5月24日 ボノボの母は性教育ママ(5月20日Current Biology掲載論文)
AASJホームページ > 新着情報 > 論文ウォッチ

5月24日 ボノボの母は性教育ママ(5月20日Current Biology掲載論文)

2019年5月24日

ボノボとチンパンジーは約200万年ぐらい前(人類で言えば直立原人が生まれたころ)に分離した極めて近い種だが、行動学的な大きな違いが注目され、チンパンジーとの比較研究が進んでいる。例えば道徳の起源を研究する目的などで研究されている。特に面白いのは性行動で、チンパンジーは発情しているメスは順位の高いオスを拒否することはないが、ボノボではメスが交尾するかどうかを決めることができる。その結果、オスの順位はあっても、多くのオスに交尾のチャンスがある。この結果、メス中心の類人猿では独特の社会を形成している。

さて、これまで親が子供に様々なことを教えることが知られていたが、今日紹介するドイツマックスプランク研究所を中心とする国際グループからの論文では、母親がオスの子供に様々な方法で性指導をしている可能性を調べた研究で5月20日号のCurrent Biologyに掲載されている。タイトルは「Males with a mother living in their group have higher paternity success in bonobos but not chimpanzees(母親が同じグループで生活していると父親として成功する確率が上がる)」だ。

この国際グループには世界のボノボやチンパンジーの研究グループが参加しており、当然我が国からも京大のモンキーセンターからボノボ研究者が参加している。研究ではそれぞれの研究グループが追跡しているボノボやチンパンジーの群れで、親子関係を特定し、オスの子供が成熟後も母親と同じ群れで生活している場合と、そうでない場合で、他のメスと交尾して子供をもうける確率を調べている。

群れによって大きなばらつきはあるが、ボノボでは母親と暮らしている方が明らかにメスと交尾に成功し子供ができる確率が高い。一方、チンパンジーの場合母親がいてもいなくても、オスが子供をもうける確率は変わらないことが分かった。

これまでの行動学的研究によって、ボノボの母親は子供が性的に成熟すると、1)発情しているメスのところに連れて行く、

2)子供が交尾中に他のオスが邪魔をするのを追い払う

3)他のオスの交尾を邪魔して子供の交尾チャンスを増やす、

4)子供の群れの中の順位を上げるために努力する、

ことが観察されていたようだ。この結果として、子供がオスとして成功することを確認したのがこの研究で、野生でも過保護がいかに大事か示している。

チンパンジーと比べてボノボは行動的によりヒトに近いと考えられている。常に群れの中心にいて、男を焦らし、その結果他の群れとも争わないボノボは、アリストパネスの「女の平和」と同じだ。今回、性教育まであることも分かった。人間の場合、教育ママと言うと悪いイメージがあるが、実際にはこの本能なしに人間は絶滅していたかもしれない。

カテゴリ:論文ウォッチ

5月23日 神経幹細胞は脳外のガン組織に移動してガンの増殖を助ける(Natureオンライン版掲載論文)

2019年5月23日

昨日に続いて気楽とはいえ、ちょっと意外な論文を紹介する。フランシス ジャコブ生物学研究所からの論文で、なんと癌組織に脳から神経細胞が移動してきてがん細胞の増殖を助けると言う研究だ。タイトルは「Progenitors from the central nervous system drive neurogenesis in cancer (中枢神経系由来の前駆細胞がガンの神経形成を進展させる)」だ。

この論文を読んで初めて知ったが、前立腺ガンでは昔から神経細胞が新しく形成されるため、支配する神経節の細胞数が増えること、アドレナリン作動性の交感神経を切断するとガンの増殖を抑えられること、さらにコリン作動性の副交感神経を切断しても同じようにガンの進展を抑制できることが知られていた。

この研究では最初前立腺ガンに存在するDouble cortin(DCX)陽性神経幹細胞の数と、ガンの悪性度を調べ、確かにDCX陽性神経幹細胞が多いほど予後が悪いことを確認する。

そして、Mycガン遺伝子を強制発現させた前立腺ガンモデルでも、同じようにDCX陽性細胞がガン組織内だけに形成されること、さらにこの細胞は試験官内で神経へと分化できる前駆細胞であることを発見する。通常の神経再生なら、神経節から神経が伸びるのだが、この場合は明らかに神経幹細胞がまずガン組織に定着しているので、中枢神経系の神経幹細胞由来である可能性が高い。そこで、ガン発生過程で脳内の神経幹細胞の動きを調べると、subventricular zone(SVZ)と呼ばれる幹細胞の存在する領域でだけ、幹細胞数が激しく上下する。

そこで、SVZを蛍光遺伝子を持つウイルスベクターを感染させて腫瘍に移動するかを調べると、なんとまず血液循環に入った後、ガン組織に定着することがわかった。一方同じ幹細胞が存在する領域でも海馬の歯状回をラベルしても神経の移動は認められない。また、SVZ幹細胞を標識したマウスに、乳ガンを移植した場合も、ガンの定着が見られる。

最後にガン組織内に定着した神経細胞をもう一度毒素で除去できるようにした遺伝子操作マウスを用いて調べると、神経幹細胞の供給がない場合は発ガンも、移植ガンの増殖も抑えられることが明らかになった。

以上の結果は一部のガンでは、何らかのメカニズムで神経幹細胞の血液への侵入が誘導され、ガン組織に定着して様々な神経伝達分子を分泌することでガンの増殖を助けることを示している。

話は簡単だが、本当にそうなのか、他の可能性はないのか読んだ後も完全に納得しにくい論文だった。

カテゴリ:論文ウォッチ

5月22日 脳の老化にVCAM-1が関わっている(Nature Medicineオンライン掲載論文)

2019年5月22日

2日にわたって高次判断の脳科学の話が続いたので、今日から2−3日は気楽な論文を紹介することにした。今日紹介するスタンフォード大学からの論文はは高齢者の血清中に存在する老化因子の研究でNature Medicineオンライン版に掲載された。タイトルは「Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1 (高齢者の血液は脳血管内皮のVCAM-1を介して海馬の神経前駆細胞の活性を下げ、ミクログリアを活性化する)」だ。

研究では血管に絞って老化によって上昇する分子群をまず探索している。もともと、老化により慢性炎症が発生するため、VCAM-1などの発現が上昇すると予想できるが、案の定年齢が高まるにつれ脳血管のVCAM-1の発現が上昇し、これとともに血中に流れるVCAM-1も上昇してくることがわかる。すなわち、血清中のVCAM-1は老化の指標として使える。また、脳のVCAM-1陽性細胞は炎症関連遺伝子も強く発現していることがあきらかになった。実際、若いマウスでも炎症性サイトカインを投与すると血管のVCAM-1 は上昇する。

すなわち炎症性サイトカインが老化で上昇し、VCAM-1を誘導していると考えられるが、老化血清を若いマウスに投与すると、VCAM-1の上昇だけでなく、神経幹細胞の増殖活性が低下、さらにミクログリアを活性化型に変化させられる。また、高齢者の血清をマウスに注射しても同じ結果になる。

ここまでは血清中に炎症性サイトカインが老化により慢性的に上昇していると言う話で、特に驚くほどではないが、著者らはなんとホストの脳内のVCAM-1をノックアウトすると、老化血清の神経幹細胞の増殖抑制作用とミクログリア活性化作用が抑えられることを発見する。すなわち、老化血清中の炎症性サイトカインが最初の引き金とはいえ、神経系への影響は全て血管内皮VCAM-1誘導を介しているという驚くべき結果だ。

次に臨床への応用を考え、VCAM-1ノックアウトの代わりに、VCAM-1に対するモノクローナル抗体を投与して老化血清の作用を見ると、神経幹細胞やグリア細胞への作用を強く抑えることができる。

最後に老化マウスにVCAM-1抗体を投与して脳への影響を調べると、投与しない老化マウスと比べ、増殖神経細胞が増加し、さらに活性化ミクログリアの数が強く抑制される。そして驚くことに、コンテクスト記憶テスト、新しいものへのモティベーション、そして迷路テストのような脳機能の改善も見られる。

まとめると、老化とともに起こる慢性炎症は、脳血管のVCAM-1の発現を高めて、脳神経細胞機能を低下させると言う話で、VCAM-1に対する抗体で脳の機能抑制を抑えられる可能性は画期的だが、血管内皮でのVCAM-1発現上昇から、ミクログリア活性化、神経細胞増殖抑制までのメカニズムは明らかになっていない。このメカニズムが明らかになれば、また新しい脳老化の介入ポイントが見つかる可能性がある。期待したい

カテゴリ:論文ウォッチ

5月21日階層的な判断の脳科学(5月17日Science 掲載論文)

2019年5月21日

昨日に次いで高次な判断の脳科学で、実際には自分の頭のアップデートのために無理をして読んでいる。今日紹介するMITからの論文は2匹のマカクザルを用いた研究で、サルをつかうだけあって課題はかなり複雑で、使うテクノロジーも異なっているが、研究のやり方は昨日紹介した研究とほぼ同じと言える。タイトルは「Hierarchical reasoning by neural circuits in the frontal cortex (前頭皮質の階層的推論回路)」で、5月17日号のScienceに掲載された。

この研究でも最終的に失敗や成功を繰り返しながら形成される主観的価値判断の基準に関わる回路の特性を研究している。ただ、この研究で使われた課題は読んでいても極めて分かりにくい複雑な課題だ。実際このような課題を行えるようサルを訓練すること自体が大変だろうと推察する。

さて、我々は一度経験した結果を、指示に従って再現しようとしてもうまくいかない場合、指示が間違っているのか、それとも自分が指示を間違えて受け取ったのか判断する必要がある。このためにはまず自分を信じて何度かトライして、失敗が続くと指示が間違っていたと判断することになる。このように、自分の感覚の信頼性と支持への信頼性の両方を正しく判断した時にだけ結果が得られる課題を著者らは階層的と呼んでいる。

しかしこれをサルに訓練するのは大変だ。詳細は省くがこの研究では、ルールを指示したあと、そのルールに従って判断する課題と、昨日のように外部からの指示なしに、試行を繰り返しているうちにルールやルールの変化を判断する課題を行わせている。

その上で、この行動をモデル化して、この過程に関わる要素を抽出した上で、行動時の神経活動を記録し、それぞれの要素と相関する神経細胞を特定している。ただ、マウスと異なり猿の場合は脳も大きく、多くの領域を同時にモニターすることは難しいため、これまでの研究結果に基づき、背外側前頭前野と帯状回皮質の2/3層に限って電極を刺して調べている。このため、他の領域の関与は全く無視されている。

まず判断の結果に対する反応をしらべると、両方の領域で多くの神経が、判断の失敗や、難しさ、連続した失敗に強く反応する一方、成功時には反応がないことがわかり、この領域が、失敗を経験として計算することで、階層的な課題のルールを推測していることを突き止めている。また、両方の領域の反応の時間経過から、背外側前頭前野でそれまでの失敗について計算を行い、そのシグナルをもとに帯状回皮質神経でルールについて判断するのを助けることを確認している。

この背外側前頭前野から帯状回皮質へ伝達される失敗についての分析データが帯状回皮質での計算に関わっていることを示すため、背外側前頭前野に微小刺激を加えて、 帯状回皮質の神経興奮が変化するか調べている。ルールを外から指示する課題(すなわち経験したエラーをもとに計算が必要ない課題)では、背外側前頭前野を刺激しても帯状回皮質の活動はほとんど変化しない。一方、これまでの失敗を計算して推察する課題では背外側前頭前野の刺激が帯状回皮質の興奮に強い影響があることを示している。

最後に、全体を統合している帯状回皮質の刺激によりルールが変化したかどうかの判断が変わるか調べ、確かに変化することも確認している。

結果は以上で、課題は違うが経験を常にアップデートし、正確な判断を可能にする主観的判断基準の形成に背外側前頭前野と帯状回皮質が階層的に協力していると言う結論だ。

より我々人間の行動に近づいた課題で、面白いとは思うが、2日間読んでみて、ビッグデータサイエンスに変化しつつある脳研究が自分の脳の理解の範囲から少しづつ離れていっている気がした

カテゴリ:論文ウォッチ

5月20日:Try and Errorの脳科学(6月13日発行予定Cell掲載論文)

2019年5月20日

脳科学は多くの細胞の活動を同時に、継時的に記録する技術と光遺伝学の技術開発により急速に進展した。とくに、判断や学習の過程を継時的に記録できるため、複雑な課題を処理するプロセスが研究できる。すなわち、脳内でより高度な統合を必要とする行動が研究できるようになる。ただ脳科学の素人にとっては、読むのがますます困難になる。今日明日と、内容は理解できても、詳細についてなかなか理解ができない論文をあえて紹介したい。

最初はカリフォルニア大学サンディエゴ校、小宮山研究室からの論文で、try-and-errorを繰り返すうちにルールを学習して熟練する過程で、この経験を蓄積・統合して決断するための主観的価値をきめている場所を特定した研究で6月13日発行予定のCellに掲載された。タイトルは「Area-Specificity and Plasticity of History-Dependent Value Coding During Learning (学習過程で経験の蓄積に依存するバリューコードに関わる領域特異性と可塑性)」だ。

右か左か2者選択の正解率が異なる課題で、どちらの可能性が高いかを経験により学習させると、マウスも十分賢くて、確率の高い方を常に選ぶようになる。そこで確立が急に変わると、また学習を行ってその確率に合わせる。この過程では、try-and-errorを繰り返した歴史的経験が脳のどこかにコードされ、それを参照して褒美をもらうための決断が必要になる。

このような過程をどう研究するのか、勉強にはなるのだが、データの見方などはかなり高度になり、この分野がますます素人には理解しづらい分野になっていく印象を持つ。と断った上で、論文を読み進めると、この経験は全て外部から支持されるのではなく、主観的に形成されることから、まず数理モデリングを用いてこのような経験の積み重ねで判断の基準が形成される過程に必要な要素をパラメーターとして特定する。

この結果をもとに、脳の各領域の神経活動をカルシウムを用いた発光で記録し、学習過程で様々な反応を示す各ニューロンの中から、それぞれの素過程に最も関わる脳内領域を特定し、経験の積み重ねに基づく判断に最も相関する領域として脳梁膨大後部皮質(RSC)を特定する。

さらに、RSC内の各神経の活動は同じパターンを長く維持しており、蓄積した価値がしっかりとレファレンスとして維持されていることを示している。とはいえ、RSC神経は新しい経験に対して最もよく反応して、新しい経験をアップデートしている。

以上に基づいて、光遺伝学的にRSC神経活動を抑えると、それまでの蓄積に基づく判断ができなくなることから、RSCが経験の積み重ねという歴史を表彰しているという結果だ。

あまり間違ってはいないと思うが、しかし行動に関わる要素が複雑化し、さらに多くの細胞の反応を同時に記録し、そのなかから各要素に対応する神経細胞を特定していく、まさにビッグデータサイエンスが深まれば深まるほど、内容は面白いのだが、データの理解がわかりにくくなってくる。ゲノム研究も同じだが、素人向だがデータもある程度理解できるうまいデータ提示の方法が必要な気がする。

明日は課題がもっと複雑な論文を扱う。

カテゴリ:論文ウォッチ

5月19日 加工食品の影響を調べる臨床治験(Cell Metabolismオンライン版掲載論文)

2019年5月19日

ハンバーガーに代表される食べやすく加工した食品は、先進国での肥満の原因として問題にされている。事実以前紹介したように、ファストフードに限れば一品当たりのカロリーや砂糖の量は上がり続けており、消費者の好みを追求し続ける大手ファストフード会社の宿命が明らかになっている(http://aasj.jp/news/watch/9804)。ただいくら一品のカロリーが高いとはいえ、食べやすく加工したこと自体が悪いのかどうか、またなぜ悪いのかについては科学的な答えがない。

今日紹介する米国NIHからの論文は、食べやすくすることが問題になる原因を4週間被験者の食事をコントロールして調べた臨床治験でCell Metabolismにオンライン掲載された。タイトルは「Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake(高度に加工した食品はカロリー摂取による肥満の原因となる:食事制限なしの院内での無作為化試験)」だ。

研究は極めてシンプルで、男10人、女10人の健常人を入院させ、無作為化して、10人は、最初2週間高度に加工した食品だけ、残りの2週間はほとんど加工食品を使わない食事、残りの10人はその逆パターンの食事を取ってもらい、その間の徹底的に様々な代謝指標を徹底的に調べ上げている。

この研究の目的は、加工して食べやすくすることの功罪を調べることなので、入院中の食事は加工食も、非加工食も、重さあたりの様々な成分はほぼ同じように合わせている。しかし、食べる量は自由にしており、当然たくさん食べればカロリーは高い。また入院中は両方のグループとも決まった一定の運動をとるようにしている。

さて結果だが、期待どおり食べやすく加工した食品を摂取している間は、摂取カロリーは上昇し、体重が増える。一方、加工しない食品をとると体重は低下するという結果だ。食品の内容は同じなので、結局食べやすく加工してあれば、ついつい多く食べてしまって体重が増えるということになる。これ以外に面白いと思った結果をまとめると、

  • 脂肪や糖質の摂取は、加工食でも上昇するのに、タンパク質の摂取は両群で変化がない。メニューにもよると思うが、なぜタンパク質だけ一定レベルになるよう自然に食事できるのか不思議だ。
  • カロリー過多になる原因は、朝食と昼食で、夕食は両群とも摂取カロリーは変化しない。すなわち、朝、昼に注意が必要。
  • 期待どおり、加工食の場合、食べる速度が上がる。カロリー比にすると1分あたりの摂取カロリーは50%上昇する。要するに、加工食品も噛めるようにすればいい。
  • 加工食では食欲を抑えるホルモンの分泌が少なく、逆に空腹ホルモンが高い。すなわち、満足までに多く食べてしまう。
  • 少なくともアメリカ人は、耐糖試験で両者に差がない。

他にも詳しい代謝試験が行われているが、詳細については是非論文を直接当たって欲しい。結論を繰り返すと、食べやすくすることで飽食の時代が来たという当然の結論だが、それを調べるためにこれほど大掛かりな治験を行うNIHに頭がさがる。

カテゴリ:論文ウォッチ

5月18日:卵子形成で正常ミトコンドリアを選択するメカニズム(5月15日Natureオンライン掲載論文)

2019年5月18日

ミトコンドリアは細胞の分裂から独立して増殖しており、また母親の卵子を通してだけ子孫に伝わる独自のゲノム遺伝子を持っている。このため、ミトコンドリアゲノム自体も、この過程で突然変異を起こし、一つの細胞に遺伝的に異なる種類のミトコンドリアが共存するヘテロプラスミーと言う状態が生まれる。突然変異による機能異常のミトコンドリアが存在し、その割合が増えるとホストの細胞の機能が低下するが、これがミトコンドリア病で、異常ミトコンドリアを卵子発生で除去するメカニズムがないと、種の保存は不可能になる。

この卵子発生過程でどのように異常ミトコンドリアだけを見つけ出して排除するメカニズムを研究したのが今日紹介するニューヨーク大学からの論文で5月15日号のNatureに掲載された。タイトルは「Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline (ミトコンドリアの分断が生殖細胞での異常ミトコンドリアDNAの除去に関わる)」だ。

この研究では幹細胞から生殖細胞と体細胞へ分化する過程を目で見ることができるショウジョウバエの卵巣を用いて観察している。詳細は省くが、もともと温度が上がると機能が低下するミトコンドリアを持つショウジョウバエに、正常のミトコンドリアを移植し、温度を上げた時に機能低下ミトコンドリアの割合が低下するかどうかで、選択が起こったかどうかを調べている。また、この時様々な分子操作を行い、この選択に関わるメカニズムを明らかにしている。

結果をまとめると以下のようになる。

  • 機能低下ミトコンドリアの選択は、卵子発生の初期、卵子と体細胞が分離する時期にのみ起こり、正常ミトコンドリアがこの時増加する。
  • 体細胞や、精子形成ではこのような選択は見られない。
  • 異常ミトコンドリアの機能低下が検出できないように、外来遺伝子で機能を保証してやると、選択は起こらない。すなわち、機能異常が検出されて選択が起こる。
  • この時期のミトコンドリアは、孤立して増殖せず、通常ならミトコンドリア同士で交換する分子も交換しない。すなわち、他のミトコンドリアから完全に区別できるようになる。
  • この時、Mitofusinの発現量を高めて、ミトコンドリアの孤立化を防ぐと、選択が起こらない。実際卵子発生では、一時的にmitofusinの発現が下がり、ミトコンドリアの孤立が起こるようになっている。一方、体細胞ではミトコンドリアが長時間孤立化することはなく、互いにネットワークを維持している。
  • ミトコンドリアのATP生産量が異常ミトコンドリアを区別する指標に使われている。
  • 異常が検出されたミトコンドリアは、マイトファジーではなく、赤血球分化で見られるオートファジーのメカニズムを用いて、ミトコンドリア膜上のBNIP3蛋白を指標に除去される。

以上が結果で、ショウジョウバエの特徴を生かしたオーソドックスな研究だ。おそらく同じようなメカニズムは他の種でも見られるはずで、特にmitofusinを調節することで、異常ミトコンドリアを選択できるとすると、ミトコンドリア病の治療のヒントが得られるかもしれない。

カテゴリ:論文ウォッチ

5月17日 新しい移植抗原を探す(5月16日号The New England Journal of Medicine)

2019年5月17日

我が国ではドナー不足はまだまだ続いているが、多くの先進国では医療の一つの柱として重要な位置を占めている。また、移植にとって最も重要な問題、臓器拒絶反応についても、適合抗原のマッチング、免疫抑制剤など対策がすすみ、多くの臓器で安全な医療になっている。

と思っていたら、一定の割合で理由がわからない拒絶反応がおこってしまい、移植臓器が定着できない問題が今も立ちはだかっているようだ。今日紹介するコロンビア大学からの論文は、一般的に普及している組織適合性テスト以外に移植した腎臓を拒絶する抗原の一つを突き止めた論文で5月16日号のThe New England Journal of Medicineに掲載された。タイトルは「Genomic Mismatch at LIMS1 Locus and Kidney Allograft Rejection (LIMS1遺伝子座のミスマッチが腎臓の拒絶に関わる)」だ。

現在の組織適合性テストは、ドナーとレシピエント別々に遺伝子多型を調べ、最もマッチングしている組み合わせを選ぶことで行われる。結局タイピングが最も進んだ主要組織適合性抗原のマッチングが中心になる。しかし、当然他の細胞抗原も移植に関わる可能性はあることは、癌のネオ抗原が拒絶に関わることを考えると当然のことだ。

この研究では、癌のネオ抗原と同じで、ドナーに存在して、レシピエントに存在しない分子がもしあれば(彼らは遺伝子衝突とよんでいる)と考え、このような組み合わせが高い頻度でおこる多型を選び、腎臓移植の失敗率と相関させて、最終的に細胞接着に関わるLIMS1遺伝子のイントロンに存在する一つの多型を特定することに成功している。

これまでに発見されてもいいように思えるが、実際にはドナーとレシピエントの組み合わせを調べる必要があるため、このように焦点を絞った探索で初めて発見されたと考えられる。

LIMS1はインテグリンのシグナルに関わるアダプター分子で腎臓に強く発現が見られる。今回特定された多型がGの場合、この分子の発現が低下することも確認され、さらに移植がうまくいかないケースでは、LIMS1に対する抗体が誘導されていることも明らかにしている。

結果は以上で、昨日と同じで少しでも移植の成功確率を高めようと、地道な努力が行われていることがよくわかる論文だった。とはいえ、分子の機能がアダプターである点や、まだこの多型を合わせてマッチングを行う前向きの研究ができていない点で、この発見の最終的評価は定まってはいないと思う。しかし、この検査はどこでも簡単にできると思うので、できるだけ早く用意してほしいと思う。

カテゴリ:論文ウォッチ

5月16日:バクテリオファージを用いた感染症治療(Nature Medicine5月号掲載論文)

2019年5月16日

私たちが医学部に入った50年前はちょうど最初の世代の分子生物学が最盛期を迎えていた頃で、それを牽引したのがバクテリオファージだった。私も様々な本を読んだが、中でも富沢、小関両先生が和訳したウォルマンの「細菌の性と遺伝」はバイブルといってもいい本だった。しかし、月面着陸機のような形をしたファージがバクテリアに遺伝子を注入している像は、自分の前に開ける生命の探求の象徴だった。

考えてみれば、このようにバクテリアを溶かしてしまうバクテリオファージはもっと臨床応用されてもいいと思うが、おそらくクリスパーをはじめとするバクテリア側の免疫機能が明らかになり、簡単ではないと考えられるようになったのだろう。今日紹介するピッツバーグ大学とロンドンオルモンドストリート病院からの論文を読むまで、ファージによる感染症治療の論文を見ることはなかった。タイトルは「Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus (全身に広がった薬剤抵抗性の非定型性抗酸菌症を遺伝子操作したバクテリオファージで治療する)」だ。

この論文を読むと、ファージを使った感染症治療についてはすでに昨年、一昨年と論文が出ているようだ。いずれも多剤耐性の緑膿菌やアシネトバクターなど、いわゆる現在最も問題になっている感染症の治療で、いずれも治療が成功していることからもっと真剣に使用を考えてもいいように思える結果だ。

今日紹介する論文は嚢胞性線維症の治療目的で肺移植を行なった患者さんに発生した全身に拡がる非定型抗酸菌症で、移植による免疫抑制で通常病原性の弱い非定型抗酸菌の感染が拡大するケースで、治療の手段はほとんど残されていない。実際、この論文の図を見ると、皮膚にまで肉芽を伴う膿瘍が拡大している。

通常お手上げと思ってしまうのだが、しかしこのグループは違った。すでにストックされているゲノムが完全に解読された1800種類のファージの中から、抗酸菌に感染することがわかっているファージを選び、さらに患者さんから分離した抗酸菌に感染し、溶血活性が高まるよう遺伝子操作や、培養での選択を行なって、3種類の異なるファージを分離し、皮膚病巣で効果を確かめた後、静脈注射している。

結果は素晴らしく、注入直後から効果がみられ、1ヶ月で腎臓、肺、肝臓、皮膚の膿瘍は全て消失し、また血中や痰からも抗酸菌は消失している。

3種類同時に投与することで早期の免疫を阻止するなど色々考えたのだろうと思うが、なによりも、ファージの可能性に思い当たった臨床医の知識水準の高さと、あきらめず究極のテーラーメード医療を短期間で成し遂げたことに感心する。

他のファージを使った論文も、患者さんのマネージができなくなった時点でファージを用意していることから、分子生物学の創生期、遺伝的変異のスピードから選ばれたファージの特徴を生かして、実際に治療が可能であることは示された。ぜひ拡大できる体制をとってほしいと思う。

カテゴリ:論文ウォッチ

5月15日 PD-1とCTLA-4がつながった(5月10日号Science掲載論文)

2019年5月15日

昨年のノーベル賞の受賞理由にも書かれていたが、PD-1とCTLA-4はそれぞれ全く独立したシグナルで、PD-1はPD-L1と、CTLA-4はCD80/86と反応することで、T細胞の免疫反応を抑制する。PD-L1は腫瘍細胞だけでなく樹状細胞にも発現しているが、この場合もCD80/86とは独立していると考えられてきた。

ところが今日紹介する徳島大学疾患ゲノム研究センターの岡崎さんたちの論文は、同じ樹状細胞内でPD-L1とCD80が結合してPD-1を効かなくすることを示す予想外の相互作用を示した研究で、この分野で最近我が国から発表された中では出色の研究だとおもう。タイトルは「Restriction of PD-1 function by cis-PD-L1/CD80 interactions is required for optimal T cell responses(PD-L1/CD80結合分子がPD-1の機能を抑制して至適なT細胞反応を誘導する)」だ。

イントロダクションからだけでは、なぜこのような着想に至ったのかは理解できなかったが、長年のPD-1に関する研究から生まれたのだろう。この研究では、同じ細胞でPD-1とCD80が相互作用をすることで、PD-L1のPD-1への刺激が減弱するのではという可能性を、まずPD-1の細胞外ドメインを多量化した可溶性タンパク質を用いてPD-L1やCD80を同じ程度発現している細胞を染色するエレガントな方法で調べている。

もちろんPD-L1を発現している腹腔マクロファージはPD-1で染色できるが、同じようにPD-L1を発現していても、同時にCD80を発現している樹状細胞では染色が低下することを発見する。そして、CD80ノックアウトマウス由来の樹状細胞を用いると、染色が正常化する。また、両方の分子を発現している細胞では、分子複合物が形成されていることも証明している。

以上の結果は、CD80がCTLA-4を刺激してチェックポイントを動かすと同時に、PD-L1と結合してPD-1チェックポイントが働かなくしているという複雑な反応が同じ樹状細胞で起こっていることを示している。とすると、最終的な免疫反応に対するPD-L1/CD80相互作用のネットの影響はどうなのか調べる必要がある。ただ、CD80をノックアウトしてしまうと、CTLA4への効果もなくなり、ネットの効果を見ることができない。

そこでこのグループは、それぞれPD-1やCTLA-4への刺激作用は正常だが、互いに結合できないPD-L1とCD80の突然変異を分離し、最終的にCTLA4と正常に反応できるが、PD-L1と同じ細胞状で反応できないマウスを作成している。こうして用意したマウスの卵白アルブミンに対する反応を調べると、変異を持つマウス、すなわちCTLA4は刺激できるが、PD-1は刺激できないマウスでは反応が強く抑制されることを示している。また同じ系で癌に対するT細胞の反応も低下することをしめしている。同じように、自己免疫性の脳炎も、PD-1がチェックポイントに関わっており、CD80/PD-L1の相互作用がおこると、このブレーキが聞かないことも明らかにしている。

以上の結果から、PD-L1/CD80相互作用が生理学的機能として免疫の調節に関わることが示されたと思う。全く予想外の新しい発想の研究で、創意と知識の感じられる丁寧な実験に裏付けられている。例えばこれまでよく理解できなかったPD-L1抗体とPD-1抗体の作用の違いをはじめ、この分野に新しい可能性を開いた重要な貢献だとおもう。

カテゴリ:論文ウォッチ
2019年8月
« 7月  
 1234
567891011
12131415161718
19202122232425
262728293031