1月13日:実用段階に入った遺伝子治療(1月12日発行Science掲載総説)
AASJホームページ > 新着情報 > 論文ウォッチ

1月13日:実用段階に入った遺伝子治療(1月12日発行Science掲載総説)

2018年1月13日
これまで何度も強調しているように、この数年遺伝子治療が信頼できる治療法として実用段階に入ったことは間違いがない。2017年のサイエンストップニュースでほとんどの雑誌が脊髄性筋萎縮症の遺伝子治療を挙げていたし、変異遺伝子が特定されている遺伝疾患は言うに及ばず、特定の遺伝子変異が認められないパーキンソン病でも遺伝子治療の治験が進んでいる。

今日紹介するNIHを始めとする遺伝子治療を進めてきたグループ(我が国では東大の小澤さんが共著者になっている)による現状報告は、ここ数年論文を読みながら私が持った印象に極めて近く、紹介することにした。タイトルは 「Gene therapy comes of age(遺伝子治療の時期が到来した)」で、今週発行のScienceに掲載された。以下にその内容を紹介する。

歴史
私自身は血液発生を研究していたこともあり、1980年後半にはレトロウイルスによる遺伝子導入は当たり前のように利用しており、この技術が臨床応用されるのも時間の問題と考えていた。実際、1990年代にNIHを中心に様々な遺伝子治療が試みられ、効果がほとんど見られなかったどころか、死亡例まで出る惨憺たる結果に終わった。
ただ、コンセプトが明確な可能性は決して廃れることはない。その後もう一度実験室に問題が持ち帰られ、新しいベクターや、遺伝子編集などの技術が開発されることで、この10年に目をみはる成果を上げ始めている。

技術
現在遺伝子治療に用いられる代表的ベクターは、レトロウイルスと、アデノ随伴ウイルス(AAV)の2種類と言える。前者はホストゲノムに組み込まれ、後者は組み込まれることがないベクターとして開発されている。

レトロウイルスベクター
最初の世代のγレトロウイルスベクターは遺伝子調節領域に組み込まれやすく、治療後の白血病の発生など問題が多かった。その後、レンティウイルスベクター、やスピューマウイルスベクターなどが開発され、特にレンティウイルスは遺伝子のコーディング領域に導入される確率が高く、導入効率も高いことで最もよく利用されるようになった。例えば初期のiPSはこの技術で樹立された。さらに、ウイルスのエンハンサー活性を自滅させるデザインが用いられるようになり、臨床治験に利用されている。レンチウイルスでの遺伝子治療が最も注目されているのは、T細胞にガンを殺すキメラ受容体を導入するCAR-T治療だが、タラセミアの治療などにも応用が始まっている。

アデノ随伴ウイルス(AAV)
1990年代にAAVを用いた遺伝子導入で、遺伝子発現が長期に続くことがわかり、急速に開発が進んだ。特に血友病の遺伝子治療では、静脈注射により肝臓に感染する率が高いことがわかり、凝固因子を10%近くにまで回復させ、その状態を長期間維持できることが明らかになっている。問題は、ウイルスに対する抗体やT細胞による不活化で、まだ決め手はない。

遺伝子編集
我が国ではもっぱらクリスパーだけが問題になっているが、他の方法(ZFNやTALE)を使う方法が着実に進展しており、エイズ患者さんのT細胞にウイルス感染に抵抗性を付与する(CCR5 不活化)やCAR-Tをなど臨床治験が進んでいるものも多い。ただ、将来はクリスパーが中心になることは間違いない。オフターゲットの切断など様々な問題が指摘されるが、iPSと同じで、重要な技術の問題は必ず解決される。体細胞遺伝子治療が始まる可能性は高く、中国ではすでに9治験が登録されているらしい。
もちろん胚操作に進み、倫理的問題が生まれる可能性があるが、ここでは体細胞への遺伝子治療に限って紹介する。

ウイルスベクターを注射する遺伝子治療
ウイルスを注射して遺伝子が導入できれば一番簡単だが、目的以外の臓器にトラップされるなど様々な問題がある。ただ、肝臓、眼、神経系では様々な問題が克服され、前進しつつある。

肝臓を標的にする遺伝子治療
最も成功しているのが、第9凝固因子遺伝子を導入する血友病の治療で、大量の分子を長期に生産し続けるためには肝臓が最適な臓器であることはまちがいなく、他の凝固因子も含め着実な前進がみられる。しかしすべての治験で、ウイルスに対する免疫反応が問題として記載され、この解決が今後最大の課題といえる。


視力低下につながる様々な遺伝子異常が知られており、遺伝子治療の可能性がある。これまで最も研究が進んでいるのがRPE65遺伝子欠損の患者さんで、アデノ随伴ウイルスベクターを用いて遺伝子を直接注入する方法を用いた最近の無作為化研究で、効果が確認された。この結果に励まされて、現在レーバー病など様々な遺伝子疾患の治験が進められている。

神経・筋肉
治験が進んでいるのは、パーキンソン病と脊髄性筋萎縮症と言える。すでにこのブログでも紹介したように、ドーパミン合成に必要な遺伝子を再構成する遺伝子治療のi/II相治験が行われ、期待が持てる結果が出ている。しかし、最も成功したのが、スプライシングをアンチセンスRNAで制御する脊髄性筋萎縮症の治療で、昨年の最大の医学トピックとして選ばれている。

試験管内での遺伝子改変
レトロウイルスを用いた免疫不全症の治療が最も進んでおり、γレトロウイルスを用いる最初のバージョンで白血病が多発した反省を受け、現在ではレンチウイルスを用いる新しい方法が用いられ、成果を収めている。血液幹細胞を標的にする遺伝子治療は、他にも様々な疾患に適用可能で、現在タラセミアの遺伝子治療国際治験が進行している。タラセミアについては、今後遺伝子編集の標的として研究が進むと予想できる。

CAR-T
レンチウイルスベクターを用いてキメラ遺伝子を患者さんのリンパ球に導入する方法はFDAに認可された治療として昨年から利用が始まったが、このCAR-Tには他にも様々な技術が試されている。一つの方向は、現在標的として用いられているCD19に加えて、他のマーカーに対する抗体を用いて骨髄性白血病や、固形癌を治療する方向性の研究で、もう一つの方向は患者さん本人のT細胞を用いるのではなく、ホストに対する反応は起こらないが、ガンに対しては反応できる、すべての患者さんに対応できるT細胞の開発だ。どちらも臨床応用はかなり近いところにあると言える。

以上が総説の内容だが、遺伝子治療実用化が現実になりつつあるのがよくわかってもらえたと思う。しかし問題もある。もともと遺伝子治療は、原理的にも個人用の治療が設計できる方法として期待され、またその方向で助成も行われてきた。しかし最近実用化された遺伝子治療は、あまりに高価で、実際の患者さんには手が出ないと言う問題がある。この問題を解決しない限り、おそらく遺伝子治療の普及はないだろう。規制をどうするのかも含め、早期の議論が必要だと思う。
カテゴリ:論文ウォッチ

1月12日:アルコールは本当にDNA障害を介して発がんに関わるのか?(1月11日号Nature掲載論文)

2018年1月12日
最近Newsweek日本版に「アルコールとガンの関係が明らかに」と題した、アルコールがあたかも発がんの張本人のような書き方をしている記事が出ている(https://www.newsweekjapan.jp/stories/world/2018/01/dna2.php)。Facebookでシェアされていたので気づいたのだが、記事を読んでみると、確かに見出しはセンセーショナルだが、読んでみるとアルコールでハイドロゲネース(ADH2)の欠損した動物ではアルコール摂取によりDNA切断が起こるという話が紹介されており、見出しほどのインパクトはない。しかし、ADH2欠損がガンのリスク因子であることならとうの昔にわかっていることで、簡単にNatureが掲載するはずはないと思って昨日出版された論文を読んでみた。

英国医学協会の研究所からの論文で、タイトルは「Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells(アルコールと内因性のアルデヒドが染色体を障害し幹細胞の突然変異を誘発する)」だ。

確かにタイトルはNewsweekが報道する内容に近い。しかし論文を読んでいくと最初に世界には5億人ものADH2変異がある人がいるのに、アルデヒドで起こると予想される異常がほとんど問題になっているのは不思議だという話から始まっている。実際、ADHが欠損して内因性のアルデヒドが細胞内に発生してしまうと、DNAへの塩基の付加が起こったり、DNAとタンパク質が架橋されたり、様々な異常が起こると予想される。となると、この研究の狙いは、アルデヒドにより起こるDNA障害を修復しているシステムを明らかにすることであることがようやくわかる。逆に、アルコールを処理しきれないとアルデヒドができてDNAが障害されるが、私たちはそれをしっかり修復するメカニズムを持っていることを知り、酒好きの私にとっては逆に安心できる論文だった。

この研究では、ADH2欠損マウスを、修復機構が欠損したマウスと掛け合わせ、アルデヒドによるDNAが修復される過程を明らかにしようとしている。まず最初に掛け合わせたのが、ファンコニ貧血の原因遺伝子であるFancd2欠損マウスで、とADH2遺伝子両方が欠損したマウスを作成して、DNA複製依存的にDNAを切断、組み換えによって修復するFancd2型修復メカニズムが、アルデヒドによるDNA障害の修復にどの程度関わるかを調べている。

  ADH2/Facd2欠損マウスの腹腔にアルコールを直接注射すると、期待通りDNA障害が修復されず、染色体異状を持つ細胞が増加、最終的に血液ができなくなりマウスは死亡する。すなわち、アルデヒドによるDNA障害の修復にFancd2が関わる修復機構が中心的役割を果たしていることがわかる。

さらに、アルコールに暴露された血液幹細胞の骨髄再構成能力を、単一幹細胞移植を用いて調べ、造血能がほとんどの幹細胞で失われていること、そしてこれが各細胞のゲノムに多くの変異が蓄積する結果であることを確認している。

  次に2重鎖切断されたDNAの修復に、組み換え以外の断端修復も使われている可能性についても調べ、Fancd2が欠損する血液細胞では、それを補うようにKu70が関わる断端修復が起こることを示している。
さらに、p53の変異により、チェックポイントが働かなくすると造血幹細胞数は正常化することを示しているが、何かとってつけたような実験で、ほとんど詳しい解析はできていいないので紹介はやめる。

まとめると、アルデヒドはDNA障害を起こすが、2重の修復機構で問題が起こらないようにしており、最も重要な修復系はFancd2のかかわるDNA切断と相同組み換えを用いる修復機構であるという結論だ。

いずれにせよ、この研究を引き合いにアルコールはDNA切断すると報道するのは、間違いではないが、ちょっと脅かしすぎだと思った。
カテゴリ:論文ウォッチ

1月11日パーキンソン病関連論文2編 (1月9日号Neurology掲載論文他1編)

2018年1月11日
私たちのNPOにはパーキンソン病の患者さんたちがよく立ち寄られる。そのため、私だけでなく、NPOのメンバー全員が、何か役に立つ情報がないかいつも探してくれている。そして、この数日の最大のトピックスが、理事の一人藤本さんが見つけてきたtechcrunchというキュレートサイトに出ていた、パーキンソン病の患者さんの足がすくむのを回避できるデバイス、レーザーシューズの記事だった(http://jp.techcrunch.com/2017/12/22/2017-12-21-laser-equipped-shoes-help-parkinsons-patients-take-the-next-step/)。 靴につけたレーザーから足を踏み出す目標になる線を地面に投射して歩行を助ける、極めて簡便なデバイスだが、グッドアイデアだと記事を見て感心した。幸いこの記事が紹介していた元の論文をダウンロードすることができたので、今日はこの Neurologyの論文とともに、わかりやすい論文を他にもう1編紹介する。 1. パーキンソン病の立ちすくみを軽減するレーザーシューズ(1月9日号Neurology掲載論文)
パーキンソン病が進行すると、歩行中に立ちすくむ症状(Freezing of gait:FOG)が出て、転倒などの原因になる。原因が理解できているわけではないが、次に踏み越えるべき線が地面に引いてあるとFOGを克服することができることがわかっている。もちろん、あらゆる場所に線を引いておくわけにはいかない。そこで開発されたのがレーザーシューズだ。

靴に組み込んだレーザー照射装置で歩くときに、目標線を地面に投射し続けるレーザーシューズの開発と、その効果の検証を行ったのが今回オランダのトゥウェンテ大学からの論文だ。

まずレーザーシューズだが、かかとが地面について体重がかかったときだけ進行方向に向かって直角の線が、地面についている側の靴から投射される仕組みになっており、歩いている限り約40cm前方に線が描かれる。これをめがけて、患者さんは足を下せばいい。

FOGを示した17人の患者さんにこの靴を履いてもらって、前後の歩行、カウントダウンしながらの歩行、命令に応じて回転する、ロードコーンを取ってくるなどの課題を行ってもらい、FOGが起こるかどうか調べる。

結果は期待以上で、L-ドーパの効果のオン状態、オフ状態何でもFOGをそれぞれ、37%、46%減らすことができる。そして、患者さんも自覚的に歩きやすくなったことを自覚できている。

どうして今までできなかったのかが不思議なぐらいだが、患者さん目線に立って初めて可能であることがわかる。

2、強いトレッドミルでの運動は進行を遅らせる(12月11日号JAMA Neurology掲載論文)
 コロラド大学からの論文で、128人のパーキンソン病の患者さんを無作為に3群に分け、トレッドミルで心拍数が最大心拍数の80%に保つ運動、60%に保つ運動を、1日30分、週4日、6ヶ月続けてもらい、運動しないグループと症状の進行を比べている。

結果だが、最大心拍数の80%になるよう調整した運動を6ヶ月続けたときだけ病気の進行がはっきりと抑えられている。医師の管理下で行っており、治験中に特に問題になる事故はなかったようだ。これは仕事をしながら続けられる治療法なので、取り入れればいいと思う。 いずれも明日から利用できる方法で、患者さん目線で多くの研究が行われていることを実感する。
カテゴリ:論文ウォッチ

1月10日:マウスの話だが横紋筋肉腫は血管内皮由来だった(1月8日Cancer Cell掲載論文)

2018年1月10日
Rhabdomyosarcoma(横紋筋肉腫)は小児や青年に見られる肉腫で、特に、首より上部にできる肉腫はほぼ6−7割が10歳以下の小児に発症することが知られている。発症場所から考えて、横紋筋やその前駆細胞である衛星細胞が直接ガン化したとは考えにくいが、筋肉のアクチンやMyoDなどの発現が見られることから、横紋筋細胞への分化能を有する間質細胞由来の肉腫と考えられてきた。

今日紹介するテネシー州St.Jude小児病院からの論文は、少なくともマウスの横紋筋肉腫モデルは血管内皮への分化能を持つより未熟な細胞由来であるという結果を示した研究で1月8日号のCancer Cellに掲載された。タイトルは「Hedgehog pathway drives fusion-negative Rhabdomyosarcome initiated from non-myogenic endothelial progenytors(ヘッジホッグシグナル経路が筋肉には分化しない血管内皮前駆細胞から細胞融合のない横紋筋肉腫の発生を起動する)」だ。

多くの横紋筋肉腫の発症にはヘッジホッグ(hh)シグナル経路がガンのドライバーとして働いていることが知られており、このグループもhhの下流シグナルが入りっぱなしになるSmoothenの変異型遺伝子を導入したマウスモデルを用いて横紋筋肉腫誘導を行ってきている。ところが、これまで間質幹細胞に特異的という前提で使ってきたプロモーターの特異性が、思いの外広いことがわかり、実際にはどの細胞ががん化しているのかを探る研究を行ったのがこの研究だ。

結果は、この実験系でがん化している細胞は、胎児発生時に中胚葉から分化し、体内に広く分布する血管内皮細胞に分化能を有する前駆細胞であることを突き止める。そして、この血管内皮への分化能を示す前駆細胞が内皮細胞へ成熟する前に活性型smoothenが働くと、筋肉系へと分化し、横紋筋肉腫が発生することを突き止めている。面白いのは、横紋筋肉腫のもう一つのガンドライバーRasをsmoothenの代わりに用いると、横紋筋肉腫にはならず、血管内皮の性質を維持した血管肉腫ができる。このことは、未熟前駆細胞からの横紋筋肉腫発生には、hhシグナルによる横紋筋細胞への分化誘導が必要であることを示すとともに、Rasをドライバーにして発生する横紋筋肉腫は血管内皮とは別の起源により誘導されていることを示している。

最後に血管内皮起源をさらに確認するため、血管増殖因子の受容体陽性細胞でSmoothenを発現させる実験を行い、胎児の中にすでに横紋筋肉腫と言える細胞の増殖が見られることを確認している。

この結果が、人間にどこまで当てはまるのかについては、この研究だけで結論はできない。しかしhhシグナルが血管内皮の前駆細胞を分化させることについてはマウスも人間も同じと言えるので、おそらくSmoothen変異をドライバーとする横紋筋肉腫の中に、同じようなプロセスを経てガン化した肉腫が含まれているのは間違いないように思う。またこの結果は、大人になると消失するものの、かなり長期にわたって、このような多能性の前駆細胞が体内に存在していることの証明になっているように思う。これも、大人のガンとAYA世代のガンが別物であることのいい例だと思う。
カテゴリ:論文ウォッチ

1月9日:進む腫瘍溶解性ウイルスによるガン治療(1月3日号Science Translational Medicine掲載論文)

2018年1月9日
米国だけでなく、世界中の臨床治験が登録されている米国のClincalTrials GovサイトをOncolytic virus(腫瘍溶解性ウイルス)で検索すると、我が国の治験を含む、なんと73の様々な段階の治験がリストされてくる。分裂中の細胞でより増殖するウイルスを用いてガン細胞を殺す治療で、実に多くのウイルスがその候補として研究されている。中でも、単純ヘルペス、アデノウイルス、レオウイルスが中心だが、ウイルス注入のみで高い効果が得られるのか、疑問を持つ向きも多い。

しかしこの雰囲気が、チェックポイント治療登場でかなり変わってきたように思える。昨年9月に紹介したCellの論文のように、ウイルスで一部のガン細胞を殺し、マクロファージに処理させてガン免疫を高め、チェックポイント治療効果を高めるという戦略だ(http://aasj.jp/news/watch/7362)。

今日紹介する英国リーズ大学中心に発表された論文は、チェックポイント治療とガン溶解ウイルスとの併用がどの程度可能かを実際の患者さんで調べた研究で1月3日号のScience Translational Medicineに掲載された。タイトルは「Intravenous delivery of oncolytic reovirus to brain tumor patients immuneologically primes for subsequent checkpoint blockade(静脈注入したガン溶解レオウイルスは脳腫瘍に到達し、続くチェックポイント治療の準備をする)」だ。

アイデアも、研究としての手法も別段注目するほどの研究ではないのだが、ほとんど治療手段のない高グレードグリオーマの患者さんを対象にここまでの実験研究をやるのかと感心したので紹介する。

グリオーマにガン溶解性ウイルスを用いる可能性はこれまでも研究されているが、多くの場合、ガンに直接ウイルスを注射する方法が用いられる。これは、ウイルスが脳血液関門を越えて、脳内に移行しにくいと考えられているからだ。しかし、もし注入のしやすい静脈ルートなら臨床応用も容易になる。さらに、ガン局所では脳血液関門が壊れているという報告もある。

そこでこの研究では、

1) このグループが研究してきたレオウイルスを静脈注射した時、脳内のグリオーマに到達するのか、
2) グリオーマに感染することで、ガン免疫を誘導している可能性があるか、
を確認するため、9人の患者さんに高濃度のレオウイルスを注射、3−17日後に摘出した腫瘍で、

1) ウイルスがガン細胞に感染しているか、
2) ガン局所で免疫反応が上昇しているか、
3) チェックポイントに関わる分子の発現に変化があるか、
を調べている。

おそらく、この患者さんたちはチェックポイント治療は受けていないのだろう。全員が平均469日で亡くなっており、これはこのガンの一般的な経過と同じだ。すなわち、全員が将来に向けた貴重な資料を残すためだけに治験に参加してくれたことになる。

この解析から、

1) ばらつきは大きいが、ウイルスは脳内に到達し、ガン細胞の一部、特に分裂中の細胞に感染が確認されるが、正常組織にはほとんど見当たらない、
2) ガンの一部の細胞死を誘導できる、
3) キラーT細胞の浸潤がウイルス投与で高まる、
4) おそらくインターフェロン誘導を介して、PD-1及びPD-L1の発現が高まっており、チェックポイント治療の対象になる、
5) マウスを用いた実験では、レオウイルス静注に続いてチェックポイント治療を行うと、生存期間が伸びる、
がわかった。

実際のデータを見ると、本当にこれでチェックポイント治療の効果を高められるのか、疑問に思うが、静脈投与でウイルスは脳に到達することから、次はチェックポイント治療と組み合わせた治験を行って、今回参加された患者さんの意志に報いてほしいと思う。
カテゴリ:論文ウォッチ

1月8日:強いオスを選ぶ競争メカニズムの原点(1月5日号Science掲載論文)

2018年1月8日
クジャクを見ると、生殖上の競争を勝ち抜くために、壮大な形質変化が進化の過程で生まれることを示している。これは、性生殖、すなわち異なる個体のゲノム同士の組み換えが、種の保存に重要で、想像を絶するほどのコストを払ってもペイするだけの価値があることを意味している。

ただ、オス・メス型の性生殖を行わない、自殖型の動物も存在し、それを見ていると多様性の維持には組み換え自体が重要で、異なる個体である理由はそれほどないこともわかる。とはいえ、ほとんどの動物はオス・メス型の性生殖を行うことから、間違いなく個体間の競争が重要で、基本は強いオスが勝つ構造が必要になるはずだ。

今日紹介するメリーランド大学からの論文はこの競争に関わるメカニズムを、交配型と自殖型のカエノラブティティス(即ち線虫)を比べて明らかにしようとした力作で1月5日号のScienceに掲載された。タイトルは「Rapid genome shrinkage in a self-fertile nematode reveals sperm competition proteins(自殖型線虫に見られる急速なゲノム収縮は精子間競争に関わるタンパク質を明らかにした)」だ。

実験に用いられる線虫(C.elegance)は自殖型だが、多くの線虫種はオス・メス交配で、一般的に自殖型よりゲノムサイズが大きいことが知られている。この研究では、進化的に最も近く、また人工的に種間で生殖可能(例えば現代人とネアンデルタールを思い浮かべればいい)な線虫C.nigoni(交配型)とC.briggsae(自殖型)を選んで、ゲノムを比較し、自殖型と交配型に分かれることでどの遺伝子が必要なくなるかを調べている。

なんと自殖型ではゲノムサイズが25%近くも減少しており、26000近い遺伝子のうち、3000遺伝子が失われる。さらに詳しく見ると、オスで発現している遺伝子が多く、やはり強いオスを選ぶ戦いというのがこの種では正しいことがわかる。

そして、競争を支える分子の詳細な検討から、他の自殖種でも欠損し、すべての交配種に存在する、しかもこれまでほとんど研究されていなかった、精母細胞に強く発現するmss分子に焦点を当てて研究を進めている。

Mssは合成された後小胞体を介して細胞膜に結合したまま、細胞膜のピットを形成する役割を持つようだが、詳しい機能はほとんど分かっていない。この研究ではまずmssを欠損した精子は、卵子に接合はできるが、正常型の精子と競争させると、全く生殖できなくなることを示している。次に、もともとmssの存在しない自殖型にこの遺伝子を挿入し、mssが精子間競争に勝つために重要であることを示している。

最後に、mssを導入した自殖型線虫と普通の自殖型線虫を維持して、オスと雌雄同体型の比率を調べると、通常すぐに雌雄同体型優位で、オスが消失するのに、mssを導入した自殖型線虫では12代にわたってオスの比率が維持されることも明らかにしている。

これまで精子の泳ぐ能力などの違いで精子間競争に関わる分子は知られていたが、この研究で明らかになったmssは自殖型では全く存在しない点で、正真正銘のオスの競争力に関わる原点とも言える遺伝子だ。残念ながら、その細胞学的機能は分かっていないので、今後さらなる研究が必要だが、それも時間の問題だろう。いろんな想像を掻き立てられる面白い論文だった。
カテゴリ:論文ウォッチ

1月7日:食物中のトレハロースがクロストリジウム強毒株進化を促進した(Natureオンライン版掲載論文)

2018年1月7日
トレハロースは熱など様々な条件に最も安定な糖だが、精製にコストがかかっていたため、使用は化粧品などに限られていた。その後、デンプンから安価に精製する方法が開発され(最初は1kgが700ドルしたのが、現在では3ドルで精製できる)、多くの食品に添加されるようになって現在に至っている。もともと、多くの自然にある植物に含まれていることから、最も安全な糖として広く使われるようになった。

今日紹介するテキサスベーラー大学からの論文は、確かに食品としてトレハロースが危険というわけではないが、病原性の高いクロストリジウムの病原性を高める役割を果たしていることを示した、ちょっと恐ろしい研究で、Natureオンライン版に掲載された。タイトルは「Doetary trehalose enhances virulence of epidemic clostridium difficile(流行性のクロストリディウム・ディフィシル強毒株の毒性は食事の中のトレハロースにより増強される)」だ。

この研究は、2000年から2003年に流行したクロストリディウム・ディフィシル(CD)RT207株、および1995年から2007年の間に10倍も症例数が増えたRT078の進化が、食品中の炭水化物の変化により誘導されたのではと着想し、様々な炭水化物を調べた結果、2000年以降に広く使われだしたトレハロースが両方の菌株に利用されるが、他の菌は利用できないことを発見する。

次に、トレハロースが利用できるようになるための分子変化を探索し、TreA分子の有無がトレハロースの利用可能性を決めている原因遺伝子であることを突き止める。

この結果をもとに、ではTreAの発現が2000年前後で始まったCDの進化を説明できるか次に検討し、試験管内の実験で、流行性を獲得した株は500倍低い濃度のトレハロースがあればTreAの発現が誘導できること、そしてTreAオペロンを1010種類のCDで調べ、RT028株を含む多くの株では、この違いがTreRリプレッサー遺伝子の1塩基置換により起こっていることを突き止めている。

次に、TreRが正常型の菌株をトレハロースで培養すると、TreBの機能が突然変異によって欠損した細胞株が得られることから、おそらく流行株でのレプレッサー変異が、食品として含まれるトレハロースへの新たな環境適応として選択されたことがわかる。

次に、流行性株をマウス腸内に移植し、トレハロースを含む/含まない2種類の餌を与えて腸炎による死亡率を調べると、トレハロースを摂取することで毒性が強くなることから、トレハロースにより誘導されるtreAが毒性を決めていることを明らかにしている。

以上の結果は、RT027株の話で、同じようにトレハロースが利用出来るようになったRT078株ではtreAは正常のままだ。そこでこの株についても遺伝子の比較を行い、トランスポーターptsT遺伝子が新たに獲得されたこと、これによりトレハロース存在かで細胞の増殖が高まることを確認している。

最後に、私たちの腸内のトレハロース濃度でtreAの誘導が起こることも確認しており、これが決して実験的な条件で起こったことではないことを示している。

まとめると、トレハロースが食品等に使われるようになり独立してトレハロースを利用出来る突然変異が誘導され、これがtreAの発現が高い流行性強毒変異株を誘導し、こうして生まれた強毒株はトレハロース存在下で毒性を最大限発揮するという結果だ。

恐ろしい話だが、2つの重要なポイントがある。一つはCDの強毒株は抗生物質の使いすぎにより発生したという考えは再検討される必要があること、そしてトレハロースを摂取しなければ、流行株でもトレハロース摂取を完全に止めれば毒性が弱いことだ。大至急臨床の現場で確かめるべき重要な論文だと思う。
カテゴリ:論文ウォッチ

1月6日:新しい簡単な耳鳴りの治療(1月3日号Science Translational Medicine掲載論文)

2018年1月6日
私自身40歳ぐらいから既に30年近く耳鳴りが続いているので、耳鳴りの論文は余計に気になる。2015年にも頭蓋の外から磁場を当てて耳鳴りを治療するJAMA Otholaringology Head Neck Surgeryに掲載された治験研究を紹介したら、読者で耳鳴りに悩む方から、我が国でも治療は行われているが、もちろん保険外で一回5万円かかるという情報を頂いた(http://aasj.jp/news/watch/3789)。副作用はないが十回は治療が必要なのは、ちょっと抵抗があるだろう。

今日紹介するミシガン大学からの論文は大掛かりな機械が必要のない耳鳴りの治療法開発の研究で1月3日のScience Translational Medicineに掲載された。タイトルは「Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in guinea pigs and human(聴覚と体性感覚の二峰性の刺激により脳回路を脱同期させてモルモットと人間の耳鳴りを低下させる)」で、耳鳴りに悩む方々の初夢になればと紹介することにした。

耳鳴りを感じる人ならわかるのだが、何か運動をしたり、痛みを感じたりすると感じなくなることが多い。これは、耳鳴りが純粋に聴覚回路の異常興奮だけで成立しているのではなく、体性感覚など様々な感覚を巻き込んだ回路異常であることを示唆している。神経生理学的に詳しく見ると、聴覚神経の入力を受ける紡錘細胞(FC)は、体性感覚刺激を媒介する顆粒細胞から直接、あるいは車軸細胞を介して回路を形成している。原理的には、耳鳴りはFC細胞を中心とする回路が長期的に増強し(LTP)、同調性が高まっている状態と考えることができる。LTPは長期記憶で、シナプス自体が転写レベル、さらにはエピジェネティックに完全に変化してしまうことで起こるため、耳鳴りは治しにくい。しかし、回路は他の神経にも開いているので、このシナプスを抑制する回路を高めることで治療する可能性が出てくる。

この研究では聴覚への刺激と、首への電気刺激を様々な間隔で与えることで、FC細胞の興奮に影響できるか調べ、音を聞かせた後電気刺激をすると、FCの同期性を抑えられ、逆に電気刺激してから音を聞かせると同期性が高まることを突き止めている。この結果に基づき、音に晒すことで耳鳴りを誘導したモルモットのFC細胞の同期的興奮が、音を聞かせた後電気刺激を与える二峰性刺激で抑えられることを確認している。

この結果を受けて、患者さんの耳鳴りのピッチに合わせて選んだ音をイヤフォンから聞かせた後、首の後ろ、あるいは頬に置いた電極を通して電気刺激する機械を各人に持ち帰らせ、1日30分一ヶ月続けさせている。さらに、一ヶ月休んで、今度は対象と実験群を入れ替え、2峰性刺激で耳鳴りが改善するかを調べている。専門家ではないので、TFI指標がどの程度に相当するかを実感できないが、耳鳴りが長期間続いている人ではこの機器による治療効果が確かにあるという結果だ。基本的に、この機械の副作用はない。

これまでの方法と比べ、生理学的にも納得できるし、また動物実験の裏付けもある。何よりも、音を発生し、一定の間隔で電気刺激を与える機械はそんなに高価なものではないだろう。音の調整など、耳鼻科やあるいは店頭での調整が必要だろうが、私も使ってみたいと思う。
カテゴリ:論文ウォッチ

1月5日:オナガザル科スーティーマンガベイのエイズウイルス抵抗性のメカニズム(Natureオンライン版掲載論文)

2018年1月5日
私が卒業した1973年には、エイズは存在しなかった。ただ、1980年代になって、ゲイに多い後天的免疫不全病が報告され、ウイルス病として特定されるまでは様々な研究が行われていたのを覚えている。もっとも印象に残っているのは、ドイツに留学している時、マウスの肛門に精子を注入すると免疫不全が誘導されるという論文だ。私自身まだエイズのことを聞いたことがなかった時で、不思議な実験をする人がいるのだと思った。

その後、エイズウイルスが特定されてから、ではどうして急にこのようなウイルスが現れたのかが大問題になった。結局エイズウイルスの起源、サル免疫不全ウイルスに感染していたチンパンジーを食用のために殺した人間が感染し、体内でエイズウイルスができ、そこから広がったことが示された。さらにチンパンジーの感染源が探索され、オナガザル科のスーティーマンガベイなど小型のサルを襲って食べたチンパンジーに感染、その中で2種類のウイルスが組み換えを起こしてサル免疫不全ウイルスが出来上がったことが明らかにされた。

今日紹介する論文はこのエイズ起源についてのシナリオの延長と言える研究でNatureオンライン版に掲載された。タイトルは「Sooty mangabey genome sequence provides insight into AIDS resistance in natural SIV host(スーティーマンガベイのゲノム配列は自然のサル免疫不全ウイルス宿主のエイズ抵抗性にヒントを提供する)」だ。

チンパンジーがスーティマンガベイ(以後マンガベイ)を食べてサル免疫不全ウイルスSIVに感染した理由の一つに、マンガベイではウイルスに感染しても病気が発症しないため、ウイルスが蔓延し、キャリアになっていたことがある。事実、エイズウイルスを感染させてもマンガベイはCD4陽性細胞は正常、低いレベルだがウイルスを作り続けることことが知られている。

この研究は、なぜマンガベイは発病しないのか、ゲノム配列の解析からその解明を試みている。

まずマンガベイのゲノムを解読し、エイズを発症するアカゲザルのゲノムと比較、免疫系に関わる遺伝子を中心に違いを調べて、可能性のある34分子の違いを特定している。しかし、エイズ感染に関わるCD4やCCR5については違いを認めていない。そこで、配列上最も大きな違いが認められた接着分子ICAM-2と、自然免疫に関わるTLR-4に絞ってさらに追求している。

まずICAM-2はマンガベイではリンパ球の表面に出ていないことを突き止め、配列の違いが細胞表面への発現の違いに反映することを明らかにしている(残念ながら、ではこれがウイルス抵抗性にどう関わるかはこの研究では明らかになっていない)。

TLR-4のC末端の配列が感染しないマンガベイでは大きく異なっている。そして、LPS刺激によるNFκBの活性化がマンガベイのTLR-4では強く低下していることを明らかにしている。

そして、この配列はウイルスキャリアとして知られ、またチンパンジーの餌になる4種類のサルで保存されていることも確認している。面白いのは、この違いが全体の進化の系統樹とは別に進んでいることで、何らかの理由で抵抗性のサルが別個に進化してきた可能性が高い。この差を生み出した環境要因が何か、面白い問題が残された。

結果は以上で、なぜマンガベイがキャリアになるのかは明確ではない。しかし、キャリアになるには感染し、ウイルスを作り続ける細胞が必要になる。その意味で、CD4やCCR5が正常であるのも当然だと思う。すなわち発病という点で、この研究はエイズウイルス感染に対するホスト側の多様性を示すとともに、発病の抑制に関する新しいヒントになる可能性がある。

なかなか実験の難しいサルだと思うので、個体レベルの研究は難しいかもししれないが、iPS樹立も含め、今後さらなる追求が進むと思う。
カテゴリ:論文ウォッチ

1月4日発ガンにおけるIDH変異の意味(1月11日号Cell掲載論文)

2018年1月4日
Isocitrate dehydrogenaze(イソクエン酸脱水素酵素:IDH)は、低グレードグリオーマの8割以上、急性骨髄性白血病の10−20%に特定の変異が見られることから、私の頭の中では、代謝の変化を介してガンの増殖を助けていると考えてきた。実際、IDHの変異により酵素特異性が変化し、R-2HGが合成され、されにこれがグリオーマの増殖を促進することが示されて、IDH変異=ガンのドライバーという話が出来上がっていた。ところが、グリオーマではIDH変異がある方が予後が良いことがわかり、そう簡単な話ではないことが明らかになってきた。

今日紹介するシンシナティ大学からの論文はオーソドックスな手法でこの疑問を解いてくれた研究で1月11日号のCellに掲載された。タイトルは「R-2HG exhibits anti-tumor activity by targeting FTO/m6A/MYC/CEBPA signaling(R-2HGはFTO/m6A/MYC/CEBPAシグナルを標的に抗腫瘍効果を示す)」だ。

R-2HGはIDH変異体のみにより合成されるため、正常細胞では存在しない代謝物だ。この研究は、変異型IDHによってのみ合成されるR-2HGが本当に細胞の増殖を誘導するのか急性骨髄性白血病AMLの増殖を指標に調べるところから始めている。結果はこれまでの予想に反して、多くのAML株の増殖が抑制され、マウスに移植するモデルでも、R-2HG投与で生存期間を延ばすことができることがわかった。R-2HGによる増殖抑制機構を調べるため、R-2HGの効果が有るガンとないガンの遺伝子発現を比べ、ガン遺伝子MYCが活性化する分子が低下することを発見する。

もともとこのグループはRNAメチル化について研究していたグループで、MYCの活性が低下するのがRNAメチル化酵素FTOを抑制しているからではないかと着想、R-2HGがFTOを抑制することを発見する。他にも、R-2HGはDNAの脱メチル化に関わるTET2も抑制するが、これはR-2HGが効かない細胞株でのみ見られることから、この場合はガンの増殖を上げる方向に働いている。したがって、R-2HGが効果のあるガンに対する作用はFTO抑制がメインの経路で、MYCのRNAメチル化が低下、その結果RNAが不安定化してMYCの活性が落ちることで、細胞の増殖が低下することを示している。他にも、骨髄性白血病の増殖に関わるCEBPAのRNAの安定性も低下させ、これもFTO転写の低下に関わることも示している。

一方、R-2HG抵抗性のガンでは、DNA脱メチル化を介してガンの増殖を抑制するTET2が直接抑制されるため、MYCの不安定化をカバーしていると推察している。

この結果は、グリオーマのドライバーはIDH変異ではなく、逆にIDH変異がグリオーマの急速な増殖を抑えている可能性も示唆する。すでに述べたように、IDH変異は良い予後因子であることがわかってきたが、今回の結果はこれも説明できる。とすると、現在行われているIDH変異分子の活性抑制によりガンを制圧する可能性は低く、逆に悪化させる可能性すらあることを意味しており、注意が必要だ。

一方、R-2HGやFTO阻害因子は、それ自身で根治はできないが、他の抗癌剤と組み合わせて抗癌剤として利用できる可能性がある。他の細胞にももちろん効くため副作用がないとは言えないので、薬剤として利用可能か早急に調べて欲しい。でないと、結局論文のための論文になる。

なんでも疑って見ることが重要であることを示すいい例といえるが、もともとわかりにくいIDHについて学ぶことが多かった。
カテゴリ:論文ウォッチ
2 / 15812345...102030...最後 »
2018年1月
« 12月  
1234567
891011121314
15161718192021
22232425262728
293031