これをバーコードと対応させながら、遺伝子の機能を示唆することができるアプリケーションの開発が必要で、このアプリも同時に開発している。
   この結果、骨髄の樹状細胞がLPSで活性化されるときに関わると思われる67種類の転写因子を一度の実験で一網打尽に解析できることを示している。詳細は全て省くが、この方法で得られる結果は、従来何年もかけて明らかにされてきた結果とほぼ一致する。同じように、次の論文ではERストレスに関わる転写因子ネットワークを明らかにすることに成功している。
   もちろん、これまで知られていないことをどこまで明らかにできるかは今後の課題だろう。ヒトの発生で言えば、iPSとの相性はいいと思う。他にも、クロマチン解析など様々な方法を組み合わせる可能性がある。ただソフトも含めて、ここまで統合的に方法が開発されると、他の研究者は技術の消費者にならざるをえない。
   おそらくこのような統合的方法の開発はNEDOが目指しているはずだ。遺伝子編集にまつわる世界レベルの技術が生まれるのか、注視していきたい。
カテゴリ:論文ウォッチ

12月18日:ガンのビッグデータ情報処理の産みの苦しみ(Nature Communication DOI: 10.1038/ncomms13404他)

2016年12月18日
最近、我が国の経済系の新聞や医療情報誌に、「xxの機関がガンの早期診断や治療にビッグデータの利用に乗り出した」と言った記事が多い。ただある程度内内のことを知っているものから見ると、手を挙げている人が本当に真剣に取り組んでくれているのか心配になる。はっきり言うと、また国からお金を引き出すためのアドバルーンかと勘ぐってしまう。というのも、例えばガン領域で言えば、我が国のゲノム研究は遅れており、またインフォーマティックスについてもなるほどと思わせる論文はおろか、なんとか新しい方法を目指して苦しんでいるなと思わせるような我が国からの論文にお目にかかることができない(私が見ている範囲の話で、間違いなら嬉しい)。
私から見れば、この差を埋めるのは新しい研究者で、決して既存の研究者ではないと思う。一方世界レベルで見ると、ガンのデータから治療戦略を探るための研究は盛んだ。正直、簡単でないという印象を持つが、それでも産みの苦しみを感じることができる。
   今日紹介するドイツ・マルティンスリードにあるマックスプランク研究所からの研究は産みの苦しみの典型で、Nature Communicationに掲載された(DOI: 10.1038/ncomms13404)。タイトルは「Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry (質量分析を用いたメラノーマが提示している臨床に役立つネオ抗原の同定)だ。
   免疫システムにはガンを根治に導くことが明らかになって、ガン治療の王道の一つが、ガン特異抗原を見つけ、それに対する免疫を誘導することだとわかっている。ただ、一つのガンは多くの突然変異を持っており、どの抗原に患者さんが反応しているのか特定するのはできていない。現在ガンのエクソームからインフォーマティックスを用いて抗原を特定するアプリケーションの開発が進んでいるが、配列だけから予測できる日はまだまだ遠い。
   この研究はエクソームだけでなく、腫瘍組織から直接組織適合性抗原に結合するペプチドを精製して解析することで、臨床に使えるガン特異的抗原を見つけられないか調べた研究だ。膨大なデータを集める大変な研究だが、はっきり言って成功したとは言い難い。論文は雑然としており、最後の結論は寂しい。簡単にまとめると、25人の患者さんからガン組織で提示されているペプチドを解析すると、メラノーマ抗原として知られていた分子由来のペプチドが上位を占め、またリン酸化ペプチドも多く発見される。このランキングは将来のインフォーマティックスやワクチン開発には役立つかもしれない。ただ、今のままでは混乱があるだけだ。というのも、5人を選んで、実際の免疫に関わる変異タンパク由来ペプチドを探索してみると、このリストのトップにくるタンパク質由来ではない。なんとか臨床に関わる11のペプチドが特定できたが、そのうち8つは一人の患者さん由来で、また免疫反応が8キル特定できるのは2つだけだ。さらに、最初反応があっても、ガンの進行とともに免疫が落ちるという結果だ。
   大変な実験の割に、結果が華々しくないため論文を発表するのに苦労したのだろう。ただ、それでもなんとか王道を行こうという意気込みが見える。この産みの苦しみを繰り返すしか、新しい治療は生まれない。
   同じことは、拡大しつつあるデータベースから、ガン発生に関わるドライバー遺伝子を発見するためのアルゴリズム開発を目指した研究についてのジョン・ホプキンス大学から米国アカデミー紀要に発表された論文にも見られる。タイトルは[「Evaluating the evaluation of cancer driver genes(ガンドライバー遺伝子の評価を評価する)」だ(www.pnas.org/cgi/doi/10.1073/pnas.1616440113)。詳しくは述べないが、この研究では現在進むガンのドライバー遺伝子探索ソフトを機械学習を通して評価するプラットフォームを開発している。印象だけを述べると、そう簡単ではなく、これまでの知識で整理できる地点にまだまだ来ていないと思う。
   しかし、この産みの苦しみについての論文ですら、我が国から本当に生み出されているのか心配になるほど、少なくとも私が目にする機会がない。
カテゴリ:論文ウォッチ
2017年3月
« 2月  
 12345
6789101112
13141516171819
20212223242526
2728293031