4月4日:深呼吸で心が休まるメカニズム(3月31日Science掲載論文)
AASJホームページ > 新着情報

4月4日:深呼吸で心が休まるメカニズム(3月31日Science掲載論文)

2017年4月4日
SNSシェア
   通常呼吸を意識して行うことはない。延髄にある呼吸中枢が自然に吸気・呼気のサイクルを生成し横隔膜や肋間筋を動かす。さらに、呼吸中枢では意識しないでも末梢から様々な情報を集めて需要に応じた呼吸数を維持してくれる。しかし呼吸は意識して調節することもできる。例えば山登りの時意識して呼吸のリズムを取ると調子が維持できる。あるいはカッカして呼吸が早まった時、深呼吸をして呼吸を整えることもできる。面白いのは、深呼吸をすると今度は意識の方に働きかけて、カッカしていても気が落ち着くことだ。
   今日紹介するスタンフォード大学からの論文はこ延髄にある呼吸中枢と、大脳の高次機能とをつなぐ回路についての研究で3月31日号のScienceに掲載された。タイトルは「Breathing control center neurons that promote arousal in mice(呼吸中枢に存在してマウスの覚醒状態を促進する神経細胞)」だ。
   極めてオーソドックスな研究で、最初から呼気、吸気のサイクルを生成しているpreBötzinger complex(preBC)と呼ばれる領域に、大脳の他領域と連絡して呼吸リズムを変化させる神経細胞が存在するとあたりをつけ、preBC領域に存在するニューロンを分類するための分子標的を探索、preBC領域の細胞はカドヘリン9(Cdh9)を発現しており、この細胞をさらにDbx1受容体(DBX1)を含む様々な分子の発現で分類できることを明らかにする。
   次に単一細胞の活動記録からCdh9+DBX1+細胞が吸気の前に強く興奮することを発見する。すなわち、吸気前に活動するこの細胞が大脳の高次機能と呼吸をつなぐ接点になっている可能性が高い。
   そこで、詳細は省くが、Cdh9と DBX1を両方発現した細胞だけをジフテリアトキシンで除去できるようにしたマウスで、ダブルポジティブ細胞を除去してマウスの呼吸を調べ、この細胞が失われても普通の呼吸は正常に維持されるが、遅いリズムの呼吸が増えること、さらに全般的にせかせかせず静かに行動し、波長の低いデルタ波が頻回に出るようになることを観察している。
   デルタ波の上昇は大脳の青班核が壊された時に起こることがわかっており、著者らはpreBCからの軸索投射を調べ、期待どおり青班核への投射を確認している。    最後に機能的実験から、Cdh9+DBX1+細胞が除去されたマウスでは、新しい環境に置かれて興奮した時見られる青班核細胞の興奮が低下することを示し、Cdh9+DBX1+細胞の投射が機能していることも示している。
   以上の結果から、呼吸中枢ではリズムを形成して呼吸がコントロールされているが、このリズム形成に直接関わらないCdh9+DBX1+は、青班核へと投射して呼吸のリズムと脳全体の活動とを連結しているという結論を導いている。
   最後に深呼吸について考えてみると、普通心を落ち着かせるためには様々な努力が必要だが、意識的に調節できる呼吸リズムを遅くすることで、Cdh9+DBX1+細胞の活動が抑えられ、その結果青班核を介して脳全体が落ち着く方向へ調節できるということになる。なぜ呼吸調節だけで、気持ち全体が変化するのかしっかり勉強できた論文だった。
カテゴリ:論文ウォッチ

4月3日NK細胞受容体とウイルスの共進化(3月23日号Cell掲載論文)

2017年4月3日
SNSシェア
    免疫学から研究をスタートしたとはいえ、NK細胞のことはほとんど知らない。NK細胞への分化を調べた論文を1−2編書いた記憶はあるが、頭の中では一つのリンパ球分化の経路ぐらいに考えてきた。そして他の研究者と同様、NK1.1という分子マーカーをNK細胞の特定に利用したが、その分子の機能に興味を持ったことはなかった。
   ところが今日紹介するカナダ、クロアチア、アメリカからの共同研究を読んで、この分子がウイルスと宿主の軍拡競争、あるいは共存戦略の主役であるとともに、NK研究がこれほど大変なものかを実感することができた。タイトルは「A viral immuneoevasin controls innate immunity by targeting prototypical natureal killer cell receptor family(ウイルスの発現しているイムノエヴェーシンはナチュラルキラー細胞受容体原型ファミリー分子を標的にして自然免疫をコントロールしている)」だ。
   タイトルの中でイムノエヴェーシンとあるのは、ウイルスが発現している免疫を抑える分子のことで、この研究ではサイトメガロウイルスが発現するm12という分子について研究している。
   NK細胞は平積みで売れる一般向けの本が出ているほどで、専門家以外にも馴染みが深い細胞だが、この論文を読んでみると一筋縄ではいかない大変難しい研究対象だとわかる。この研究は一つの論文にするのは惜しいぐらいの力作で、ここまでやりきるには大変な努力が必要だったろうと感心する仕事だ。
   NK細胞が様々なウイルス感染に関与することはよく研究されており、それにNK1.1標識分子で知られる受容体(NKR-P1)ファミリーに属する5種類の分子が関わることが知られていた。この5種類の分子のうち3種類はNK細胞を活性化し、また2種類はNK細胞機能を低下させる。この抑制性のNKR-P1Bはほとんどの正常細胞に発現しているClr-b分子により活性化され、このおかげで正常細胞がNK細胞の攻撃を受けずに済んでいる。ところが、ウイルスが感染すると細胞からClr-bが消えてしまい、細胞がNKの標的になる。この場合、ウイルスごと細胞が消えるが、細胞内で長く活動するサイトメガロウイルスなどは、宿主となる細胞が死んでしまっては困るので、NKR-P1Bを介してNK活性を抑える分子を発現していることが知られていた。
   研究ではまず抑制活性の異なるウイルスを用いて、サイトメガロウイルスが発現するNKR-P1Bリガンドが、m12と呼ばれる膜タンパク質であることを明らかにする。また、たしかにm12がNK活性を抑制することを確認している。
  次に、様々なマウス系統のNKR-P1ファミリー遺伝子を発現させた細胞を使って、m12がNKR-P1Bだけでなく、1)B6,FVB両系統由来のNKR-P1Cにも反応すること、2)129, Balb/c系統由来のNKR-P1Cには反応しないこと、そしてB6,129、FVB系統のNKR-P1Aに反応することを発見する。すなわち、抑制性受容体だけでなく、活性型受容体にも反応するという矛盾する機能を兼ね備えていることを発見する。
   次にm12分子とNKR-P1分子の結合の構造解析を行い、熊の手で捉まるような結合を示し、変異で様々な結合特性が生まれる可能性を確認している(実際ここまでやるかという印象があるほど徹底的に解析している)。
   そしてm12分子のしめすこれらの不思議な性質がおそらくホストと、それを利用しようとするウイルスが最適の共存条件を得るため、NKR-P1受容体と、m12がともに早い速度で進化したためだと考え、これを確認する実験を行っている。
   詳細は省くが、これまで分離されたサイトメガロウイルスのm12分子自体大きく変異しており、それぞれ異なるNKR-P1に対する反応性を示すことを明らかにした。すでに見てきたように、NKR-P1自体も系統で大きく変化していることから、刺激に使ったり抑制に使ったり、一番共存にいい条件を求めた進化が進んでいることをうかがわせる。
   そして最後に、m12の配列の違いで、ウイルスの増殖が大きく左右されることを示している。
   繰り返すが大変な労作で、NKRとウイルスについてしっかり勉強できたという読後感だ。
   今後人間から分離されたサイトメガロウイルスのm12分子の多様性が明らかにされると、それに対応するNKRの多様性や臨床症状をヒトゲノム研究から抽出することが可能だろう。まちがいなく、さらに面白い共存戦略、あるいは軍拡戦略が明らかになるはずだ。
カテゴリ:論文ウォッチ

4月2日:ビタミンCによるガン治療(4月10日号Cancer Cell掲載論文)

2017年4月2日
SNSシェア
    ビタミンCはその強い還元能力で体の活性酸素を抑えて、細胞を守ることで、老化を防止し、美容やがんの発生に役にたつと思っている人は多い。いかがわしいトクホが横行する中で、ビタミンC飲料は間違いなく効果が確かめられた飲料と言っていいだろう。中でも、風邪に効果があると思っている人は多いはずだ。先週Nutrientという雑誌に発表されたフィンランドのHemilaという研究者の総説によると、1日6−8gという大量のビタミンCを服用すれば確かに症状の出る期間を短縮できることはまちがいないようなので、風邪にかかったら安心して、しかし大量に飲めばいい。
   ただ、もしビタミンCが細胞を酸化ストレスから守ってくれているなら、同じようにガン細胞もビタミンCに守られることになる。しかしガンの放射線や化学療法を補助する意味でビタミンCの点滴を行っているグループがあるが、これはガンを助けてしまわないのかと心配になる。
   これに対し今日紹介するアイオワ大学のグループは、モデル実験と実際の治験を組み合わせた研究を行い、大量のビタミンC投与ががん細胞を選択的に叩くことを明らかにし、4月10日発行予定のCancer Cellに発表した。タイトルは「O2・- and H2O2-mediated disruption of fe metabolism causes the differential susceptibility of NSCLC and GBM cells to pharmacological ascorbate(スーパーオキシドアニオンラジカルや過酸化水素を介する鉄代謝の崩壊がビタミンCに対する非小細胞性肺がんとやグリオブラストーマ細胞の感受性を特異的にあげる)」だ。
   この研究では肺がん細胞(NSCLC)やグリオブラストーマ(GBM)細胞をビタミンCと培養すると、正常細胞と比べがん細胞の細胞死が強く誘導されること、またマウスに人ガンを移植してシスプラチンと放射線で治療するときビタミンCを投与するとマウスの生存に高い効果があるという結果を説明するため、ビタミンCのこれらの細胞の効果について生化学的に解析している。
  詳細は省くが結果を要約すると以下のようにまとめられる。
  ガンではフリーの鉄レベルが上昇しており、これがビタミンCに働いて酸化を促すことで、さらにフリーの鉄のレベルを上昇させるサイクルが動き始める。こうして上昇を続けるフリー鉄と過酸化水素が反応すると、ハイドロオキシラジカルの産生が上昇し、細胞の複製など様々な過程を障害するというシナリオだ。
   この効果は、ガンでもともと活性酸素やフリー鉄のレベルが上がっているために得られる効果で、この場合はビタミンCが活性酸素を抑えるどころか、逆にそのレベルをあげていることになる。一方、正常細胞ではフリーな鉄のレベルが低いため、細胞障害性はでないことになる。確かにガンに特異的に効果があることを納得した。
   このようにメカニズムを確認した上で、この研究では少人数のガン患者さんに大量のビタミンC投与治験を行い、高い効果が得られることを示している。基礎と臨床を橋渡しした力作だと思う。
   最後に付け加えておくと、ビタミンCは全て点滴で投与しており、なんと60g以上投与する必要がある。とはいえあまり強い副作用は出ないようなので、ぜひもっと多くの患者さんを使った治験が早く進むことを期待する。
カテゴリ:論文ウォッチ

4月1日:統合失調症の脳回路異常(Molecular Psychiatryオンライン版掲載論文)

2017年4月1日
SNSシェア
    何度か統合失調症に関わる論文を紹介してきたが、ほとんどその背景にあるゲノム研究だった。しかし、ゲノムは情報で、情報は物質レベルの作用に転換される必要がある。心的現象の場合、この物質レベルの作用がもう一度言葉やシンボルといった情報に転換され、それが表面に現れるため、話はより複雑になる。いずれにせよ、ゲノム情報を理解するには、やはり統合失調症の背景にある細胞レベル、そして脳回路レベルの変化を知るための研究が必要になる。
   今日紹介するアイオワ大学からの論文は統合失調症で特異的に異常が見られる前頭前皮質と小脳の深部に存在する神経核の連合の異常を指標に、統合失調症の治療法開発まで視野に入れた研究でMolecular Psychiatryオンライン版に掲載された。タイトルは「Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction(小脳投射に対するデルタ波長刺激は統合失調症に関連する前頭前皮質機能異常を代償する)」だ。
   この分野は全く読んだことがなく、何を読んでも面白い。統合失調症に前頭前皮質(MFC)の回路の変化が関わることは知っていたが、特に小脳の外則深部にある神経核(LCM)との連結の低下がこの異常に関わり、LCMの刺激により統合失調症の一部の症状が改善するらしい。研究の困難にもかかわらず、少しづつ理解が進んでいる印象を受けた。
   この研究では、MFCとLCMの連合を、頭の中で時間を測る能力を調べることで検証できるという従来の結果に着目し、研究を始めている。驚いたことに、この時間を測るテストは、患者さんだけでなく、両親や子供のような近い親族で既に見られるらしい。
   研究では統合失調症の患者さんで確かにこの課題に異常が見られることを確認するとともに、この課題を行っている時に普通の人のMFCでは見られる周期の低いデルタ波が著明に低下していることを発見する。
   このデルタ波の低下が、LCNとMFCの相互作用の結果で、時間を測る能力と関わるかどうかを今度は脳の活動や連絡を自由に操作できるラットを使って調べ、LCN細胞を消失させると時間を測る能力がなくなること、そしてLCNとMFCは直接の連合がないものの強く同調していることを明らかにしている。
  最後に、やはりラットモデルでMFCのドーパミン受容体をブロックした系でLCNをデルタ波長で刺激すると、MFCのデルタ波が回復することを確認している。
   話はこれだけで、動物と患者さんに同じ課題を課すことで、これまで想定されてきた小脳から前頭葉への回路の不全が統合失調症に関わる可能性を明らかにするとともに、この回路を刺激することである程度症状を改善できる可能性を示唆している。
   すでに小脳の刺激は患者さんに使われているようで、どの症状が改善するのか興味がある。私が付き合った何人かの統合失調症の患者さんからの乏しい経験でしかないが、患者さんが頭の中に描いている自己のイメージが、実際に感覚される身体イメージからかけ離れている気がいつもしていた。その意味で、運動を司る小脳の回路が重要だという話は妙に説得力を感じて読んだ。
カテゴリ:論文ウォッチ

3月31日:「I」と「We」:個人主義と集団主義(3月6日号Nature Human Behaviour掲載論文)

2017年3月31日
SNSシェア
昨日はYouの持つ2面性の背景に、「個別と普遍」という唯名論に関する論争のルーツがあることを示した心理学研究を紹介した。
   しかし、これを読みながら私たち日本の文化がこのYouの普遍化にどれほど馴染みがあるのか気になった。というのも、「貴殿」から「お前、きさま」まで、Youの表現が多様な日本は、なかなか「あなた方」という一般化に馴染みがないような気がする。実際、英語の論文や講演で一般的Youが自然に出てくるようになるまで、どうしても時間がかかった。この一般化したYouに変わって私の頭の中にあったのが、Weで、学生運動で語りかけを一般化する時の決まり言葉は「あなた方は」ではなく「我々は」だった。すなわち、私たちの文化は集団的Weの文化かもしれない。
   なんとこのことをよく示すドイツ・エルフト大学の論文が3月6日号のNature Human Behaviourに掲載されていた。タイトルは「One the benefits of explaining herd immunity in vaccine advocacy(ワクチン接種の宣伝のために集団内の免疫性を高める効果について説明するメリット)」だ。
   我が国では一般の人にとどまらず、専門家でさえワクチンの効果を個人に対する効果としてだけ捉えている人がいる。実際、メディアに登場する専門家が堂々とインフルエンザワクチンは効果がないと語っているのをみると、天然痘撲滅に生涯を捧げた蟻田功先生が泣いておられるのではと暗い気持ちになる。ワクチンにより抗体ができることが示されないと販売は許可されない。しかし、抗体がどこまで感染を防げるかは人それぞれだ。しかし、多くの人が免疫を持つことで、集団としての免疫性が高まり、その結果活動するウイルスの総量が減り、またキャリアーの数が減ると感染は終焉する。従って、乳児や免疫のできにくい人たちを感染から守りたい場合は、集団内の免疫を上げるしかない。
    すなわち、最も望ましいのは、自分に対する効果はまちまちと知った上で、他の人のためにワクチン接種を受けるという利他的決断が行われることだ
   実際、インフルエンザなどではワクチンは受けなくてもいいなどとうそぶいている個人への効果だけを語る専門家ほど、致死率の高い新興感染症になると、ワクチンはまだかと叫ぶことになる。
   前置きが長くなったが、今日紹介する論文では、ワクチンに個人を守るだけでなく、集団内の免疫性を高め、免疫ができない多くの弱者を結果として助けることになることを知ってもらうことで、ワクチンの接種率が高まるかどうかを調べている。
    実際には、ベトナム、香港、韓国、インド、米国、ドイツ、オランダで同じ調査を行い、各国ごとに統計を出した後、アジアと欧米で結果が異なること確かめ、最終的にはアジアと欧米に分けて結果を提示している。
   結果をまとめると以下のようになる。
1) 致死率の高い感染症を想定してもらって調査すると、集団内の免疫の説明の有無にかかわらず多くの人がワクチン接種を望み、またアジア、欧米といった地域差はない。
2) インフルエンザなどの比較的弱い部類の感染症を想定してもらうと、アジアの方が接種を受けるという人が多い。
3) 欧米人は、集団免疫により、弱者が救われることを知ることでワクチン接種を受け入れる確率が高まるが、アジアではこの知識の効果はほとんどない。
   集団内免疫について教える前、アジアでは欧米よりワクチン接種率が高いことを、アジア特有の集団主義(この論文では稲作に必要な集産主義と断じている)の現れ、集団内免疫を知った後の欧米での接種受け入れ率の上昇を、個人主義的利他主義の現れと結論している。私も読んでいて同じ印象を持った。
   この論文では、残念ながら日本人は対象になっていない。弱者への寄付に関する統計から見ると、我が国は韓国と比べて著しく低い。その意味で、ぜひ同じ調査が我が国でも行われることを期待する。いずれにせよ、街にマスクで顔を隠した人が溢れるという異様な光景がなくなるためには、集団免疫を受け入れる文化を根付かせる必要がある。
カテゴリ:論文ウォッチ

3月30日;唯名論についての歴史的論争を思い出させる論文(3月24日号Science掲載論文)

2017年3月30日
SNSシェア
    私たちが経験する個別の事項と、それを超えた普遍的概念のどちらが先かについて、実在論か唯名論かを激しく争ったのは中世のスコラ哲学だ。
   この時まず私たち個別の経験が先にあって、これが私たちの脳で普遍的な概念へと高められ、言葉になると明快に唯名論の立場をとったのがオッカムだ。おそらく彼を、その後に続く、ロック、バークレイ、ヒュームといったイギリス経験論の先駆けと言ってもいいだろう。
    いずれにせよ、唯名論と実在論は欧米の知識人の議論に今も顔を出すほど馴染みのあるもので、なぜ私たちが個別的事項を普遍化したがるのか、脳科学や心理学の重要な問題として考えられているように思う。
   このことを典型的に示すミシガン大学からの論文が3月24日号のサイエンスに掲載された。「何々?」と誰もを惹きつけるタイトル「How “You” makes meaning(「You」はどのようにして意味づけられるか?)」だ。
   タイトルにあるmake meaningは心理学用語で、親しい人を失った時、自分の経験をどう意味付けて処理するかを指すのだと思うが、この問題が特定の個人を指す場合もあるし、普遍的に人間一般を指すこともある「You」という単語の使い方の背景にある心理とオーバーラップすると着想したのがこの仕事のハイライトだ。
   最初に例文としてトランプがCBSで彼の税制について語った文章「I fight like hell to pay as little as possible….I am a businessman. And that is the way you are supposed to do it」が引かれている。訳すのはやめるが、要するに彼はYouを二人称で使うことで支持を得た。これを聞いた人たちは、まさに「私(I)」が税を払わないで済むと思う。一方、例えば宗教の経典や、普遍的な話の場合「You」は、人間全てを指している。すなわち、このYouの使い方の転換の背景に、個人の経験を普遍化する力学が働いていることを証明しようとしている。
   このため行った実験は簡単で、例えば「あなたはハンマーで何をすべきか?」と聞いた人が、Iで答えるか、Youで答えるかを調べる。この問いに対する答えはほとんどYouが使われるが、「あなたはハンマーで何がしたいですか?」と聞くとIで答える人がほとんどになる。同じような問いを使って、Shouldのように、規範的内容を文章に感じた時、人間はYouを人間一般として普遍化していることがわかる。
   この実験に加えて、「何をしてはいけないか」について文章をYouを使って書かせた時、文章が自分の問題からどれほど離れて感じられているかを調べ、規範化された経験が、自分の体験から離れて受け取られることを示している。
   いくつかの実験を組み合わせて上に述べた解釈が正しいことを確かめているが、結果はこれだけで、おそらく読者の多くはこれでScienceに通るのかと拍子抜けするかもしれない。
   しかし、中世の唯名論に関する論争はは、よく考えてみると言語が生まれた脳科学と深く関わる。言語が生まれるためには、Theory of Mind、すなわち他の人間が自分と同じように考えているという脳回路が必要だ。そして「他の人間=You」を前にいる「あなた」から、普遍化した「あなた方、人間一般」に転換できる回路も必要になる。その意味で、Youという言葉に着目した点は高く評価できる。
   しかし、Youを表現する単語が驚くほど多い日本語では、普遍化に多くの価値づけが行われる。その意味では、本当の普遍化が難しいが、仲間内意識が強い日本人をよく表している気がする。
カテゴリ:論文ウォッチ

3月29日:多発性硬化症と分泌型IL7R(3月23日号Cell掲載論文)

2017年3月29日
SNSシェア
    多発性硬化症(MS)は最も典型的な自己反応性T細胞による自己免疫疾患で、抗原は脳のミエリン鞘であることがわかっているが、様々な要因で引き金が引かれると考えられている。この要因を知るため、MSと相関する一塩基多型(SNP)が詳しく調べられているが、病気の発症メカニズム解明にはまだ遠い。
   その中で比較的解析が進んだのが、IL7受容体遺伝子上に存在するSNPで、このSNPを持つIL7R遺伝子は6番目のエクソンが欠如しやすく、結果分泌型のIL7Rが作られることが知られている。
   今日紹介するテューク大学からの論文は、MSを誘導する分泌型IL7R(sIL7R)合成に関わるスプライシング分子をDDX39Bを特定し、この分子の発現低下がMSを悪化させることを示した論文で3月23日号のCellに掲載された。タイトルは「Human epistatic interaction controls IL7R splicing and increasees multiple sclerosis risk (IL-7Rスプライシングの調節に関わる分子相互作用により多発性硬化症リスクが高まる)」だ。
   この研究ではまずIL7R遺伝子の6番目のエクソンのスプライシングに関わる分子を探索しリストされた89種類の分子の中から、DDX39Bと呼ばれるRNAヘリカーゼが第6エクソンのスプライシングをオーガナイズしていることを発見する。そして予想通り、DDX39Bが欠失するとsIL7Rの発現が上昇し、この研究のスタートラインになったIL7R遺伝子自体のSNPと同じ結果が起こる。
   この結果はDDX39B遺伝子多型の中にはMSの発症リスクと関わるものが存在することを強く示唆する。ところがそのようなSNPはこれまで記載されていない。この原因は、この分子がやはりMSの発症と強く相関するMHC遺伝子内に存在するためではないかと考え、MHC分子自体のSNPを除外して相関を調べ、ついに15種類のDDX39B遺伝子のSNPを特定している。
   リストされた15種類のSNPは全てエクソンの外にあり、遺伝子発現やスプライシングに関わることが想定される。そこでこれらの中からDDX39B遺伝子発現が低下するSNPを、様々な遺伝子型の人から作成したリンパ球細胞株で調べ、rs2523506と呼ばれる場所がアデニンを持っている人で、DDX39B発現が低下することを明らかにしている。
   最後にこの多型が実際sIL7R産生とMSリスクにつながるかだが、この多型だけではエクソンスキップをはっきり誘導することは難しかった。しかし、MSと関連するIL7R遺伝子の多型を持った細胞内はDDX39B遺伝子多型が導入されるとよりスキップが高まり、結果sIL7Rの分泌が高まることが明らかになった。また、細胞株だけではなく、正常CD4T細胞でも同じことが観察できることを示している。
   話はこれだけで、Cellによく通ったなという感じは受けるが、様々な遺伝子多型の人を揃え、丹念に可能性を追求したという点では力作だと思う。とはいえ、ではなぜsIL7Rで MSが誘導されるのか、肝心なところはわからずじまいで残った。
カテゴリ:論文ウォッチ

3月28日:「数を感じる」vs 「数字を理解する」違い(米国アカデミー紀要オンライン版掲載論文)

2017年3月28日
SNSシェア
   多くの読者には馴染みがないと思うが、アメリカのプラグマチズムの創始者の一人チャールズ・サンダース・パースの記号論は、コドンとアミノ酸や神経回路と言語といった物理化学的には無関係の者同士を対応させる情報の誕生を理解しようとするとき、議論の整理のために随分役にたつ(JT生命誌研究館の拙文参照:http://www.brh.co.jp/communication/shinka/2016/post_000012.html)。
   イコンはものとしての関係が明確な記号同士の関係で、インデックスは例えば温度と温度計のメモリのような指標関係だ。どちらも物理学的に関係付けることができるが、コドンとアミノ酸のようにそのままでは物理関係が成立しない場合はシンボル関係が誕生したことになる。
   このシンボル関係が最もわかりやすいのが数字だろう。目の前にある石の数が数字で表されると物理的関係は切れる。今日紹介するピッツバーグ・カーネギー・メロン大学からの論文はまさに数字(シンボル関係)とイコンの関係を処理するための脳領域について調べた研究で米国アカデミー紀要オンライン版に掲載された。タイトルは「Numerosity representation is encoded in human subcortex(数の多さの表象は人間の皮質下部にコードされる)」だ。
   数字を理解するということは、ものの大きさや多さをシンボルとして表象できる高次の機能で、脳画像を用いた研究から頭頂間溝の皮質が関わっていることがわかっている。ただこれができなくとも多さを感じることは生命にとって重要な機能だ。例えば蜘蛛でさえもどちらが多いかを「感じる」能力を持っているという論文があるようだ。
   このことから、著者らはものの多さを感じる場所は、数を処理する皮質より原始的な領域である皮質下部が関わるのではないかとあたりをつけ、この問題を極めて単純な方法で調べている。
   網膜で結像した視覚イメージは視交差を通って外則膝状体に入り、後頭部の視覚中枢に投射する。このとき皮質の第4層までは片眼の信号だけが投射しているが、それ以上になると両眼の信号が混じり合う。この視覚と特徴を利用すると、皮質下部で処理されているか、それより上部で処理されているかを調べることができる。具体的には、片方の眼だけに情報を入れて多さを判断させる場合と、両方の目に代わる情報を入れて判断させる課題を行うと、皮質下部で処理される場合、片眼のみに情報を入れたほうが処理力が早まることになる。
   このとき、小さな玉の数、すなわちイコンを見せて多いか少ないかを判断させる課題と、数字、すなわちシンボルを見せて判断させる課題を行わせると、イコンの数を判断するときは片眼だけに情報を入れたほうが処理が早い。一方シンボルの場合は皮質上部が必要なため、片眼に情報を入れても、両眼に情報を入れても成績は同じになる。
   この研究では皮質下部でのイコンの量の区別の精度を調べている。結果は、イコンの数が4倍以上のときのみ皮質下部は区別できるという結果だ。
   この研究も着想だけで、大げさな機械を全く使っていない研究だが、言語やシンボルについてちょうど準備をしている最中なので、とても新鮮に感じた。いずれにせよ、この論文が扱った問題は、言語をはじめとする人間特有の能力を考える上で鍵になるような予感がした。
カテゴリ:論文ウォッチ

3月27日:胚発生期の突然変異(Natureオンライン版掲載論文)

2017年3月27日
SNSシェア
    一つの細胞が分裂してできた2個の細胞が同じであることはまずないと言っていい。異なる突然変異がそれぞれの娘細胞の子孫に伝わっていく。このことは、私たちの体が実際にはゲノムが少しづつ異なる細胞のキメラになっていることを示している。個人のゲノム配列として読まれるのは、このすべての平均値になる。ただ、卵割直後に発生する突然変異は原理的に50%の細胞に存在することになるため、どの配列を取ればいいのか困るはずだが、実際には問題にならない。
   いずれにせよ、発生過程で積み重なった壮大な突然変異は、私たちの細胞が発生過程でどう作られてきたか、あるいは正常細胞ががん化する過程でどんな選択が行われるのかを知るための重要な記録になっている。この可能性を様々な組織細胞とがん細胞がサンプルとして得られる乳がん患者さんで調べたのがこの英国・サンガーセンターからの論文でNatureオンライン版に掲載された。タイトルは「Somatic mutations reveal asymmetric cellular dynamics in the early human embryo (体細胞突然変異の解析によりヒト初期胚細胞動態の非対称性が明らかになる)」だ。
   研究自体は単純なもので、乳がん患者さんの血液細胞のゲノムをまず通常のカバレージで解読する。これにより、発生のごく初期に起こった突然変異とその比率を決めることができる。実際には10%以上の細胞で見られる突然変異を600種類同定しているが、原理的には最初の1−3回ぐらいの分裂時に入った突然変異だけを相手にしている。
   乳がん患者さんは手術を受けるので、その時、乳がん細胞、周りの正常細胞、リンパ節を採取する。血液で得られた突然変異が、最初の卵割で起こったものなら、他の正常組織でも同じように突然変異が分布しているはずだ。実際、この研究はほとんどの突然変異が血液だけでなく、他の組織にも同じように分布していることを示している。
   一方、乳がん細胞では発生初期の突然変異が「有るorなし」がシャープに分かれ、ガンが成長後に起こったクローンであることを示している。
   この研究のハイライトは、これら初期段階に起こった突然変異の分布から、1回の分裂あたり2.8突然変異が入ること、また突然変異の原因は一つでなく、様々な要因が存在すること、そして何よりも初期段階での突然変異は決して50−50で分布するのではなく、片方の細胞が2倍多くの体細胞に分布することを発見している。この原因としては、発生初期では2個の娘細胞の増殖能が違うこと、あるいは内部細胞塊への分布が違うなど、様々な原因が考えられるが、結論を出すのは難しいだろう。普通に考えれば、初期の細胞ほど分裂後の微小環境は異なっているはずだ。その意味では納得の結果だと言える。
   話はこれだけだが、人間の初期卵割段階での突然変異の動態を示した点では重要な情報だと思う。今後、ここの細胞のゲノム解読の精度が上がれば、この手法を初期段階だけでなく、様々な幹細胞の動態解析に使えることが期待できる。これも着眼点の重要性を示す研究だと思う。
カテゴリ:論文ウォッチ

3月26日:慢性骨髄性白血病の根治を目指して(Natureオンライン版掲載論文)

2017年3月26日
SNSシェア
   これまで最も成功したガンの分子標的薬は慢性骨髄性白血病の発がんドライバーBcl-Ablキメラタンパク質の活性を抑えるイマチニブ(グリベック)だろう。3月9日号のThe New England Journal of Medicineに11年にわたるイマチニブの治療成績が発表された(Hochhaus et al, NEJM, 376, 917, 2017)。この論文によると、10年目で83%の患者さんが生存しており、長期間イマチニブを服用しても重篤な副作用は見られないという画期的な結果だ。
   とはいえ、まだ2割の人がこの治療では救われないこともわかる。イマチニブに対する耐性を持つ白血病細胞が発生するからだ。これに対し、イマチニブとは異なる部位に結合して、キナーゼ活性化に必要な構造変化を抑制するための薬剤開発が試みられている。
   今日紹介するボストンにあるノバルティス社の研究所からの論文はAble分子のミリスチン酸結合部位に結合してAblの機能を阻害する薬剤開発についての論文でNature オンライン版に掲載された。タイトルは「The allosteric inhibitor ABL001 enables dual targeting of bcr-abl1(アロステリック阻害剤ABL001はBcr-Abl1のダブル標的治療を可能にする)」だ。
   この研究も最近流行りの、標的部位に結合する小さな化合物をリストし、その結合状態を構造的に調べて、結合した幾つかの化合物を合わせて一つの化合物に融合させる方法を用いている。この方法でAbl分子のミリスチン酸結合を阻害するABL001と名付けた化合物を開発する。
   あとはこの化合物が実際にBcr-Abl分子でガン化した細胞増殖を抑制するか白血病細胞株パネルを用いて調べ、Bcr-Ablがドライバーになっている全ての白血病細胞の増殖を抑制することを確認している。
   次にAbl001に対する耐性細胞の出現をニロチニブ(キナーゼ阻害剤)に対する耐性細胞と比較する実験から、それぞれの薬剤に対する耐性細胞は全く独立に出現することを明らかにしている。これが正しければ、Abl001とイマチニブを同時に投与することで、それぞれの薬剤に耐性の細胞が存在しても、どちらかで補って死滅させることができると期待される。
   そこで白血病細胞を移植したマウスに、ニロチニブとABL001を同時に投与する実験を行い、期待通り完全に抑制し、途中で薬剤投与を中止しても100日以上再発がないことを確認している。
   最後に様々なキナーゼ阻害剤に耐性を獲得した患者さんに第1相の治験としてABl001を投与しているが、何ヶ月かは白血病を抑制することが可能であることを示している。ただ、Abl001単剤ではやはり耐性が出現することも明らかになった。
   残念ながら話はここで終わっているが、今後最初からイマチニブとABL001を同時に投与する治験が行われると思う。マウスで得られた結果が確認されれば、慢性骨髄性白血病の根治に向かって第一歩になると期待している。   しかし最近、製薬会社の第1相研究がNatureによく掲載されるのにも驚いている。
カテゴリ:論文ウォッチ