6月4日:化学反応を構想する(5月19日Nature掲載論文)
AASJホームページ > 新着情報

6月4日:化学反応を構想する(5月19日Nature掲載論文)

2016年6月4日
SNSシェア
   生命誕生のプロセスを考えるとき最も重要な知識は有機化学だ。特定の有機化合物を研究するとき、生物学者は生物が進化で獲得してきた酵素反応さえあればどんな複雑な有機化合物も合成可能だと信じている。この典型が昨年ノーベル賞に輝いた大村さんの研究だ。すなわちこの研究のハイライトは、必要な化合物を求めて、それが可能になっている生物を探索する苦労話が中心になる。大村さんが訪れたあらゆる場所の土を集めて抗生物質を合成する生物を探した苦労話はマスメディアで紹介され記憶に新しい。ただ21世紀の若者が、いくらマスメディアが持ち上げたからといって、同じ苦労話を目指すとしたら問題だ。有機物を生命の力を借りずに合成する方法を開発することが本当ははるかに重要な課題だ。ただ残念ながら、この課題は生物学者が最も苦手にするところで、有能な有機化学者の育成が重要になる、こうして育った有機化学者は、21世紀の課題、無生物から生命を合成する研究に欠かせない。
  今日紹介する5月19日号のNatureに掲載されたハーバード大学の論文は、人工的な有機合成のための有機化学の重要性を十分に語る研究だ。タイトルは「A platform for the discovery of new macrolide antidiotics(新しいマクロライド系抗生物質発見のための基盤)」だ。
  紹介しようとする人間が最初から言い訳するのも見苦しいが、実を言うと生物学で育った私にとって、ここに示されているデータ(すなわち化学反応式)の詳細は理解できているわけではない。それでも、この研究の重要性はよくわかるので、私がわかる範囲でぜひ紹介したいと思った。
  細菌や植物から得られる抗生物質は一種の有機化合物だが、有機化学者の努力で、多くの抗生物質は生物の力を借りずに合成できるようになっている。ただ中には、今でも合成が難しく合成を生物に頼っているものも多い。そのうちの一つがマクロライド系の抗生物質で、今も完全合成が難しい。それはそれでいいのではと思うが、完全合成ができないと、新しいマクロライド化合物は全てエリスロマイシンから始める必要がある。このため、スタートに用いるエリスロマイシンの構造に制限され多様な派生化合物構造を作ることができない。このため、耐性菌に対抗するための化合物のレパートリーが限られてしまう。この課題に挑戦したのがこの研究だ。
   様々な試行錯誤の結果だろうが、著者らはエリスロマイシンを含むマクロライド系化合物は、14-membered azaketolideを中間体として用いることで完全合成できることを示している。論文ではまず単純な合成ブロックとなる化合物から14-membered azaketolideを合成する経路について示している。この方法のハイライトは、エリスロマイシン人工合成をこれまで阻んでいた大環状化反応を安定的に可能にしたことで、この結果14-membered azaketolideの合成ができるようになった。   次に14-membered azaketolideから始めることで、様々なマクロライド系化合物を人工合成することが可能であることを示している。実際、新しく開発した方法で300種類以上のマクロライド系化合物を合成し、こう生物としての活性があるか調べ、実に合成した83%の化合物が構成活性を持ち、そのうち幾つかは新しいマクロライド系抗生物質として有望であることを示している。
  示されている化学反応式については理解できたわけではないが、それでも人工的に合成する経路を開発することで、生物に頼るよりははるかに多様なマクロライド系の化合物が合成できるようになり、新しい抗生剤の基盤となることはよくわかった。
   パストゥール以来、無生物から生物が生まれることは否定されてきた。もちろん、当時のように腐った肉から短期間で生命が発生することは否定できても、38億年前に長い時間をかけてパストゥールが否定した過程が起こったことは確かだ。ぜひ多くの有機化学者が、この分野の研究発展にも貢献して欲しいと期待する。
カテゴリ:論文ウォッチ

6月3日:米国に労働党が存在しないわけ:社会学の論文を読んでみる(American Sociological Review掲載総説)

2016年6月3日
SNSシェア
   5月31日不況についての論文紹介を書いたあと文献を眺めていたら、1930年代の大恐慌と政治についての面白い論文を見つけた。カナダ・マクギル大学の社会学者Barry Eidlinの論文でタイトルは「Why is there no labor party in the United States ? Political articulation and the Canadian comparison, 1932 to 1948(なぜ米国には労働党がないのか?政治的統合の役割とカナダとの比較)」だ。問われてみれば、サンダースが指名争いでクリントンを脅かせている米国に、サンダース支持の受け皿になる労働党がないのは確かに不思議で、社会学者に限らず人を惹きつけるタイトルだ。
   読んでみるとさすが社会学論文、イントロダクションにはマルクス,エンゲルス、カウッキーなどの引用がならぶ。扱っている問題から言えば、当然と言えば当然の引用だが、変に感心してしまう。さらに驚くのは、この論文のライトモチーフとしてイタリア共産党のアントニオ・グラムシの言葉「政治的にいえば一般大衆は政党に組織化されて初めて一般大衆として現れる」が、掲げられていることだ。私自身は懐かしさもありついつい引き込まれてしまった。
   さて論文だが、米国、カナダ両国政府や労働組合などから100年以上にわたる様々な統計データを得て参考にしているが、後は当時の政治状況などを米国とカナダで比べ、様々な可能性を考察した後自分の考えを述べたに過ぎないと言っておこう。
  問題提起として、1800年後半から現在まで、独立左翼政党がどの程度支持を得ているか調べたグラフが示される。これによると、大恐慌前までは米国もカナダも、独立左翼政党を支持する集団がいた。にもかかわらず、大恐慌後米国から独立左翼政党の支持者が完全に消え、現在に至っている。一方カナダでは年度により変化はあるが、独立左翼政党は20−30%の支持が続いている。なぜこの差が生まれたのか?この間、都市への人口集中、農村人口の低下、労働者の組織化は両国で同じように進んでいるので、社会経済的条件でこの差を説明するわけにはいかない。
  したがって、この差の原因について、これまで両国の国民性の違い(例えば米国は共和主義で、個人の自由を優先する)といったソフトな面に焦点を当て説明されることが多かったようだ。詳細は省くが、この研究では幾つかの有力な説を俎上に乗せ、いずれの説も根拠が乏しいとして論破している。
      その上でこの著者は、国民性や政治風土は確かに制約因子として働いていても、最終的な決定因子になりえず、「一般大衆は党派として組織された時に初めて一般大衆として現れる」とグラムシが語るように、大恐慌に直面した米国、カナダの各政党が労働者や農民に対してとった政策が、左翼に対する両国の一般大衆の支持の差を生み出したと結論する。即ち、声なき声が党派で組織化されてると、同じ大衆でも違う声を出すという結論だ
論点を箇条書きにすると、
1) 大恐慌以前は米国でも労働者や農民に支持される独立左翼政党は存在した、
2) しかし、労働組合主導で政党が誕生することはなく、例えば米国の労働組合の中には共和党を支持する組合があった。
3) このような状況の中で、大恐慌により両国の労働者、農民は厳しい状況に直面し、政府に対する抗議活動が高まった。
4) この抗議に対して、民主党ルーズベルトはニューディール政策を打ち出し、有名な「忘れられた人たち」と題する演説で、民主党が都市労働者や農民を代表していることを訴えることで、労働者、農民の運動を民主党に合同し、取り込みに成功した。
5) 一方カナダでは、保守党だけでなく、既存の政党は労働者や農民の抗議運動を抑圧する方向に動いたため、政党から除外された労働者・農民はオルタナティブとして独立した左翼政党を形成する(当時の協同連邦党、現在の新民主党)
  結構長い論文で、他にも様々な議論がなされているが、要するに大恐慌というストレスに晒された労働者、農民をアメリカでは既存の政党(民主党)が積極的に取り込んだため、オルタナティブとしての独立左翼的政党の成立が抑制されたという結論だ。論文の中では、この考えを支持する歴史的事実が具体的に紹介されているが(例えば、ミネソタ州では恐慌前は農民労働党が存在し、選挙で勝利することもあったが、恐慌後は消滅する)、詳細は省こう。いつも理解が難しい政党と大衆の関係を見るときの一つの視点を学んだ気がする。
   ただ私見だが、米国とカナダの差が全てニューディール政策での労働者の取り込みに起因するかどうかは疑問だと思う。特に今回のアメリカ大統領選挙を見ていると、大統領選挙という特殊な制度にも支えられているように感じる。
   欧州やカナダをみると、例えば緑の党のように、既存の政党に無視された層が、新しいオルタナティブを政党として成長させている。フランス「国民党」、オーストリアの「自由党」のような右派政党も既存政党から無視されたオルタナティブが成長した例だろう。
   一方現在のアメリカ大統領選挙での民主党のサンダースや共和党のトランプを見ると、本来ならオルタナティブとして既存政党に対抗する運動が、党の活動として完全に吸収できるように設計されている。一見わかりにくい大統領選挙の仕組みも、この論文から学んだ観点から見ると、理解できた気になる。その意味では面白い論文だった。機会があればこれに懲りず、社会学や経済学の論文も紹介した音思っている。
カテゴリ:論文ウォッチ

6月2日:メラノーマ治療の一例報告(5月30日号The Journal of Experimental Medicine 掲載論文)

2016年6月2日
SNSシェア
  今日紹介するシアトル・フレッドハッチンソンガンセンターからの論文が掲載されたThe Journal of Experimental Medicineはロックフェラー大学から発行されている伝統ある実験医学のトップジャーナルの一つだ。免疫学に関わっていた頃はほぼ毎月目を通していたが、神戸に移ってからはたまにしか読まなくなっている。いずれにせよ、卒業してからこれまで、ほぼ40年にわたって付き合ってきたが、これまで患者さんの1例報告が掲載されているのを見たことはなかった。ところが今日紹介する論文は、StageIVの一人のメラノーマ患者さんの治療記録だ。タイトルは「Combined IL-21-primed polyclonal CTL plus CTLA4 blockade controls refractory metastatic melanoma in a patients (IL-21で感作したポリクローナル細胞障害性T細胞と抗CTLA4抗体の複合治療は難治性の点性メラノーマを制御する)」だ。
  一例報告を掲載するぐらいだからよほど価値のある報告だろうと読んでみると、確かに手術と免疫療法を続けても進行を止めることができなかったメラノーマが、今回の治療で完全寛解し、3年目からは全く治療なしで経過観察だけで再発なく5年目を迎えているという結果だ。一例報告をそのまま鵜呑みにしてはいけないとわかっていても、期待できる。
   ではどのような治療を受けたのか?最初に行われた治療は、メラノーマの発現するMART-1と呼ばれるペプチドに対する細胞障害性T細胞を誘導し、反応性細胞をクローン化して投与する治療だ。普通はクローン化することなくガン特異的キラーT細胞として移入されることが多いが、より確実な治療効果を求めてクローン化まで行い投与している。ところが期待に反し、この治療は全く効果がなく、移入した細胞もすぐ消滅してしまった。
  そこで、チェックポイント阻害治療としてCTLA4抗体の投与を始めたが、これもあまり効果ががない。実際、患者さんの末梢血のメラノーマペプチドに対する反応を調べているが、弱い反応しか見られない。
  そこで、今度は末梢血をMART-1ペプチドを用いてT細胞を刺激するとき、抑制性T細胞を完全に除いたあとのT細胞を刺激している。さらに細胞障害性T細胞の誘導力の強いIL-21と培養してキラーT細胞を増幅し、得られた細胞をそのまま患者さんに移入する治療を行っている。加えて、移入した細胞の活性が抑制されないように今度は最初から抗CTLA4抗体を同時に投与している。
  すると、治療開始後1ヶ月目からメラノーマが縮小しはじめ、約8ヶ月で完全消滅し、その後再発がないという結果だ。経過中の免疫反応は詳細にモニターされており、MART-1のみならず、多くのメラノーマ関連ペプチドに対する反応性のT細胞が出現していることが分かった。すなわち、IL-21処理により、抗原として用いたペプチド以外の様々な抗原に対するT細胞が誘導され、患者さんの体の中でさらに強力に育っていたことになる。事実、治療により患者さんの毛は白髪になってしまっていることから、正常のメラノサイトも殺すだけのキラーT細胞が誘導できたことになる。
   以上、たった一例の経験であっても、1)効果のあった治療となかった治療を比べることが出来ていること、2)完治していること、から重要性が認められたと思う。この治療法なら、コストもそこそこで、現実味がある。早急に症例数を重ねてほしいと思う。ただ気になるのは、この患者さんが手術や免疫療法を受けていても、標的治療を含む化学療法を全く受けていないことだ。実際には、ほとんどのメラノーマ患者さんは化学療法を受けている。従って、化学療法を受けた患者さんも同じ治療が可能かどうかも是非調べてほしいと思う。
  しかし、メラノーマの治療は百花騒乱の状態になってきた。この中から、早く確実な根治療法はどれか決めてほしいと思う。
カテゴリ:論文ウォッチ

6月1日T細胞抗原受容体の刺激とコレステロール(5月17日号Immunity掲載論文)

2016年6月1日
SNSシェア
   細胞が周りの細胞や、環境にある様々な分子に反応するために、細胞表面上には様々な分子が存在している。これらの細胞表面分子は、膜貫通部分(TM)を境界に細胞外部分と、細胞内部分に分かれ、細胞外から細胞内へのシグナルを伝えている。こんな当たり前の前置きから始めると、何を今更と言われそうだが、細胞膜を貫いて細胞表面に突き出している分子に必ず存在する短いTM部分が、分子の活性に大きな影響を持つなどとはあまり考えたことはなかった。
   今日紹介するドイツフライブルグ大学からの論文はTM部分にコレステロールが結合することでT細胞抗原受容体(TcR)のシグナル伝達機能が抑えられていることを示す研究で5月17日号のImmunityに掲載された。タイトルは「A cholesterol-based allostery model of T cell receptor phosphorylation (TcRリン酸化のコレステロール結合によるアロステリック効果)」だ。
   これまでTcRにコレステロールが結合していたこと、そしてT細胞表面のTcRには、刺激を受けにくい静止状態(TcRr)、すぐに刺激を伝達するプライム状態(TcRp)の2種類が存在していることもわかっていたようだ(私自身にとっては初耳だが)。著者らはこのTcRr とTcRpのスイッチがTM部のコレステロール結合にあるのではないかと着想し、TcR刺激前後でコレステロールと結合したTcRの割合を調べ、刺激によりコレステロールと結合したTcRの割合が減ることを確認、この可能性が高いことを確信している。
   あとは、この可能性を生化学的に詰める実験が行われ、1)リガンドと結合したTcRはコレステロールと結合できない、2)コレステロール結合部位が変異したTcRは細胞内でリン酸化を受けにくい、3)正常T細胞をコレステロール酸化酵素で処理しコレステロールの結合を抑えると、TcRはリン酸化されやすくなり、またシクロデキストリンでコレステロールを除去すると、T細胞の活性化が上昇する、4)コレステロール結合によるTcRリン酸化の低下は、コレステロール結合によりLcKリン酸化酵素がTcRに結合できなくなることによる、等の結果を示している。最後にこの結果に基づいて数理モデルを作成し、TcR、抗原(MHC)、そしてコレステロール結合の間の様々な状態から、T細胞反応を予測できる可能性を示している。
  話はこれだけだが、詳細な実験が行われており説得力が高い。私自身考えたことのなかった可能性だが、もしこれが正しいとすると、ガンの免疫療法、自己免疫病などの分子基盤を考えるとき、TMの変化についても考える必要があることを意味している。また、他のシグナル分子についても、同じようにTMの状態が興奮性に寄与していないかも興味がある。 
   もちろんTcR特異的な現象かもしれない。もともとTcR複合体は、抗原受容体と4種類のCD3分子が結合してできている複雑なものだ。おそらく、他の分子より微細なシグナルチューニングが必要だからだろうと思っていたが、TMへのコレステロール結合までこのチューニングに加わるとすると、T細胞操作による疾患治療は、様々な可能性を考えながら進歩させる必要があると感じた。
カテゴリ:論文ウォッチ

5月31日:不況とガン(5月25日号The Lancet掲載論文)

2016年5月31日
SNSシェア
   安倍首相が消費税再延長を決断したことがマスメディアを賑わせている。経済学者ではないので、そもそも日本経済をよくする処方箋など考えたことはないが、今回の決断に至るまでの報道を見ていると、安倍内閣の経済政策に政治家としての意識と責任が欠落しているように思える。
   信頼するブレーンもいるはずなのに、経済学者を呼んで「お勉強」というのも、確固たる政策がないのかと心配になる。権威を笠に着るのはコンプレッスの表れだ。しかも、お勉強の結果を、よせばいいのにサミットに提出して失笑を買ったようだ。そして、「お勉強」の結論が、絶対にないと明言した消費増税を延期し、財政出動で需給ギャップを埋めるというのも、無策の証明だ。しかも、失敗の原因は他国経済の下振れと言われてしまうと、我が国は独立国かと耳を疑う。
   政策を動員して、あらゆる事態に備えるのが政治ではないのか? 需給ギャップを名目に政府が借金を気にせずお金を使う「政策?」もこれまで延々と続けられてきた。それでもデフレ防止に失敗したことについては、お金の使い方が足りなかったと総括されてしまうと、この先どうなるのか本当に心配だ。
  安倍内閣が指摘した経済恐慌を匂わす指標も、政策との関係のない指標が多い。昨年ベストセラーになったトマピケは、限界税率が下がってお金持ちが富を独占しているピークが恐慌の兆候だと述べている。すなわち、不況前は一部の人に最大の富が集中しているときだ。これが正しいなら、税制改革こそ不況阻止につながる政策になる。
   いずれにせよ富が一部に集中した時不況に襲われて最も困るのは、余力のない一般庶民で、これを守る政策が政治家の腕の見せどころではないのだろうか。
  前置きが長くなったが、そんなことを教えてくれるロンドン大学からの論文を今日は紹介したい。タイトルは「Economic downturns, universal health coverage, and cancer mortality in high-income and middle-income countries 1990-2010: a longitudinal analysis (1990〜2010年の高所得国、中所得国での経済悪化、国民皆保険、そしてガン死亡率)」で、5月25日号のThe Lancetに掲載された。
  研究は、様々な統計データが公表されている高所得国、中所得国における、年度ごとの各ガンによる死亡率と様々な経済指標について多因子回帰分析を行った単純な研究だ。しかし、不況から国民を守る政策とは何かを改めて知ることができるタイムリーな研究だ。
   結果は2008年リーマンショック後の経済不況で失業が増えると、肺がんを除く全てのガンで死亡率が上昇する。特に治療可能なガンで死亡率が上昇することが明瞭に現れている。この傾向は高所得国も、低所得国も同じで、リーマンショックが世界的不況だったことがよくわかる。計算すると、リーマンショックにより約26万人のガン患者さんが、失わなくても良い命を失ったことになる。
   では政策介入余地はないのか?この条件で、この連関を断ち切るための条件を探していくと、ついに国民皆保険制度の有無でグループ分けをすると、国民皆保険制度のある国だけリーマンショックによるガン死の上昇が見られないことが明らかになった。すなわち、我が国でもガン死の上昇は食い止められたことになる。一方、この不況の源となったアメリカでは、不況で多くの人が医療保険から締め出され、ガン死が上昇した。
   当たり前のことだと誰もが納得する結果だが、他国経済に影響されず国民を守ることとは、基本的権利の格差解消であることがよくわかる論文だ。21世紀を迎えたあと公的債務残高は倍増している。私たちを守ってくれる国民皆保険は維持できなくなるのではと心配している今日この頃だ。ぜひ空虚な言葉と約束でない、わかりやすい政策を語ってほしい。
カテゴリ:論文ウォッチ

5月30日:脳活動の解剖学(6月16日発行予定Cell掲載論文)

2016年5月30日
SNSシェア
   21世紀に登場した生命科学を変革する新しい技術をあげるとすると、iPS, CRISPR/CASそしてKarl Deisserothの光で脳の活動を制御する光遺伝学をあげることができるだろう。革新的な技術は急速に利用が広がるだけでなく、技術が技術を呼んで拡大を始める。特に技術的制約で研究手法が限られていた脳研究分野では、これらの技術により新しい段階に移行しつつあるように思える。
   ただこのKarl Deisserothさんの頭の中にはまだまだアイデアが溢れているようだ。今日紹介する論文は一定の行動によって活動した脳細胞を標識する技術が開く可能性を全てやって見せた研究で6月16日号発行予定のCellに掲載された。タイトルは「Wiring and molecular features of prefrontal ensembles representing distinct experiencees(異なる経験に対応する前頭前神皮質神経細胞セットの回路と分子的特徴)」だ。
   この研究で使われた方法は特に目新しいものではない。FosやArcといった、興奮した神経で誘導される遺伝子の上流に4TMで誘導される組み換え酵素を発現させ、特定の行動によって活性化された細胞だけをパーマネントにラベルする方法だ。ただ、神経興奮のスナップショットを撮るだけならカルシウムチャンネルを使った面白い報告もある(Fosque et al, Science 347:755, 2015)。ただこの研究の目的は活動神経の記録にとどまらず、この技術を核に脳活動をどうすれば総合的に分析できるかだ。
  この研究では神経細胞の局在がはっきりしないため、機能と解剖の相関が付きにくかった前頭前皮質で、コカインに反応する神経と足の電気ショックに反応する神経がどのように分布し、回路形成し、生理学的に働いているか明らかにすることを問題に設定している。
   興奮にかかわらず細胞が標識されてしまうこの方法の問題点を、通常のタモキシフェンの代わりに低濃度で早く効果がある4MTに変えて解決している。また、脳構造を保ったまま細胞を観察するため、脳を透明化する技術を改良して組み合わせている。これにより、それぞれの刺激に反応する細胞が区別できることが示されている。これを見ると、Deisserothさんの研究室は核になる技術の開発にとどまらず、小さな改良を不断に重ねて研究していることがわかる。
  次に神経軸索を可視化できる標識分子を用いて、それぞれの細胞の投射回路を調べると、それぞれの刺激により興奮する神経は異なる部位に投射しているのがわかる。
  ただ、ここまでは凡人にも思いつくのだが、Deisserothさんのアイデアはこれにとどまらない。次に発現するとリボゾームを標識できる方法を用いて興奮細胞だけで転写されているmRNAを特定できる方法を開発し、NPAS4と呼ばれる分子がコカイン刺激でのみ発現していることを見出している。Deisserothさんの脳が本当に総合的なことがよくわかる。
  最後にこの生化学的基盤を生理学と関連づけるために、さらに得意の光遺伝学を組み合わせて、コカイン刺激とNpas4の発現が相関し、この時興奮した細胞を光刺激でもう一度刺激すると、忌避行動を示すことを明らかにしている。
   発見だけから見ると、コカイン刺激によるNpas4遺伝子の発現とまとまってしまうかもしれないが、もちろん話はそれをはるかに超えている。ディスカッションでも、これに加えて惜しげも無く様々な将来のアイデアを披露して、締めくくっている。こんなラボに属しているだけで、若い人の脳も活性化されるだろう。そしてそれが新しい連鎖反応を生み、優れた研究者が育つ。
カテゴリ:論文ウォッチ

5月29日:言語の基盤(Scientific Reports :DOI: 10.1038/srep25887 掲載論文)

2016年5月29日
SNSシェア
   言語の起源については大きく二つの見方が存在する。一つは、言語を可能にした人間特有の脳構造、そしてその背景にある言語特有のゲノム構造、が存在するという考え方だ。この説を証明しようと、ヒトだけに存在する言語遺伝子の探索が行われている。また、人間は生まれついて言語を構成する能力を持っているというチョムスキーの「生成文法」概念も、ヒトだけに言語の脳回路が突然現れたことを前提にした説だと考えられる(私見)。   これに対し、脳回路や遺伝子にまったく新しい何かがつけ加わって言語が生まれたのではなく、多くの動物に備わるコミュニケーションが徐々に進化した結果として言語があるとする見方だ。私なりにこの見方を解釈すると、言語は、一定の行動パターンを特定の意味と対応するシンボルとして共有することに始まるという見方だ。言い換えると、行動パターンが脳内に特定のシンボルを呼び起こすことを可能にする脳回路の開発(生まれてから新たに起こる)が可能な脳構造の進化が言語の始まりになる。その後、人間だけで解剖学的に多様な音韻が可能になり、音が行動に置き換わったことになる
   今日紹介するドイツマックスプランク鳥類学研究所からの論文は後者の可能性を追求した研究でScientific Reportsに掲載されている。大上段に構えた魅力的なタイトルで「Unpeeling of the layers of language: Bonobos and chimpanzees engage in cooperative turn-taking sequences (言語の基盤を求めて:ボノボとチンパンジーは共同的発話のやりとりを行う)」だ。
   研究ではボノボとチンパンジーの集団を、異なる4箇所で観察して、親子が一定のジェスチャーの後、親の背中に子供が乗って移動が起こる状況を捉えて、どのようなコミュニケーションが存在するか調べている。コミュニケーション能力は脳回路に依存するが、これを基盤にシンボル化された行動パターンは各個体が学習する。したがって、特定の最終行動(この研究の場合は親の背中に乗って移動が始まること)がシンボル化されたジェスチャーは、動物種ごとに違うし、またそれぞれの群れで異なっている。それでも同じ最終結果を生み出す行動パターンには共通性が見られるはずだ。この共通の行動パターンを例えば「向き合って見つめ合い、それに答えるように手を伸ばし」と要素分解し、各要素と最終行動との回帰率を計算している。幸い、この論文はオープンアクセスで、行動のビデオも閲覧できる。面倒な話をするより、このビデオを見て貰えば、言葉こそ出ないが、親から、あるいは子供から話が始まり、相手が答え、最終的に子供が背中に乗って移動が始まる様子がよくわかる。このビデオに、自分でセリフをかぶせてみればいい。「他所に行こうよ」「今行くの」「そう今」「わかった行こう」。人間なら言葉で表現するやりとりが、ビデオを見ると確かにジェスチャーで交わされているのがわかる。そしてこのパターンは、ボノボとチンパンジーでかなり違っているだけでなく、住む場所にも影響されたパターンが存在している。また反応速度や対話の成立する距離はボノボの方が人間に近い。    話としてはこれだけで、「結局現象から推論しているだけだ」と厳しい評価もあるかもしれない。しかし、親子という関係で生まれたコニュニケーションに着目した点で説得力のある研究になっている。実は私も、言語起源については著者らと同じ考えを持っており、生成文法派ではない。とはいえ、このような観察研究の次の一手はなにか、この点についても面白い研究を期待して論文を漁っている。
カテゴリ:論文ウォッチ

5月28日:一本のmRNAの翻訳を可視化する(5月5日号 Cell掲載論文)

2016年5月28日
SNSシェア
   DNAからmRNAが転写され、mRNA上を結合したリボゾームが動きながら、tRNAが運んでくるアミノ酸を結合させ、タンパク質が作られることは、誰もが知っていることで、教科書や一般向けの本にも一本のmRNAに結合したリボゾーム上でペプチドが出来る様が描かれている。この絵はしかし、様々な結果を総合して想像して描かれたもので、実際の細胞の中で一本のmRNAからペプチドが翻訳される様子を連続的に見た人は誰もいない。
   それを可能にした研究が今日紹介するオランダ・科学芸術アカデミー研究所からの論文で5月5日号のCellに掲載された。同じ号に、ほぼ同じ内容の論文がハーバード大学から発表されているが、ここではオランダからの論文を紹介する。タイトルは「Dynamics of translation of single mRNA molecule in vivo (細胞内での一本のmRNA 分子の翻訳の動態)」だ。
   この技術の基盤になっているのが2014年11月2日にこのホームページで紹介したSunTag法という技術で(http://aasj.jp/news/watch/2368)、普通は細胞の外で働く抗体を、細胞の中で働くようにして、細胞内の標識分子(SunTag)に反応させる技術だ。
  研究ではこのSunTag認識抗体遺伝子と蛍光タンパク遺伝子を結合させたキメラ遺伝子と、SunTag配列を5’端に組み込んだ遺伝子を導入した細胞を用意し、蛍光顕微鏡で観察している。mRNAは5’端から翻訳されるため、このタンパク質が翻訳される時、まずSunTagから翻訳されペプチドは伸びていく。したがって、翻訳が始まった瞬間から成長するタンパク質を一分子レベルで捉えることができる。ただこれだけだと、細胞内にある全てのSunTagが染まってしまうので、翻訳されている途中のタンパク質を区別する必要がある。このため、翻訳するmRNAの3’端にRNA結合分子PP7が結合する配列を組み込んでおく。SunTag認識抗体と異なるカラーの蛍光タンパクで標識したPP7を同じ細胞で発現させると、mRNAの方を可視化することができる。すなわち、SunTagを認識する抗体と、mRNAを認識するPP7が同じ場所に存在する場合、翻訳が現在進行中と結論している。
  ただ、この仕掛けだけだと、mRNAが細胞内で動き回るため、ビデオ撮影が難しい。これを克服するため、蛍光標識したPP7に細胞膜にアンカーする配列を加えて、mRNAを可視化するとともに細胞膜に引き止めて動きを制限する仕掛けも加えている。こうしてようやく、一本のmRNA上で翻訳を開始してタンパク質が翻訳され、完成するとmRNAから離れていく様子をビデオ撮影することができるようになっている。
   この一本のmRNA上での翻訳をモニターする技術を使って、ほぼ70%のmRNAで転写が進んでいること、また一本のmRNAに10−25個のリボゾームが結合していることを、一本のmRNA上のSunTagの数から割り出している。
  経時的にモニターできると翻訳速度も測ることができ、リボゾームが1秒間に3コドンずつ動きながら翻訳を行っていること示している。他にも、mRNAに傷があると停止することや、ストレスでリボゾームのmRNA上の動きが遅くなる時、全てが同じようにスローダウンするのではなく、一部のリボゾームの動きだけが遅くなるといった、まったく新しい事実を明らかにしている。他にも、様々な実験を行い、翻訳についての疑問に答えているが、紹介は省く。
  すぐに教科書の図になる面白い研究だと感心した。またSunTag技術は他にも様々な目的で使われ始めており、細胞内の分子を見たり、操作する技術として用途は拡大するだろう。しかし我が国も一分子の動態の観察では高いレベルにあったと思うが、最近の状況はどうなのか少し気になった。
カテゴリ:論文ウォッチ

創薬研究への施策と活動への希少難病患者の期待 (その2 完) =地震により甚大な被害を受けた熊本大学発生医学研究所への寄付のお願い=

2016年5月27日
SNSシェア

 

5月12日付の本稿(その1)において( http://aasj.jp/news/navigator/navi-news/5219 )、日本医療研究開発機構(AMED)の「創薬支援ネットワーク」が、これまでに採択して支援した大学での創薬研究テーマ44件について製薬会社等にライセンス希望を募ったところ、結局契約は実質的に1件も成立しなかったとの新聞報道を伝えて、その原因の推察と希少難病患者やそれらを支援する我々医療関係者として、AMEDの創薬支援への期待とそれが採るべきこれからの方向と手段を提言した。

加えて本創薬支援ネットワークの支援テーマの1件として採択された熊本大学発生医学研究所江良択実教授による『ニーマンピク病C型(NPC)治療薬の開発』が、NPC患者のiPS細胞由来の肝細胞を用いての基礎研究を経て、現在前臨床段階で開発中であると紹介し、また当研究室が我が国では官民を通じて極少ない希少難病治療研究を重点的に推進しており、大きな希望と期待を寄せていると記した。

江良教授は、理化学研究所の創薬・医療技術基盤プログラムとも関係を持たれ、今年3月3-4日に同所横浜キャンパスで開催された理研シンポジウム『第3回創薬ワークショップ アカデミア発創薬の到達点と課題』において、「難治性疾患由来iPS細胞を使った創薬研究」との演題で講演された。難病患者の血液細胞からiPS細胞を作り、疾患の標的となる細胞に直接誘導・解析するとの難病研究のツール(疾患スクリーニング、創薬ターゲット)の提供であるが、その一例として進行性骨化性線維異形成症(FOP)の治療薬の創薬研究の現状を話された。

FOPは、小児期から全身の筋肉やその周囲の膜、腱、靭帯などが徐々に硬くなって骨に変わり、このため手足の関節の動く範囲が狭くなったり、背中が変形したりする進行性の疾患で、国内の患者数は6-70人という希少難病である。本疾患の原因遺伝子は解明されているものの、現状は病気の進行を緩めたり止めることが不可能で、早急な治療法や治療薬の創出が特に切望されている。

当シンポジウムは発表内容に関して機密保持の契約締結を条件とするクローズド講演会であったので、具体的内容は避けるが、iPS細胞由来の分化マーカーを用いるin vitroスクリーニング法とiPS細胞の体内挙動を解析するin vivoの評価系を共に用いており、既にFOP治療薬としての有望な候補化合物を選択されている。早急な臨床開発、薬事承認、健保収載を経て、1日でも早くFOP患者に届くことを待ち望んでいる。

かかる状況の下、4月14日に起こった一連の熊本地震によって、余震が収まらず未だに生命や生活が脅かされている市中の被害に加えて、熊本大学でも発生医学研究所をはじめ甚大な被害を負っている(http://www.imeg.kumamoto-u.ac.jp/message2016may2/ )。決死の所員の復旧活動によって、研究室周りの整頓は大分進んでいるようであるが、16日の本震による中高層階研究室内の大型測定装置や実験装置の倒壊や落下による損壊については、復旧や更新が当面期待できず、本格的な実験再開はできていないと推察される。

熊本大学発生医学研究所における難病に関する基礎から臨床の研究は、実力、人材、施設、歴史から見て世界的にも超一流で、特に希少難病の治療法、治療薬に関しては、国内では数少ない研究拠点であるので、これが今回の地震によってその業務が一日たりとも停滞や遅延することは、ここからの成果を待ち望む難病患者にとっても大変な打撃と失望で、一日も早い復帰・復旧を心から切望している。

 

希少難病患者やその家族・支援者として、さらにはその現状に関心を持たれる一般市民にとって、現在同研究所の活動の早期復旧に手を差し伸べ得る唯一の手段は、寄付しかないと思われます。

熊本大学発生医学研究所の震災からの復旧支援には、そのホームページ(http://www.imeg.kumamoto-u.ac.jp/kihu2016/#5 )から「発生医学研究所教育研究支援事業」として、クレジットカードで簡便・確実に寄付することができます。本寄付は所得税法上の特定寄付金に該当し、後日大学から郵送される「寄付金証明書」により、簡便・容易に所定の大幅な所得税の減免処置が受けられます。

私達からも、同発生医学研究所の活動による治療薬のできるだけ早期の創出と供給を待ち望む希少難病患者の期待に沿えるよう、広く一般市民の皆様からの同研究所への寄付をお願いいたします。  (田中邦大)

5月27日:メラトニンと糖尿(6月14日号Cell Metabolism掲載論文)

2016年5月27日
SNSシェア
   メラトニンは松果体から分泌されるホルモンで、網膜からの光刺激が低下すると分泌が高まることで、私たちの体を概日サイクルに合わせる働きをしている。このことから、時差ぼけの解消の目的で服用される。実際、メラトニンというとすぐに時差ぼけと結びついてしまって、作用についてはなんとなく体のバランスといった漠然とした捉え方をしてしまう。しかし、メラトニン受容体の構造から考えると、細胞内サイクリックAMP合成を抑制するれっきとしたホルモンで、受容体を持つ細胞ごとにその影響を見定めないと、気楽に飲んでいい薬かどうか本当は心配だ。
   今日紹介するフィンランド・ヘルシンキ大学からの論文はメラトニンがすい臓ベータ細胞のインシュリン分泌を抑えることを示して、メラトニン服用について注意を促す研究で6月14日号のCell Metabolismに掲載された。タイトルは「Increased melatonin signaling is a risk factor for type 2 diabetes(メラトニンシグナルの上昇は2型糖尿病のリスクファクターになる)」だ。
   糖尿病の遺伝子多型を調べる研究はわが国を含め盛んに行われ、今や100以上の多型が糖尿病と関連するとしてリストされている。しかし、一部のすい臓発生とインシュリン遺伝子発現に関わる遺伝子を除くと、リストされた多型のほとんどは明確な因果性を突き止めるところまでは至っていない。この中の一つが欧米では3割に見られるメラトニン受容体B(MTNR1B)遺伝子座にある一塩基多型で、Cの代わりにGを持つと糖尿病リスクが上がる。このグループはこれまでもこの多型について研究を続けてきている。
   この論文では、まず膵島移植ドナー細胞204例を調べ、G型を持つとMTNR1B遺伝子の発現が上昇することを見つけている。すなわちこの多型は、遺伝子発現調節領域の多型で、おそらくCからGへの変化で、NeuroD結合サイトが新たに生まれて、MTNR1Bの転写が上昇するからだと結論している。
   次に、インシュリンを分泌しているベータ細胞株にMTNR1Bを強制発現させて調べると、メラトニンはインシュリンの分泌を受容体の発現量に応じて低下させることを示している。また、これがグルコースにより誘導される細胞内cAMP濃度の上昇を抑える結果であることも示している。このことから、メラトニンはもともとベータ細胞の細胞内cAMP上昇を抑えてインシュリン分泌抑制を行うが、MTNR1B発現の高いG型の人ではこのメラトニンの効果が倍加していることを示している。
  そこで、MTNR1B遺伝子が欠損したマウスモデルを調べると、ベータ細胞数が増加し、インシュリン分泌が上昇していることが確認出来る(体全体のインシュリン感受性を変化させることで、血中ブドウ糖濃度は変化していない)。
  最後に人間に戻って、CC型とGG型の人に3ヶ月メラトニンを服用してもらい、GG型の人はインシュリン分泌及びインシュリン反応性の両方が強く抑制されていることを明らかにしている。
  以上の結果から、メラトニン自体はインシュリン分泌を抑制する効果があること、またその効果はGGを持つ人に強く現れることから、メラトニン服用にあたっては自分がどのタイプか調べるのが大事なことがわかる。さらに、メラトニン分泌は時差ぼけだけでなく、夜勤シフトなどで起こることから、このような労働に従事するときもこの多型をあらかじめ調べることが重要になる。もちろん、糖尿病検査や治療にあたっても、この多型の頻度を考えると、常に念頭に置いて検査を行うことが重要だ。例えば、この多型ではcAMP濃度上昇が抑えられるため、cAMP濃度を上昇させるインクレチンは他の糖尿病薬よりよく効く可能性がある。
   このように、遺伝子多型と疾患の因果性が明らかにされると、臨床現場に様々な変革をもたらすことがわかる。プレシジョンメディシンは一歩一歩実現に近づいている。
カテゴリ:論文ウォッチ