8月26日:RIPK1と神経炎症(9月6日号Cell掲載論文)
AASJホームページ > 新着情報

8月26日:RIPK1と神経炎症(9月6日号Cell掲載論文)

2018年8月26日
SNSシェア
昨日に続いて、神経疾患と炎症についての論文を紹介したい。ただ、昨日のような現象論ではなく、炎症シグナルの核となる分子の機能を神経疾患で調べた研究だ。

これまでの研究でTNFなどによる炎症と細胞死の誘導に最も重要な核として働く分子としてRIPK1が知られている、これについての研究論文は山ほどある。8月24日発行のScienceに、両方の染色体でRIPK1が変異を起こした4人の患者さんについての報告がケンブリッジ大学から発表された(Cuchet-Lourenço et al, Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation, Science 361:810, 2018)。この患者さんでは予想通り、強い免疫不全が見られる一方、逆に関節炎や腸炎が見られる。この結果は少なくともヒトでは免疫系が関わる炎症にRIPK1の機能が限定されているように思える。このようにヒトとマウスを結びつける研究がまだまだ必要だ。

少し前置きが長くなったが、今日紹介するハーバード大学と上海の有機化学研究所からの論文は、マウスモデルでRIPK1の機能を抑制することが知られているシグナル分子TBK1の機能を通して炎症と神経疾患や老化について調べた研究で9月6日号のCellに掲載された。タイトルは「TBK1 Suppresses RIPK1-Driven Apoptosis and Inflammation during Development and in Aging(TBK1は発達過程と老化過程でRIPK1による細胞死と炎症を抑制する)」だ。

何か雑然として、ともかくデータを生産したといった感じに見えてしまうが、読み終わってみると重要な話であることがわかる。RIPK1,TBK1のリン酸化酵素としての機能については詳しく解析がなされており、これらの分子については様々な遺伝子改変モデルが作成されている。この研究では、まず発生が途中で止まってしまうTbk1ノックアウトマウス(阪大の審良さんたちが作成している)のRIPK1を、キナーゼ活性が欠損した遺伝子に置き換えると、正常に発生できることを確認し、TBK1が肝臓の発生時RIPK1活性化による細胞死を抑えることで正常発生が可能になることを明らかにしている。肝細胞の発生に、細胞死とその抑制のバランスの調整が必要であること自体新しいと思うし、またFASによる劇症肝炎もさもありなんと思うデータだ。

発生での機能を調べた後、詳細は省くが、TBK1によるRIPK1の制御機能を線維芽細胞で詳しく調べ、TNF受容体にRIP1Kが結合して起こる活性化によりTBK1がRIPK1にリクルートされ、RIPK1を直接リン酸化して、TNFによる細胞死を抑えることを明らかにしている。すなわちTBK1は、同じような機能をもつTAK1とともにRIPK1がハブとなる炎症や細胞死を調節している。このTBK1とTAK1が協力し合って炎症を抑えるという構図を確認するため、発現がともに半減しているダブルヘテロマウスの線維芽細胞を調べ、RIPK1の活性が上昇していることを確認している。

実はここまではこの研究の伏線になっているように思う。この研究ではTAK1,TBK1のダブルヘテロ状態を血液細胞が持っているモデルマウスを作って、RIPK1が慢性的に活性化すると何が起こるか調べている。結果は予想通りで、ミクログリアが活性化し、さまざまな炎症性サイトカインを分泌するようになっている。その結果として、脊髄神経の細胞死が高まり、詳しく調べると運動障害も発症する。さらに、2ヶ月齢をコス頃から人間の前頭側頭型認知症と呼ばれる状態が発症してくることを示している。

このように、炎症の起点となる血液細胞で発現しているRIPK1は、炎症にとどまらず、発生から老化、そして神経再生に至る全ての段階で重要な働きをしているというのが結論になるだろう。実際、発生過程でRIPK1が肝臓の細胞死のバランスを調整しているというのも新しい考え方だし、ALSや前頭側頭型認知症ではTBK1の関与が示唆されていたが、この理由も理解できた。

これまでメタボも含め、私たちの体の慢性的な変化を炎症として捉えることが当たり前になってきたが、その発生メカニズムの一つがRIPK1とその抑制分子に落ちてきたので、今後より研究は加速するように思う。
カテゴリ:論文ウォッチ

8月25日:うつ病は炎症?(9月5日号Neuron掲載論文)

2018年8月25日
SNSシェア
最近になって、あらゆる神経疾患を炎症の枠内で考え直してみることが進んでいる。基本的には、神経の活動がアストロサイトなどグリア細胞と深くかかわっており、またマクロファージに相当する脳内のミクログリアの活性化によりこれらの関係が大きく変化すると考えると、神経伝達が変化することで症状が出る神経疾患も炎症の影響を受けるのは当然だと言えるだろう。

もちろんうつ病も例外ではない。2010年ぐらいから様々な炎症性サイトカインがうつ病で上昇しているという報告が相次いだ。さらに最近では、炎症を治療することですうつ病症状が改善するという報告も現れている。

このような状況を受けて、炎症という観点からうつ病を徹底的に眺めたてみようというのが今日紹介するマイアミ大学からの論文で9月5日号のNeuronに掲載された。タイトルは「Defective Inflammatory Pathways in Never-Treated Depressed Patients Are Associated with Poor Treatment Response (未治療のうつ病患者さんの炎症経路の異常は抗うつ治療抵抗性と関連している)」だ。

これまで言われてきた話を徹底的に調べただけの話で、ある意味で新しみはないが、うつ病患者さんの数を考えると重要だとしてNeuronも掲載したのだろう。まずこの研究では、うつ病患者さん171名(その内62名はコントロール群と条件をマッチさせている)と正常コントロール64人を選び、うつ病患者さんが治療を受ける前に27種類の血中サイトカイン濃度、末梢血の免疫に関わる血液画分を徹底的に調べて、予想通り多くの炎症性サイトカインがうつ病患者さんで高いことを示している。

実際数値をよく眺めると、特に炎症促進性サイトカインは4−5倍に濃度が高まっており、IL-12に至っては10倍を超している。また、それに対応して自然免疫の引き金をひくインフラマソームの発現が上っている。確かに大変な差だ。

その上で、うつ病の治療前後での炎症性サイトカインを調べ、治療に反応した患者さんでは炎症促進性サイトカインが低下するにもかかわらず、反応しない患者さんではほとんどのサイトカインで逆に上昇することを示している。ただこの研究では、抗うつ治療の内容を別々に扱うことはしておらず、セロトニン吸収阻害薬から認知行動療法まで同じように治療として扱っている。実際治療方法にかかわらず、治療の効果があるときは炎症促進性サイトカインが低下しており、おそらくうつ病治療により、気分が正常化することが炎症の軽減に役立っていると考えた方がよさそうだ。話としては、笑う門には福来ると言った感じで、免疫も気分に強く影響されると考えられるのだろう。

なんとなく徹底的に検査するという旧来型の臨床研究という印象を強くもった。例えば、患者さんの血清で末梢血の反応を抑える実験など、もう少しプランを練った方が良いように思う。読み終わってみると、新しい介入のヒントが出たわけではないので、拍子抜けの論文だが、元臨床医としては、ともかく徹底的に調べてなんとか診断のヒントを探すというのは、正しい方向性だと思う。
カテゴリ:論文ウォッチ

8月24日:ネアンデルタールの母とデニソーワの父から生まれた女性(Natureオンライン版掲載論文)

2018年8月24日
SNSシェア
古代人ゲノムも少々のことでは驚かなくなっていたが、久しぶりにワクワクしながら古代人ゲノムの論文を読んだ。

この10年、古代人ゲノムの解析が進み、私たちの先祖、現生人類とネアンデルタール人、デニソーワ人のユーラシアで生きていた3種類の古代人類が交雑を繰り返していたことは、もはや誰も疑わない事実になっている。とすると、いつかは異なる古代人を父と母に持つ子供の骨が発見される可能性はあった。事実、4−6世代前の親戚にネアンデルタール人がいるという現生人類がルーマニアのOaseで見つかっている。とはいえ個人的には、確率論的に異なる古代人を父と母に持つ子供の骨が発見される確率はほとんど0に等しいと思っていた。

ところがだ!!!今日紹介するドイツライプチヒ・マックスプランク研究所のペーボさん達の論文は、シベリアのデニソーワ洞窟から発見された女の子のゲノムから、この子供がネアンデルタール人の母とデニソーワ人の父から生まれた子供であることを示した、ほとんどありえない話で、Natureオンライン版に掲載された。タイトルはズバリ「The genome of the offspring of a Neanderthal mother and a Denisovan father(ネアンデルタールの母とデニソーワの父から生まれた子供のゲノム)」だ。

デニソーワ洞窟からは何体もの骨が出土し、すでにゲノムが完全に解読されたネアンデルタール人、デニソーワ人などが含まれていることから、デニソーワ人とネアンデルタール人の交雑を知るための鍵となる遺跡として現在も発掘が進んでいる。そして、9万年前の13歳ぐらいの女児の骨として調べられてきた骨から採取したゲノムが解読され、なんと38.6%が同じ洞窟で見つかったネアンデルタール人と一致し、42.3%が同じ洞窟からのデニソーワ人と一致した(年代が違うので、実際の両親と勘違いしないでほしいが)。断片化されたDNAを繋いでいく古代ゲノム解読では、この結果からすぐに異なる古代人が両親とは結論できないが、様々な理論的検証を行い、この女児がネアンデルタールの母とデニソーワの父の子どもに間違いないと結論している。また、ネアンデルタール人のお母さんの方のげのむは、以前に解析された同じ場所で発見されたネアンデルタールゲノムより、クロアチアのビンジャ・ネアンデルタール人ゲノムにより近い。

さらにゲノムを詳しく見ると、1Mbほどの長さの両方の染色体がネアンデルタール人由来の箇所が少なくとも5箇所見つかっており、デニソーワ人の父親にもかなりネアンデルタール人の遺伝子が流入していたことを物語っている。ただ、この父親に流入したネアンデルタール人の遺伝子は、母親のネアンデルタールのゲノムとは異なっていた。おそらくこの子供の時代(9万年前)から遡ること2万年以上前には、デニソーワ人と様々なネアンデルタール人が交流していたという複雑な物語が浮き上がって来た。何れにせよ、なんども両者の交雑は繰り返されているようだ。

以上がデータだが、両方の古代人の直接の子供が発見されたことは、この地域ではネアンデルタールとデニソーワが長く接して暮らし、もともと遺伝的には近い為交雑を繰り返していたことを示唆している。ただ、西ヨーロッパではこのような共存は存在せず、その後現生人類の進出によるまでそれぞれの人類は交渉なく暮らしていた。結局ペーボさんが語るように、競合(戦争)という形で交渉が起こる時に交雑が起こるとのが歴史の法則であることが、ますます明らかになってきたように思える。
カテゴリ:論文ウォッチ

8月22日:MycN遺伝子増幅型神経芽腫の論理的治療法の開発(Nature Geneticsオンライン版掲載論文

2018年8月23日
SNSシェア
神経芽腫は転移があるのに自然に治るーケースから、MYCNの増幅している治療の難しいケースまで、多様な状態が存在する小児の癌で、まだまだそのメカニズムについてはわからないことが多い。そのためゲノム時代に入っても、新しい治療方針が開発されたわけでなく、メカニズムの理解に則した新しい治療標的の探索とそれに対する薬剤の開発が待たれていた。今日紹介する、ボストン ダナファーバーガン研究所からの論文は、神経芽腫を含むさまざまながん細胞の弱みを、クリスパーを用いた遺伝子ノックアウトを用いて探索した研究でNature Geneticsオンライン版に掲載された。タイトルは「Selective gene dependencies in MYCN-amplified neuroblastoma include the core transcriptional regulatory circuitry (MYCN増幅型神経芽腫が選択的に増殖に必要な分子のなかには転写調節回路の核になる転写因子がふくまれている)だ。

この研究ではクリスパー/Cas9を用いて遺伝子を網羅的にノックアウトするスクリーニングを行い、MYCN増幅型神経芽腫の細胞増殖に必要な遺伝子を147種類特定している。ただ、各分子を治療標的候補と考えるのではなく、まずそれらの腫瘍発生への関わりを調べることを重視して研究を進めている。実際にはこの中から、MYCN増幅型細胞株でスーパーエンハンサーにより強く転写が上昇している転写因子を選び出し、神経芽腫の状態を維持するための転写因子ネットワークを特定しようとしている。こうしてリストした分子の中から、最後に遺伝子ノックダウンを用いて神経芽腫の増殖に必須の5種類の分子を選び出している。驚くことに(というより期待通り)、これら5種類の転写因子は、互いにそれぞれの遺伝子調節領域にMYCNとともに結合して、これがスーパーエンハンサー活性に関与していることが示唆された。この悪しき増幅サイクルの結果、各遺伝子の発現はますます増幅される結果になる。すなわち、MYCNの増幅でこの悪しき増幅サイクルの引き金が引かれてしまうというシナリオだ。神経芽腫では遺伝子自体の変異は少ないが、このように増殖に必要な特定のセットの遺伝子が互いに増幅し合っているなら、治療が難しいのも納得出来る。

この増幅のサイクルを断ち切れないか、それぞれの遺伝子をノックダウンしてみると、一個の分子をノックダウンしても、MYCNを含む6種類の遺伝子の転写は全て低下したことから、増幅サイクルが確かに働いていることが示唆された。そこで各遺伝子をノックダウンする代わりに、スーパーエンハンサーを抑制することが知られているBRD4阻害剤と、CDK7阻害剤を同時に加えると、試験管内での神経芽腫細胞の増殖が強く抑制された。また、ガンを移植する生体実験系でも、根治はできてはいないが、神経芽腫の増殖を強く抑制した。さらに、このようなスーパーエンハンサー形成阻害により、MYCNを含む6種類の転写因子の発現の特異的低下が観察された。このことは、MYCN増幅から始まる転写因子の増幅サイクルが、神経芽腫発生に関わるというシナリオが実際に起こっていることを強く示唆している。

結果は以上で、神経芽腫の腫瘍性増殖に関するシナリオとしては、個人的には最も納得した。このシナリオだとがん増殖だけでなく、神経芽腫では全身に転移していても、なぜかあっという間に全ての癌が消えるということが普通に起こる理由も理解できる。おそらくMYCN増幅型の場合スーパーエンハンサーの形成阻害だけでは完全な治療は難しそうだが、それでも悪しき増幅サイクルを止める戦略は見えてきたように思う。
カテゴリ:論文ウォッチ

8月22日:ミャンマーで発見された約1億年前の琥珀の中の物語(9月10日号Current Biology掲載論文)

2018年8月22日
SNSシェア
まず次のサイトをクリックして写真を見てほしい。(https://www.cell.com/cms/attachment/0405bac1-5f93-4e4c-8fae-7831b00facbe/gr1.jpg

これは琥珀に閉じ込められた、なんと9千9百万年、ほぼ一億年前に生息していた昆虫の姿だ。美しいまま、琥珀の中で1億年を過ごして来た。この図は、今日紹介する中国天津にある地層学・古地理学研究所のからの論文に掲載されている。論文のタイトルは「Beetle pollination of cycads in the mesozoic (中生代ソテツの甲虫による受粉)」で、9月10日号のCurrent Biologyに掲載予定だ(オープンアクセスなので誰でも見ることができる:https://www.sciencedirect.com/science/article/pii/S0960982218308273?via%3Dihub)。

このような鮮明な姿を見ると、DNAからタンパク質まで、琥珀の中で全て保存されているように思うが、間違いなくDNAはすでに情報としての価値を持たない。というより、琥珀の中で50年も経つと、DNAはほぼ分解していることを示す報告がある。

少し脱線するが、マイケルクライトンのジュラシックパークは琥珀に閉じ込められた昆虫から恐竜のDNAを取り出し、それを元に恐竜が復元される話だが、実際にはこれは全くありえない。ところが、この小説が出版された後、ScienceやNatureに琥珀内の動植物からDNAを抽出して配列を決めたという論文が相次いだ。論文に啓発されて小説が書かれるのならわかるのだが、小説に啓発されて論文が描かれるというおかしな現象が起こってしまった。今から考えると、これらの論文は全て間違いだったと言えるが、捏造とは言わないまでも、思い込みで論文が描かれ、それが採択されるというのをみると、いかに捏造議論が難しいかよく分かる。

本題に戻ろう。DNAは分解されても、基質のような安定なたんぱく質は維持されるからそれを琥珀の中の昆虫として見ることができる。この姿からさまざまなシナリオを考えるのが古生物学で、今日紹介する論文の著者らが書いているのも、琥珀の中の昆虫の生きていた当時についての物語だ。

詳細を飛ばして1億年前の琥珀の中にある物語を見てみよう。もちろんDNA情報をもはや再構築させることは出来ないので、すべては形からだけ想像する必要がある。琥珀の中に見える昆虫は現存のparacucujusの仲間で夢中でミャンマーの森を飛び回っているうちに油断して琥珀に閉じ込められてしまった。もがいているうちに、運んできたソテツの花粉が周りにこぼれてしまったようで、左側に小さな花粉が何個も見られる。花粉はと詳しくみると(写真:https://ars.els-cdn.com/content/image/1-s2.0-S0960982218308273-gr2_lrg.jpg)、中央に一本溝が入ったソテツの花粉だ。他の花粉は見当たらないので、この甲虫はソテツの花粉を運んでいた。よく見ると下あごには花粉を乗せて運ぶのに適した構造も持っている。現存の甲虫と比べるとparacucujus属に属することから、この甲虫の名前を、ソテツを好む白亜紀のparacucujus属(Cretioaracycyhys cycadophylus)と名前を付けておこう。 現在のソテツも甲虫が受粉のためのパートナーだ。とすると、この世界ではなんと1億年も変わることなくこの関係が維持されてきたと言える。琥珀の中の世界からこんなことが想像される。

まあ講釈はこのぐらいで良いだろう。このシナリオを頭に、一度琥珀の中の甲虫の姿をじっくり眺めてみると、一億年も短く感じる。
カテゴリ:論文ウォッチ

8月21日CPEB4のスプライシングと自閉症(Natureオンライン版掲載論文)

2018年8月21日
SNSシェア
自閉症は単一遺伝子の変異で起こる場合もあるが、孤発性の自閉症の場合は、多くの遺伝子での変異が絡みあう多因子疾患のため、なかなか動物モデルで研究することが簡単でない。

今日紹介するスペインのオチョア分子生物学研究所からの論文は、CPEBが解析の難しい孤発性の自閉症発症に関わるメカニズムに迫った優れた研究でNatureオンライン版に掲載された。タイトルは「Autism-like phenotype and risk gene mRNA deadenylation by CPEB4 missplicing (CPEB4のスプライス異常による自閉症様形質とリスク遺伝子mRNAの脱アデニル化)」だ。

CPEBはmRNAの3’非翻訳領域のCPE配列に結合し、poly-A の長さを調節し、タンパク質の翻訳を抑制する機能を持つRNA結合分子だが、特にシナプスの可塑性を調整して学習や記憶に関わることが知られている。この研究では、まずCPEB1とCPEB4分子と結合するmRNAを網羅的に調べ、CPEB4分子と結合するmRNAの多くが自閉症との関連が知られている分子のmRNAであることを発見する。

そこで孤発性の自閉症患者さんの剖検脳での遺伝子発現を調べ、自閉症の人ではCPEB4分子の4番目のエクソンがスプライシングでスキップされたmRNAが多く発現していることを発見する。この変化により自閉症の患者さんの脳では、自閉症関連遺伝子として知られる遺伝子のmRNAのpolyAが選択的短くなり、その結果これら自閉症遺伝子の翻訳が低下することがわかった。驚くことに、この変化により最も影響を受けるmRNAは社会性に関わるオキシトシンシグナルに関わる分子をコードしていた。

最後に、人の自閉症特異的に見られた4番目のエクソンがスキップされたCPEB4遺伝子をマウスに導入してトランスジェニックマウスを作成し脳を調べると、多くの自閉症遺伝子のpolyAが短くなり、タンパク質への翻訳が低下し、そしてその結果マウスが自閉症に相当する症状を示すことがわかった。重要なのは、単純にCPEB4を神経細胞からノックアウトしただけでは、このような変化は見られず、」エクソン4を失ったCPEBだけが誘導する状態であることがわかる。

以上が結果だが、これまで発表された自閉症遺伝子の研究の中でもこの研究が明らかにしたいくつかの点は自閉症研究に新しい方向を示すのではと感じている。

1) 多くの自閉症と連関が知られている遺伝子のmRNAがCPEB4結合部位を持っていることの発見。なぜ独立に自閉症との関連が調べられてきた遺伝子の多くが、CPEB結合という共通の性質を持つのか?しかも、マウスとヒトでこの性質は保存されている。今後自閉症関連遺伝子とは何かを理解し発症メカニズムを考える上で大きなヒントになるのではないだろうか。
2) 孤発性の自閉症の多くで、エクソン4が欠損したCPEB4mRNAが増えており、この変化が比較的多くの自閉症で見られることを示したこと。これは症状の多様性にも関わるし、今後なぜこの変化が起こるのか追求が待たれる。
3) そして、エクソン4の欠損したCPEB4だけが自閉症関連遺伝子の翻訳を抑えることがわかり、マウスとヒトを同じように調べることができる。

など、この分野に重要な貢献になるのではと思う。
カテゴリ:論文ウォッチ

8月20日:初期の高血圧に薬剤を最初から使うのも一つの選択(8月14日米国医師会雑誌掲載論文)。

2018年8月20日
SNSシェア
新聞やテレビには多くのトクホ商品のコマーシャルが溢れている。中には血圧が130を超えた軽度高血圧の人が毎日のむと血圧を下げる効果があることをうたっている商品があるが、実際のところ長期効果についてどの程度の医学的検証がなされているのかよくわからない。要するに、飲んで害にならず安ければ、飲んだ方が安心という誰もが持っている心情につけ込んだ商品と言えるだろう。個人的には、トクホ商品のアウトカム評価を国もしっかり行うべきだと思っている。もともとトクホなどは、医療費を抑制するために推進されてきた制度ではないだろうか。だとすると、高血圧や、高血糖に対するトクホ商品を認可することで、医療費がどれだけ下がったのかを調べて、これらが期待通り効果があったのかを調べて欲しいと思う。

血圧で言えば、一日100円程度で服用可能な、既に長年使用されて来た薬剤を予防に使う可能性も最近は盛んに検討されている。今日紹介するオーストラリアNew South Wales大学からの論文は、血圧が140/90以上の未治療の軽度高血圧患者さんに、最初から3種類の薬剤の組み合わせを通常の半分程度服用させる治療を行なった経過を追跡する研究で、8月14日号の米国医師会雑誌に掲載された。タイトルは「Fixed Low-Dose Triple Combination Antihypertensive Medication vs Usual Care for Blood Pressure Control in Patients With Mild to Moderate Hypertension in Sri Lanka A Randomized Clinical Trial (スリランカの軽度から中等度の高血圧患者さんに対する容量を固定した低容量3種混合降圧剤と通常の治療との比較:無作為化臨床治験)」だ。

この研究では収縮期圧140以上、拡張期圧90以上の初期の高血圧約700名(スリランカ人)を無作為に、個人の症状に合わせて行う一般治療か、テルミサルタン20mg、アムロジピン2.5mg、クロルタリドン12.5mgの作用の異なる3つの薬剤を一つの合剤にした錠剤を一日一回服用の2群にわけ半年間追跡し、血圧低下作用を調べている。これらは長く使われた薬剤で、値段も安く1日にかかる薬剤費は100円程度だろう。病院には特に何もない限り1.5ヶ月目、3ヶ月目、6ヶ月目だけ訪れ、血圧の検査を行うという単純なプロトコルだ。

結果は従来のように1剤から初めて、結果を見ながら薬を変えたり増やしたりする従来法と比べたとき、最初から低容量(通常の半分)の3剤を組み合わせる方法の方が、ほとんどの人が抵抗なく服用を続け、1.5,3,6ヶ月と全ての時点で、血圧を正常に維持する効果が高い。一方副作用は、立ちくらみが起こるケースが多い以外は、両方のグループで特に変わらなかった。

話はこれだけだで、中所得国での話だが、臨床的には我が国でも考えて見る価値はある。まず血圧が高くなってきたばかりの患者さんに最初から低容量で3剤を組み合わせるというのは、安価で効果の高い標準治療として採用できる可能性が高い。さらにトクホに頼るぐらいなら、定期検診と組み合わせて、最初から市販薬としてこの合剤を服用するという可能性があってもいいとも思う。さらに、自宅で血圧を測ることが普通になった時代、容量をさらに減らした市販薬として服用させることも可能だ。もちろん、厳密な治験を行なってのことだが、このアウトカムは合剤が売れることではなく、医療費が削減できることだ。おそらく世界では、全く予防目的の治験もすでに進んでいるはずで、この結果も出てくると思う。そうなると、トクホより低用量の予防薬という時代が来るかもしれない。何れにせよ合剤にして一錠にまとめてくれる製薬会社が必要だが、この論文はそれを促すきっかけになると期待する。
カテゴリ:論文ウォッチ

8月19日:乳糜管からの脂肪吸収(8月10日号Science掲載論文)

2018年8月19日
SNSシェア
脂肪は腸でカイロミクロンと呼ばれるリポタンパク質へと変換され、腸の絨毛内に張り巡らされた乳糜管と呼ばれるリンパ管にまず入り、そこから腹腔リンパ管、胸管を経て血中に入る。脂肪の多い食事をとると、血液が濁ったように見えるのも、この経路で脂肪が吸収されるためだ。よく考えて見ると、脂肪代謝の入り口に位置し極めて重要な過程と言えるのに、脂肪の吸収についての論文をあまり読んだことは無かった。

今日紹介するエール大学からの論文は絨毛で脂肪がリンパ管に吸収される精巧なしくみを明らかにしたもので8月10日号のScienceに掲載された。タイトルは「Lacteal junction zippering protects against diet-induced obesity(乳糜管の接合のチャックが食餌による肥満を防いでいる)」だ。

乳糜管が脂肪吸収に必須であることは、これまでもこのリンパ組織をノックアウトする研究からわかっていた。また、脂肪が乳糜管内へと吸収されるためには、内皮接合の強さをVEGF-Aで調節する必要があることもわかっていた。

もともとこのグループは血管内皮に発現するVEGF-AのFlk1への結合を阻害するFLT1とニューロピリン1(NRP1)の研究を行なっており、このためリンパ管を含む全ての内皮で両方の遺伝子を生まれてから欠損させるマウスを作り調べていた。その過程で、このマウスが高脂肪食をとらせても太らず、これが絨毛でのカイロミクロン吸収不全にあることに気づいた。基本的にはこの発見がこの研究のすべてで、あとはメカニズムを調べた極めてオーソドックスな血管研究だ。

入り口で脂肪吸収が阻害されると、高脂血症の全ての指標が改善しており、当たり前とはいえ驚く。また、他の血管には何の変化もなく、普通の餌を与えたマウスはコントロールと特に違いがないのも驚きだ。すなわち、この分子の生後の機能は絨毛の脂肪吸収のためにあると言っても過言でない。

組織学的に調べると、このノックアウトマウスでは、普通数多く開いている絨毛のリンパ管の接合部が閉じカイロミクロんの侵入ができなくなっている。ところが血管内皮を見ると、全く逆で内皮間の接合部が開いて毛細管が拡張し、注射した蛍光タンパク質も、この場所で漏れ出てくるのが観察できる。

この組織像の原因を確かめるため様々な実験を行い、
1) Flt1/NRP1ノックアウトではVEGF-AのFlk1への結合が阻害されるため、局所的にVEGF-Aの濃度が上昇する。
2) VEGF-Aは血管内皮の細胞接着を緩めると同時に、リンパ管内皮の接着を強める。
3) リンパ管と血管で別々にFlt1/NRP1をノックアウトする実験を行うと、血管内皮でノックアウトした時だけ同じ効果が見られるので、血管内皮でVEGF―A結合を抑制して、VEGF-Aの絨毛内濃度を高めることがFlt1/NRP1の絨毛内での機能。
4) 血管内皮の接着が緩むだけではリンパ管へのカイロミクロンの侵入は阻害できない。
5) VEGF-Aによりリンパ管の接着が高まるのは他の組織でも見られる。
などを明らかにしている。

これらの結果から、VEGF-Aがリンパ管と血管内皮の接着には逆の作用があり、これにより絨毛での脂肪吸収がうまく調節されているという、面白い結果だ。ひょっとしたら、入口を止めて高脂血症を防ぐ薬も開発できるかもしれない。

私事になるが、この研究を行ったEichmannはフランスでニコル・ドゥアランの大学院生時代、京大の私の研究室に、鶏のFlk1に対するモノクローナル抗体を作るために逗留していた。なんと、滞在中にコンストラクトを全て仕上げ、帰国後見事に抗体を作りそれから素晴らしい血管研究者に育った。いい仕事をしているのを見ると、当時が思い出される。
カテゴリ:論文ウォッチ

8月18日:新しい血小板増加因子(米国アカデミー紀要オンライン版掲載論文)

2018年8月18日
SNSシェア
骨髄造血抑制は、抗がん剤など薬剤による副作用の中でも最も深刻なもので、血液の種類を問わず殆どの細胞が減少し、放置すると貧血、感染症、失血などで死に至る。しかし、20世紀に発見された造血因子により、輸血以外に対処方法がなかった私が病院で働いていた頃と比べると、適切に処置することが可能になったと思う。この造血因子臨床応用には我が国も重要な役割を果たし、エリスロポイエチンやGCSFはその成果だと言える。ただ、各社が熾烈な競争を繰り広げ、最終的にキリンに軍配が上がった血小板増加因子トロンボポイエチンは、臨床医から最も待ち望まれた造血因子であったにもかかわらず、中和抗体や血小板が増加しすぎて血栓を作るなど、深刻な問題が明らかになり、臨床応用は中止された。代わりに現在では、トロンボポイエチンと同じ作用を持つTPO作動物質が開発され、対処が可能になった。この歴史を振り返ると、いかに分子生物学が医療を変えたか、この時代我が国の研究が生き生きしていたか実感することができる。

などとノスタルジックに話をすると、造血因子開発はもうないのかと思って意しまうが、まだまだそんなことはなく、役に立つ因子を見つけられる事を示す論文がスクリプス研究所から発表された。タイトルは「Tyrosyl-tRNA synthetase stimulates thrombopoietinindependent hematopoiesis accelerating recovery from thrombocytopenia(チロシルtRNA合成酵素はトロンボポイエチンとは独立に造血を促し血小板減少症の回復を促進する)」だ。

アミノアシルtRNA合成酵素(ssRS)は核酸からタンパク質を翻訳する過程に必須の酵素で、アミノ酸をそれに対応するtRNAにロードする役割があるが、これとは全く異なる機能を併せ持つ分子が知られているらしい。このグループが注目しているのがタイトルにあるチロシルtRNA合成酵素で、これが分解されると著者らがYRSと呼ぶペプチドが分離する。YRSは血中に多く存在し、血小板にも結合していることから、著者らは血小板増加因子として利用できるのではと考え、この研究を行っている。

まず活性化型の変異YRSを合成し、この血小板増加作用をマウスで調べると、トロンボポイエチンとは異なる経路で血小板の元、巨核球を刺激しSca1+F4/80+という特殊な分化細胞を誘導して増殖させ、血小板を増加させることを明らかにしている。さらに、このメカニズムは生体の貧血に対する反応として働いている生理的過程であることも示しており、YRS投与が決して非生理的過程を誘導しているわけではないことを示している。

残るは作用メカニズムだが、これは複雑だ。YRSが直接巨核球に働くのではなく、まず他の血液細胞に働きかけ、そこから分泌される因子により増殖が起こる。このことは、iPSから誘導された巨核球幹細胞を用いた実験で確認される。一方、YRSは自然免疫に関わるTLRに結合してIL-6をはじめとする様々な因子を誘導する。この2つの実験から、YRSはまず単核球に作用して自然免疫を活性化し、この過程で分泌されるIL-6やVEGFが巨核球を刺激し、血小板産生を増加させると結論している。以上をまとめると、YRSは造血が低下するようなストレスに反応してssRSが分解されて作られ、骨髄での自然免疫活性化を通して、血小板を増加させる、一種のストレス反応過程に関わることになる。

全く新しい血小板増加因子が発見されたのかと期待して読んだが、尻切れとんぼの印象だ。ただ、個人的には生命情報のコードを理解するカギになるssRSが、他の分子機能を持っており、特にストレス反応に関わっているのはなんとなく納得できる。もちろん、トロンボポイエチン受容体の変異による強い血小板減少症の巨核球を刺激することもできるようなので、一定の臨床効果は期待できるかもしれない。もともと、血小板を増加させるための治療は血栓という副作用に悩まされる。YRSとTPO受容体作動因子と組み合わせることで、新しいプロトコルが生まれるなら、もう少し広い臨床応用も期待できるかもしれない。
カテゴリ:論文ウォッチ

8月17日:なぜ象は体が大きくてもがんが多発しないのか(8月14日号Cell Reports掲載論文)

2018年8月17日
SNSシェア
象は地上の動物の中では最も大きい動物で、産まれるまでに2年もかかる。アフリカゾウでは大人で6トンと人間の100倍、新生児で100Kgと人間の30倍の大きさがあることを思うと、妊娠期間が長いのも当然だ。とはいえ、この論文を読むまで、体が大きく、多くの細胞を作る必要がある動物でなぜがんが多発しないのかといった疑問を持ったことはなかった。言われてみれば真っ当な疑問で、この問題は昔から指摘され、体のサイズとガンの発生率に関係がないことをPetoのパラドックスと呼ぶらしい。

しかしガンの原因になる変異の多くが増殖時のDNA複製エラーによるならガンの頻度は体の大きさに比例してもいいはずで、比例しないとすると特別なメカニズムが働いていることになる。事実、同じ種の場合体が大きいほどがんになりやすい。体が大きくなることに伴うガンの危険性の問題を象は新しいLIF遺伝子を使って解決していることを示したのが今日紹介するシカゴ大学からの論文で8月14日号のCell Reportsに掲載された。タイトルは「A Zombie LIF Gene in Elephants Is Upregulated by TP53 to Induce Apoptosis in Response to DNA Damage(象ではゾンビのように蘇ったLIF遺伝子がDNA損傷によるp53により活性化され細胞死を誘導する)」だ。

おそらく象のゲノムの特徴を調べるうちに気づいたと思うが、この研究では象だけでLIF遺伝子が繰り返し重複し、アフリカゾウでは10個以上になっていることから、これがガンの発生を抑えるのに一役買っていると最初から考えて研究を行なっている。

次にもし重複したLIFが一役買っているなら全ての細胞で発現しているはずで、アフリカゾウやインドゾウの培養ファイブロブラストや血液を調べて、分泌されない形のLIF-Tの一つLIF6をこの条件を満たす新しいLIFとして特定している。

もともと細胞内で止まるLIF-Tは細胞死誘導を助けることがわかっているので、このシナリオに沿ってLIF6についての実験を行い、
1) DNA損傷により誘導されるp53により転写が高まる
2) ファイブロブラストに遺伝子導入すると、細胞死を誘導できる
3) LIF6による細胞死もカスパーゼ阻害で完全にブロックできる
4) LIF6を象以外の動物細胞に誘導しても細胞死を誘導できる
5) マンモスやパレオォクソドンなど化石DNAや現存の象のDNAを比較し、LIF6はすでにこれらの絶滅象にも存在し、6千万年ほど前に進化した時一旦機能が失われるが、その後2.5千万年前に機能を回復させる突然変異が起こり、大きな象を実現するのに働いた
などを明らかにしている。

ゲノムから細胞実験まで、結構実力のあるチームだと思うし、面白いストーリーだった。もちろんこれ一つで全て説明できるかどうかはわからない。ただ、象は体が大きいだけではなく、長生きだ。損傷した細胞をいち早く除去することが長生きの秘訣であることはわかっているので、LIF-Tを使った長寿法も開発されるようになるかも知れない。
カテゴリ:論文ウォッチ