3月3日:細胞死の過程を視覚的に統合する(Scienceオンライン版掲載論文)
AASJホームページ > 新着情報

3月3日:細胞死の過程を視覚的に統合する(Scienceオンライン版掲載論文)

2018年3月3日
SNSシェア
現阪大の長田さんをはじめ、我が国では細胞死の分子メカニズムの研究が盛んだが、死ぬと決まった細胞を、決まった手続きで処理することで、ゴミが私たちの体に悪さをしないようにするエレガントなメカニズムだ。このプログラムされた細胞死・アポトーシスの引き金にはミトコンドリアが深く関わっていることがわかっている。考えてみると、ミトコンドリアは細胞内寄生体のようなもので、これをどう体内で使いこなし、最後は細胞ごとどう始末するかは生物進化の重要な課題だったと思う。

事実この過程を習うと、その合目的性に驚く。通常はBcl2ファミリーにより機能が抑制されているBak, Baxは、細胞死へのシグナルが検知されるとミトコンドリア細胞膜で複合体を形成する。この複合体を通してチトクロームCやアポトーシスを誘導する複合体が細胞質に飛び出す。これを待ち受けていたカスパーゼが害にならないよう切断し、細胞内の自然免疫メカニズムを刺激することなく処理される。事実、カスパーゼ複合体をノックアウトすると、ミトコンドリアDNAを含むコンプレックスがGas/Stingと呼ばれる自然免疫センサーを刺激し強烈なインターフェロン主体の炎症反応が起こる。

習えば習うほど、うまくできたシステムだと思う。ただ、各部分過程がどう統合されているかは、はっきりしていた訳ではなく、すべての過程が進行する様子を調べ統合する必要がある。今日紹介するオーストラリア・ウォルター・エリザホール研究所からの論文は各過程の鍵となる分子を細胞内で可視化して、この過程を統合して見せた研究で2月23日Scienceに先行発表された。タイトルは「Bak/Bax macropores facilityate mitochondrial herniation and mtDNA efflux during apoptosis(細胞死ではBak/Baxが大きな穴を形成してミトコンドリアの内膜のヘルニアを誘導してDNAを放出する)」だ。

この研究は新しい分子や、その機能を調べるのではなく、これまで蓄積された様々な道具を使って、アポトーシスの誘導から、ミトコンドリアの変化、そしてミトコンドリアDNAの細胞外への放出までを、各過程に関わる分子に蛍光分子を合体させることで可視化した研究で、いわばこれまでのアポトーシス研究の蓄積を最大限に生かした研究だ。多くのビデオが示され、紹介できないのが残念だが、論文のPDFにビデオが直接貼り付けてあり、クリックするとそのまま再生できるようになっており、大変助かる。今後、多くの論文でこのシステムが導入されるのだろう。

膨大な実験なので、詳細は全て省いてこの研究が明らかにしたシナリオだけを紹介しよう。

1) まずBak/Baxの機能を抑制しミトコンドリアの膜の健康を維持しているBcl分子の阻害剤を加えると、Bak/Baxが活性化され、まず小さな複合体を形成する。こうしてできる小さな穴を通してまずチトクロームCが細胞外へ流出する。
2) これによりBak/Baxがさらに大きな複合体を形成すると、ミトコンドリア内の内容物が、内膜で包まれたままBak/Baxでできる大きな孔を通って、ヘルニアを形成する。
3) これと並行して、ミトコンドリア間のネットワークが崩壊するが、これ自身はアポトーシスにはあまり影響しない。
4) 内膜に囲まれることで、ミトコンドリア内容物の生物活性は抑えられるが、内膜が徐々に壊れると、もちろんGAS/Stingシステムに検出される。しかし、カスパーゼが先に作用することで、自然免疫系の反応を低いレベルに抑えることができている。

以上、写真を見せられないのが残念だが、過程を統合するには見るのが一番ということが実感される研究だ。頭の整理がほぼ完璧にできた。
カテゴリ:論文ウォッチ

3月2日:南東ヨーロッパのゲノム構造の構成(2月21日号Nature掲載論文)

2018年3月2日
SNSシェア
3月2日:昨日に続いて、同じ国際チームが同じ号のNatureに発表した論文を紹介する。今日は南東ヨーロッパの民族のゲノム構築の形成過程についての研究だ。タイトルは「The genomic history of southeastern Europe(南東ヨーロッパのゲノムの歴史)」だ。

南東ヨーロッパは現代ヨーロッパのゲノム構造の一種の縮図で、この地区で7000年前に始まった農耕が西へ西へと拡大する。この過程で、人間の移動と交雑が重なって現在に至るゲノム構造が形成されるが、この歴史をゲノムから解き明かすためには、従来のような個別の解析から、南東ヨーロッパ全体を俯瞰できる大規模な調査が必要になる。

この研究では、バルカン半島、カルパチア盆地、黒海北部に広がる草原地帯に広がる地域から出土した、 BC12000からBC500年と推定される人骨215体のゲノムを新たに解析し、これまで解析が終わっている10体と合わせて、現代南東ヨーロッパ人ゲノムと比較している。

基本的にヨーロッパの民族は、東と西に分布している狩猟採集民、アナトリアの新石器時代の民族、そして黒海北部ステップのYamnayaを中心とした民族のゲノムが組み合わさってできていると言っていい。実際、今回解析されたゲノムを主成分解析でプロットすると、この3種類のゲノムを3点とする三角形の領域に分布する。この研究で調べられているのも結局、この3者のゲノムの割合が、それぞれのポピュレーションに混じっているかだ。

はっきり言って、今日紹介する論文の結論はわかりにくい。記述が、個々の領域のゲノム構造の記述に終始して、大きなシナリオが見えにくい。昨日紹介した論文では、土器の伝播とゲノムとの相関というわかりやすい問題があった。一方今日紹介する研究は、南東ヨーロッパのゲノムの構築という一般的な問題になってしまってわかりにくい。

しかし、それでもいくつか面白いと思った点をまとめておこう。

1)想像以上にヨーロッパ全土で交流があったようで、スペインに代表される西からの狩猟採集民との交雑のあとも早くから確認される。言い換えると、南東ヨーロッパのゲノム構築は極めて多様化しており、時間とともに複雑性を増す。
2)このことは、狩猟採集民がヨーロッパ中駆け巡っていたことを意味する。そして、この接点が南東ヨーロッパで、その結果さまざまな民族が形成されたようだ。確かに、南東ヨーロッパの民族が複雑であるのは、旅行すれば実感する。
3)新石器時代の各地域の交雑に際しての男女のバイアスを調べると、初期にはあまりバイアスがない。すなわち男女全体のグループでの交雑だったが、青銅器時代になると男性からのバイアスが見られる。ということは、各グループがより好戦的になって行ったのかもしれない。
4)しかし農耕がはじまると、東から西への移動が行われるが、狩猟採集民との交雑は低下している。
結局結論すると、南東ヨーロッパは今も昔もさまざまな民族がぶつかり合う接点で、これを反映して、ゲノムでも予想以上の多様性が見られるという話になる。さらに、この研究により、狩猟採集民の行動範囲が極めて広いことも明らかになった。今後、さらにのちの青銅器、鉄器時代からギリシア・ローマ時代に至るまでのゲノム構築が調べられると、ゲノムから見る歴史と考古学が統合されていく。何かワクワクする。
カテゴリ:論文ウォッチ

3月1日;道具の伝搬と人間の移動(2月21日号Nature掲載論文)

2018年3月1日
SNSシェア
以前紹介したように、ヨーロッパの言語と縄文土器は、Yamnaya文化の担い手がウクライナのステップ地帯から西へと移動し、現地人と交雑する中でヨーロッパ全土に広がったことがわかっている(http://aasj.jp/news/watch/3584)。この結果は、優れた言語や道具が人間の移動と交雑により伝搬することを示す証拠として考えられている。

一方、おそらくイベリア半島を起源とするThe Beakerと呼ばれる特徴のある土器がBC2500年以降のヨーロッパ全土に広がったことも知られている。今日紹介する国際チームの論文は、このBeaker文化の伝搬も、人間の移動により起こったのか、あるいは文化自体が知識として伝搬したのかをBC4700-BC800年のものと推定される人骨のゲノムを約120万SNPを指標に調べることで明らかにしようとした研究で、2月21日号のNatureに掲載された。タイトルは「The Beaker phenomenon and the genomic transformation of northwest Europe(The Beaker現象と北西ヨーロッパでのゲノムの変化)」だ。

実に400もの古代人DNAを解析した研究で、少し前に1000人ゲノムなどと現代人のゲノム解析を推進していたのが遠い昔に思える。

まず重要なことは、The Beaker文化の古代人の分布が現代北西ヨーロッパ人のゲノム構造とほぼ重なる点で、この時以前に形成されたヨーロッパ各地の人種が現在に至っていることになる。すなわち、主成分解析で見られるゲノムの多様性がすでにTheBeaker文化の担い手に存在し、例えばこの文化の起源と思われるイベリア人のゲノムが急速にヨーロッパ全体に文化とともに拡大したというわけではなさそうだ。文化は広がっても、各地域のゲノム構造はほとんど新石器時代から青銅器時代のままだ。

さらに、各地域でも同じ文化を共有するからといって、ゲノムが一致していることもなく、The Beaker文化は知識として拡大したようだ。

とはいえ、人間の移動が重要なケースも間違いなくある。最近、多くのメディアが、英国の先史人として知られるチェダーマンが、色黒、縮毛、碧眼であったことを大々的に報じていたが、イギリスの新石器時代の先史人は、2500年以降中央ヨーロッパに近いゲノムを持った人種で完全に置き換わっていることがわかる。このゲノム構造の変化は、The Beaker文化の伝搬とともに起こっており、the Beaker文化の伝搬が人間の移動と交雑により起こりうることを示している。

言語、道具がゲノムと統合されて解析できるようになっているのが本当に素晴らしい。このように、ヨーロッパの先史時代がゲノム解析からどんどん明らかになっているが、明日は同じグループが同じ号のNatureに発表した東欧のヨーロッパ人ゲノムの形成についての論文を紹介する。
カテゴリ:論文ウォッチ

2月28日:死にゆく脳の記録(Annals of Neurology2月号掲載論文)

2018年2月28日
SNSシェア
脳への循環が止まると途端に脳細胞は変性を始め、10分以内に回復が不可能になる。この時脳細胞で何が起こっているのかは、動物モデルで詳しく研究されている。ラットを用いた研究から、脳の死へのプロセスには2つの重要なイベントがあることが明らかになっている。まず酸素の供給が止まり、酸素分圧が急速に低下すると、不思議なことに脳細胞の活動を停止させるスイッチが入る。そしてこの停止状態が1−2分続いた後、今度は細胞の脱分極が始まり、この脱分極は隣の領域へと拡大する。この脱分極が起こると、もう脳細胞が元に戻ることはない。このプロセスは、細胞の興奮を止めた上で、脳細胞が細胞内外のイオン濃度を保とうとしてATP依存的に様々なポンプを用いて膜電位を元に戻そうとするうちに、ATP切れに陥り、結局膜電位差を維持できずに脱分極が広がるとされている。

では人間でも同じことが起こっているのか?これを確かめるのは簡単ではない。これまで、脳波計を用いて、循環が止まった後亡くなるまでの過程が調べられているが、頭蓋の外からの記録は解釈が難しい。実際には、脳内に直接電極を設置して記録を取る必要がある。

今日紹介するドイツベルリンのシャリテ病院とシンシナティ大学からの論文は生命維持装置を外した後の脳細胞の活動を脳内の電極で記録した研究でAnnlas of Neurology2月号に掲載された)。タイトルは「Terminal spreading depolarization and electrical silence in death of human cerebral cortex(人間の脳皮質が死にゆく過程で見られる最後の脱分極と電気的停止)」だ。

この研究では、脳出血や外傷で呼吸中枢の機能が失われたため、生命維持装置を装着した患者さんが、家族の判断で生命維持装置を外す時、許可を得て脳皮質表面、あるいは深部に幾つかの電極を設置、様々な指標をモニターしながら、脳内の酸素分圧の低下から始まる脳細胞の最後の様子を記録している。

実際には、精鋭維持装置を外す前に様々な処置を行っているので、脳細胞の反応も様々だが、結局は動物も人間も急速に酸素濃度が低下すると、同じコースを辿って脳細胞が死を迎えるという結果だ。

それでも、まだ酸素分圧が下がらない前から、散発的に脱分極が広がるという現象が見られることなどは、脳波を解釈する上で重要な所見になるだろう。

結局、酸素が来なくなると、積極的に脳細胞の活動を止めるメカニズムがあり、これがほぼ同時に脳の興奮が止まることに反映される。これは、ATPを使って脳細胞をなんとか回復させようとする活動の表れで、これが維持できる間はまだ回復の可能性がある。しかし、ATPが尽きてしまうと、脱分極が始まり、これはまだ努力を続けている領域を巻き込んで広がってしまうというシナリオだ。

しかし、死のプロセスも、人間となると意外とわかっていないのだという印象を持った。いずれにせよ私の脳も、いつか同じ過程に見舞われるが、それまでは頑張ろうという気にさせる論文だった。
カテゴリ:論文ウォッチ

2月27日;新しい神経変性疾患原因遺伝子の特定(2月27日発行Cell掲載論文)

2018年2月27日
SNSシェア
今、何人のヒトゲノムがデータベース上に保存されているのだろう。公開されていないもの、エクソームだけのものなどを含めるとすでに100万人は越しているとおもう。この中には、多くの病気の方のゲノムも含まれているが、ゲノムが解読されたと言っても、病気との関連がついたわけではない。そのためには、研究者の優れた着想と、関連を確かめる粘り強い努力が必要になる。

そんな例を、今日紹介するコロンビア大学とベイラー医大からの論文に見た。タイトルは「A mild PUM1 mutation is associated with adult onset ataxia, whereas haploidnsufficiency causes developmental delay and seizures (PUM1分子の軽度異常を誘導する変異は成人発症型の運動失調の原因になる。また、片方の対立遺伝子の欠損は発達障害とてんかんの原因になる)」だ。

著者らは、運動失調(Ataxia)の研究を行っていたようで、Ataxin1遺伝子の過剰発現が脊髄小脳性の運動失調の原因であること、そしてこの遺伝子がPumilio1(PUM1)と呼ばれるRNA結合分子により発現が抑えられていること、そしてPUM1遺伝子欠損が片方の染色体で起こるだけで、Ataxin1の過剰発現マウスと同じ症状が出ることを報告していた。すなわち、PUM1の量は厳密に調節され、これが少しでも減ると、PUM1の標的遺伝子の発現が上昇して、様々な異常が起こることを示している。

とすると、マウスの実験から考えて、PUM1のヘテロ型の変異による脳神経の異常が起こってもいいはずで、この可能性を調べるため著者らは遺伝子コピーの欠損と病気の関係を調べられる52000人の染色体マイクロアレー・データベースを探索し、9人のPUM1が片方の染色体で欠損した患者さんを発見している。この患者さんには、他の遺伝子異常も認められるが、統計学的にも神経発達異常はPUM1と最も相関していることを確認している。この遺伝子が欠損した患者さんは全て発達障害・知能障害を持ち、てんかん、運動失調が見られる。 さらに、エクソームデータベースから、神経発生異常を伴うPUM1遺伝子の点突然変異を2例特定している。 この点突然変異により遺伝子機能が失われるが、この結果1例は5歳で不随意運動、運動失調などを示すアタキシアだがMRIでは異常を認めない。もう一例は生後5ヶ月で発症した発達異常で、運動失調などの小脳症状とともに、全般的な発達異常を示す。また、MRIで小脳の異常を認めている。このように、突然変異のタイプにより、発症時期が異なり、病気の程度も大きく違うことから、おそらく機能の量的異常が症状に反映されることがわかる。

そこで、もっと遅い発症の突然変異がないかも探索し、50歳以降に発症する変異を特定し、PUM1関連アタキシアと名付けている。

あとは、PUM1の機能が量的に低下することでAtaxin1だけでなく多くの遺伝子の発現が上昇すること、さらにマウスモデルが作成できることも示しているが、詳細はいいだろう。

この研究は、データベースは揃っても、遺伝子を特定するのは難しい場合が多く、PUM1が神経変性疾患を誘導するという候補を着想して初めて、新しい神経変性疾患の原因遺伝子を特定できることを示している。 そして、複数の分子の発現量を決める機能を持つRNA結合分子は神経変性疾患の原因になりうること、また通りいっぺんの検索では病気との関連が見落とされる可能性があることを示した点で重要だ。しかし、着想できれば、データベースは揃っている。今後、同じような変異が見つかる可能性は大きい。そしてもし早く診断できれば、この疾患も遺伝子治療の可能性がある。データベース時代の新しい病気の発見を代表する面白い研究だと思った。
カテゴリ:論文ウォッチ

2月26日:ガンの免疫抵抗性に関わる分子を探索する(2月16日号Science掲載論文)

2018年2月26日
SNSシェア
ガン免疫のチェックポイント治療が大成功したのも、ガンの免疫抵抗性に関わる分子PD-L1/2などが明らかになったからだ。すなわち、ガンに対する免疫が成立すると、これに対してガンの方がPD-L1を発現、T細胞の発現するPD-1を刺激してブレーキをかけ免疫を逃れる仕組みだ。もちろん、ガンが免疫抵抗性を獲得するにはこの経路だけではないだろう。このため、なんとかしてガンに免疫抵抗性を与える分子を突き止めようと様々な研究が行われている。

今日紹介するダナファーバー癌研究所からの論文は癌に免疫抵抗性を与えている分子の網羅的探索研究で、2月16日発行のScienceに掲載された。タイトルは「A major chromatin regulator determines resistance of tumor cells to T cell mediated killing(染色体調節主要因子がガン細胞のキラーT細胞に対する抵抗性を決めている)」だ。

研究ではPD-1チェックポイント治療に抵抗性のメラノーマ細胞株を用いて、これにCas9を発現させ、さらに様々な遺伝子に対応するガイドRNAのライブラリーを、各ガイドが均一に細胞に取り込まれるような条件でガン細胞集団に導入する。これにより、様々な遺伝子が個別にノックアウトされたメラノーマ細胞の集団を得ることができる。また、ノックアウトされた細胞は、その遺伝子に対応するガイドRNAが存在していることを指標に特定できる。このガン細胞集団をキラーT細胞に攻撃させ、生き残った細胞にどのガイドが残っているかを調べることで、キラーT細胞に対する抵抗性を与える分子を特定している。この系で、完全に集団から除去される分子は、発現するとキラーT細胞への感受性が高まる分子で、一方濃縮される分子は、発現するとガンへの抵抗性が高まる分子だと予想される。ガイドRNAから言い換えると、濃縮されたガイドRNAに対応する分子はノックアウトされているし、逆に除去されたガイドRNAに対応する分子は集団に存在していることになる。

例えば、組織適合抗原(MHC)はキラーの認識に必須だ。従って、抵抗性を獲得した細胞の中にはMHCをノックアウトされた細胞が含まれるが、このノックアウトされた細胞が残るということは、MHCに対応するガイドRNAが濃縮されてくることになる。

このスクリーニングにより、予想どおりガン抗原提示に関わる分子がノックアウトされた細胞が濃縮する。他にも、RAS経路や、JAK/STAT経路に関わる分子が、抵抗性の細胞では除去される。

一方、分子を発現する方がより抵抗性に寄与する分子も特定される。幾つかの経路に関わる分子がリストされているが、著者らが最も興味を持ったのがPBAF と呼ばれるクロマチンの構造を調節して、遺伝子の発現に関わる大きな分子複合体の幾つかの成分に対応するガイドRNAが除去されてしまっている点だ。

著者らはこの結果を、PBAFが主にインターフェロン反応性遺伝子全体を抑える作用を持ち、機能が高まっているガンでは、免疫抵抗性が強いからだと解釈している。また、PBAFはPD−L1などの発現抑制にも関わっており、このコンポーネントの一つをノックアウトすると、チェックポイント治療が効きやすくなることを示している。

話はここまでで、今後他のガンや、さらに薬剤が開発可能な標的を明らかにすることが重要になるだろう。ただ、先週紹介した腎臓癌で抗PD-1抗体が効いた患者さんでは、PBAF機能が低下しているというる結果とも一致することから、この実験系は臨床的にも意味のある探索系であることが示唆されることから、今後に期待したい。
カテゴリ:論文ウォッチ

2月25日:ガン遺伝子発現による複製ストレス(Nature オンライン掲載論文)

2018年2月25日
SNSシェア
DNA複製は、決まった場所から起こり、転写などの他の細胞機能とぶつからないよう調整されている。細胞周期の研究が進んで、チェックポイントと呼ばれる節目節目の調節メカニズムは随分理解できるようになったが、何千にも及ぶ複製開始点から、様々な速度でDNA複製が起こる時、転写や染色体構造とどう調整をつけているのかまだまだ知りたいことは多い。実際、分裂速度の速いがん細胞は常に複製ストレスにさらされ、うまく複製が調節できずに細胞死してしまう危険性にさらされている。

今日紹介するジュネーブ大学からの論文は発ガン遺伝子を強制発現させた時に起こる複製ストレスをゲノムレベルで網羅的に調べた研究で、新しいアイデアというより、必要なことをしっかり調べたという研究だが、ガンを理解する上で様々なヒントを与えてくれる。Natureにオンライン発表され、タイトルは「Intragenic origin due to short G1 phases underlie oncogene-induced DNA replication stress(発ガン遺伝子により誘導されるDNA ストレスの背景にG1が短くなることにより発生する遺伝子内の複製開始点が存在する)」だ。

まず研究では、多くのガンで発現がたかまっているCyclinEを過剰発現させ、G1期が極端に短くなった細胞の複製開始点 (Ori)を全ゲノムレベルで調べ、新しい複製開始点が1000近く現れることを発見する。しかも、新しく生まれるOriのほとんどはS期の後期に現れ、しかも転写される遺伝子内部に生まれることがわかった。

Oriの多くは遺伝子と遺伝子の間に存在し、S期に入ると転写活性はほとんどないことが多い。従って、転写が終わらないうちにS期が始まることで、遺伝子内に新たなOriが現れるのではと、転写を遅らせる処置をすると、CyclinEを発現させたのと同じ場所に、新しいOriが現れる。以上のことから、G1期が短すぎると、転写がぐずぐずしている遺伝子内にOriが新たに生成されることがわかった。

同じ結果は、Mycガン遺伝子を過剰発現させても起こる。

こうして転写と複製がバッティングすると、複製フォークが止まって、DNAが切断すること、この結果細胞死が誘導されること、この切断箇所に他の遺伝子が転座しやすくなること、などを示しているが、はっきり言って予想通りの結果を実験的にしっかり確かめたという論文になっている。

しかし、マウスのES細胞のようにG1期が極端に短い細胞は他にもある。このような細胞ではどのようにOriが調整されているのか興味がわく。また、Oriのマッピングで、がんの性質を新しい観点から理解することも可能になるだろう。この研究で用いられた系は、あまりにも人工的なので、今後他の状況でのデータが欲しいが、できることをしっかりやり遂げるという研究の重要性が分かる論文だ。
カテゴリ:論文ウォッチ

2月23日 ネアンデルタール人とシンボル(2月23日号Science掲載論文)

2018年2月24日
SNSシェア
今ほとんどの時間を言語の誕生についての本や文献を読むのに費やしている。そのため、今日紹介する英国サザンプトン大学を中心とするチームの論文のように、ネアンデルタール人の言語能力を推察する取り組みには特に興味がある。実際、これまでの文献だけでも大変なのに、この分野は最近めまぐるしく変化し、忙しくする。

今日の論文に行く前に、まずネアンデルタール人の言語能力研究の背景についてまとめておこう。

この分野で言語能力という時、話し言葉(Verbal Language:VL)を持っていることと同義ではない。明晰記憶(Explicit memory)に現れる前頭連合野の拡大と、ゴールを共有するコミュニケーションを可能にした脳進化を元にした、脳内の表象を、もう一度音や、絵など実体的なメディアを通して表象し直す能力、すなわちシンボルを使う能力にかかっていると考えられている。この点についてさらに知りたい人たちにはT.DeaconのThe Symbolic Species (https://www.amazon.co.jp/Symbolic-Species-Co-Evolution-Language-Brain/dp/0393317544) がお勧めだ。20年前に出版された本だが、現在も全く色あせていない。

この考えから、言語能力と結びつけることができる、遺跡に残るシンボル、例えば絵画、人形、装飾、化粧などは考古学では極めて重要になる。これまでこのような証拠がネアンデルタール人の遺跡に見つかってこなかったことから、ネアンデルタール人には言語能力がないと考えられてきた。

ところがフランスのシャテルペロニアン遺跡で見つかった、化粧や装飾の跡をきっかけとして、ネアンデルタール人もシンボルを使う能力があったとする研究者が増えてきた。その後、主にスペインで、現生人類がまだヨーロッパ進出を果たしていない前の洞窟に原始的ではあるが絵画が見つかり、ネアンデルタールも言語を持っていたという考えを勢いづかせている。

ただ、多くの洞窟は、現生人類にも使用されたことから、本当にネアンデルタール人由来かどうかは現在も議論が続いている。

今日紹介する、「U-Th dating of carbonate crusts reveal Neandertal origin of Iberian cave art(イベリア地方の洞窟の炭酸塩皮膜のウランートリウム法での年代測定により洞窟のアートがネアンデルタール人由来であることを明らかにする)」とタイトルのついた論文は、鍾乳洞の炭酸塩蓄積を利用したうまい方法で年代を測定した研究で、今日出版のScienceに掲載された。

この研究のハイライトは、洞窟の絵そのものではなく、その前後に進んだ炭酸塩の蓄積を利用して、絵の上に重なっている炭酸塩を絵の表面まで順番に集め、それが出来た年代をウラン・トリウム法で測っている。言い換えると、描かれた絵が、その上に起こる地球の営みにより守られることを利用している。実際には、50以上のサンプルを検査し、最終的に絶対に現生人類の関与がないと断言できるシンボルの痕を5箇所特定している。

話はこれだけだが、ネアンデルタール人もシンボルを使う能力があったという強い証拠になるだろう。

ただ、これはネアンデルタール人にも言語能力があったということを意味しても、Verbal 言語(V言語)を持っていたことを意味するものではないと個人的には思っている。実際、シナイ半島で少なくとも10万年の間現生人類と対峙するためには、同じ能力が必要だ。また、ネアンデルタールも大型動物の狩りを行って、火を使い、さらにヨーロッパという厳しい環境で生きていたことを考えると、当然高い言語能力が必要だったはずだ。

したがって、V言語は現生人類にも、ネアンデルタール人にもいつかは誕生していたはずだが、幸いにも現生人類に先に誕生した。この結果、5万年前シナイ半島での均衡が破れ現生人類がネアンデルタール人の暮らす領域に進出、結果35000年ごろまでにネアンデルタール人は絶滅することになる。

なぜ現生人類にV言語が先に現れたのかについては、例えば我々が生後の脳発達に強く依存していることなど、いくつも理由が挙げれるが、今日はこのぐらいにしておく。この分野はいつも面白い。
カテゴリ:論文ウォッチ

2月23日:Fragile X症候群の発病メカニズムの完全解明と治療のための前臨床実験(3月22日発行予定Cell掲載論文)

2018年2月23日
SNSシェア
Fragile X症候群(FXS)はX染色体上のFMR1遺伝子に存在するCGGコドンの数が増加することにより発症する、いわゆるリピート病だが、ハンチントンなどのCAGリピート病のように長いグルタミンストレッチを持つ異常たんぱく質が合成されて細胞を殺すのではなく、CGGリピートによりFMR1遺伝子の発現自体がオフになってしまうため、シナプスの可塑性の異常が起こり、自閉症スペクトラムが起こる病気で、男の子の遺伝的自閉症の中では最も頻度が多い。

患者さんのES細胞を用いたイスラエルの研究からCGGがメチル化され、ヘテロクロマチンが形成されていることが示され、遺伝子発現がCGGリピートが誘導するエピジェネティックなメカニズムで抑制されることが原因と考えられてきたが、このリピートを挿入したマウスモデルでは病気を再現できず、この説明が証明できたわけではない。

今日紹介するマサチューセッツ工科大学Jaenisch研究室からの論文は、FXS患者さんからのiPSを用いてFMR1遺伝子上のメチル化を消去することで、細胞レベルの異常が治ることを示した力作で3月22日発行予定のCellに先行発表されている。タイトルは「Rescue of Fragile X Syndrome neurons by DNA methylation editing of FMR1 gene(FMR1遺伝子のDNAメチル化の編集によりFragile X症候群の神経細胞の症状を正常化する)」だ。

クリスパ−/Casの技術を用いることで、どんなたんぱく質でもゲノムの特定の場所にリクルートすることができる。Jaenischのグループは、遺伝子切断機能を除いたCas9にDNAのメチル化を外すTet1遺伝子を結合させたキメラ分子を用いて、ガイドRNAで示されるゲノム部位のメチル化を除去する方法を開発している。この研究では、レンチウイルスベクターに組み込んだキメラ遺伝子とガイドRNAをFXS患者さん由来のiPSに導入することで、期待どおりFMR1遺伝子上のCGGのメチル化を除去し、FMR1遺伝子の発現を回復できることを明らかにしている。

この結果、FXSがCGGリピートのメチル化によりFXSが発症するというメカニズムが完全証明された。あとは、この方法を用いた治療可能性のための様々な基礎データを集めている。

治療に向けた問題点は、もしキメラTet1分子により無関係な場所のメチル化が外れると、ガンなど様々な問題が起こると予想される。したがって、ガイドRNAで指示した場所以外のメチル化は影響されないことを、全ゲノムレベルのメチル化DNA解読等で調べ、無関係な場所のメチル化が外れる危険性は最小限にとどまることを示している。

次に、エクソン上のCGGのメチル化が外れることで、FMR1遺伝子のプロモーターのヒストン標識がヘテロクロマチン型から、on型のクロマチンに変化することで転写が元に戻ることを示している。この結果はこのシステムが、DNAメチル化がガイドするエピジェネティックな調節を調べる意味でも優れたモデルになることもうかがわせる。

次に、実際の治療ではレトロウイルスベクターを使わない場合が想定されるので、編集したメチル化状態がiPSでどの程度続くかを、Cas9阻害剤を用いて調べ、かなり長期に新しいメチル化状態が続くことを示している。

最後に、こうしてメチル化状態を編集したiPSから神経細胞を誘導し、正常人iPS由来の神経細胞と遺伝子発現にほとんど違いがないこと、編集した神経細胞をマウス脳に移植すると正常機能を示すこと、さらに分化して分裂が終わった神経細胞に対しても同じ方法でFMR1遺伝子の発現を半分ぐらいは回復させられることを示し、今後の治療法開発に重要な基礎データを示している。基本的にはマウスを使ったレベルの前臨床研究は終わっていると言えるように思う。

さすがJaenischの研究室からと思わせる質量ともに読み応えのある論文で、近々治療研究にまで進むという確信を持った。
カテゴリ:論文ウォッチ

2月22日 脊髄性筋萎縮症に対するNusinersen治療の効果(2月15日号The New England Journal of Medicine掲載論文)

2018年2月22日
SNSシェア
サイエンスが、昨年の10大ニュースに選んだ(http://aasj.jp/date/2017/12/24)のが、脊髄性筋萎縮症(SM)に対する遺伝子治療、Nusinersenだが、この臨床治験論文が2月15日号のThe New England Journal of Medicineに発表されたので紹介する。イタリアのCattolica del Sacro Cuore大学を中心としたチームから発表され、タイトルは「Nusinersen versus sham control in later onset spinal muscular atrophy(遅発型の脊髄性筋萎縮症に対するNusinersenの効果)だ。

Nusinersenの詳しい作用機序は省くが、アデノ随伴ウイルスベクターを使って短いRNA断片を発現させることでmRNAに働いてスプライシングを変化させ正常化させる効果を持つ遺伝子治療で、直接ゲノムに働くわけではない。しかし、これまで発表された、早い発症のSMに対する最初の治験では大きな効果が見られることが紹介された。この論文は、効果を遅発性のSMでも確かめるための多施設が参加する第3相治験の結果の報告だ。

この研究では179人のSMにかかった子供を集め、そのうち126人を選んで、84人にnusinersen投与、42人に偽薬の投与を行っている。髄腔注射なので、偽薬の場合にもこの注射を行っている。実際の投与は、274日間で4回。15ヶ月で効果を判定し、その段階で偽薬群の子供も、Nusinersenの投与を受け、経過を観察している。

専門ではないので、効果判定に使われた指標HFMSEについて実感はないが、この指標を含むすべての検査で、大幅な機能改善が認められたという結果だ。髄腔内投与が必要なため、様々な副作用が現れることが予想される。実際、ほとんどの患者さんで、軽微な訴えは起こるが、すべて髄腔内投与に伴うものだ。一方、肺炎を含む深刻な副作用も、偽薬群の方が多いことから、結局は髄腔内投与によるものと考えられ、SMの症状が改善することで、重大な副作用も減ると期待できる。

結論的には、期待どおり第3相の治験でも半分以上の子供に絶大な効果が認められた。詳しく見ると、症状が出てからできるだけ早く治療を始めた方が効果が高く、また発症年齢が早いほど効果が高いようだ。

めでたしめでたしの結果だが、読んだ後やはり気になるのは、治療費のことだ。FDAに認可され最初の価格設定が数千万円に上ることがわかった。せっかく治験が終わっても、患者さんが治療を受けることができない状況がますます深刻になるとすると、医学研究の勝利どころではなくなる。これは保健でなんとかカバーすればいいという問題ではなく、新しい医療をどう利用可能なものにするのか、その上で製薬会社やベンチャー企業のインセンティブが維持されるのか、真剣に議論する時が来たことを示している。議論は簡単でなく、まとめるのは難しい。だからこそ一刻も早く我が国でも、議論を始めてほしい。
カテゴリ:論文ウォッチ