2016年5月27日
5月12日付の本稿(その1)において( http://aasj.jp/news/navigator/navi-news/5219 )、日本医療研究開発機構(AMED)の「創薬支援ネットワーク」が、これまでに採択して支援した大学での創薬研究テーマ44件について製薬会社等にライセンス希望を募ったところ、結局契約は実質的に1件も成立しなかったとの新聞報道を伝えて、その原因の推察と希少難病患者やそれらを支援する我々医療関係者として、AMEDの創薬支援への期待とそれが採るべきこれからの方向と手段を提言した。
加えて本創薬支援ネットワークの支援テーマの1件として採択された熊本大学発生医学研究所江良択実教授による『ニーマンピク病C型(NPC)治療薬の開発』が、NPC患者のiPS細胞由来の肝細胞を用いての基礎研究を経て、現在前臨床段階で開発中であると紹介し、また当研究室が我が国では官民を通じて極少ない希少難病治療研究を重点的に推進しており、大きな希望と期待を寄せていると記した。
江良教授は、理化学研究所の創薬・医療技術基盤プログラムとも関係を持たれ、今年3月3-4日に同所横浜キャンパスで開催された理研シンポジウム『第3回創薬ワークショップ アカデミア発創薬の到達点と課題』において、「難治性疾患由来iPS細胞を使った創薬研究」との演題で講演された。難病患者の血液細胞からiPS細胞を作り、疾患の標的となる細胞に直接誘導・解析するとの難病研究のツール(疾患スクリーニング、創薬ターゲット)の提供であるが、その一例として進行性骨化性線維異形成症(FOP)の治療薬の創薬研究の現状を話された。
FOPは、小児期から全身の筋肉やその周囲の膜、腱、靭帯などが徐々に硬くなって骨に変わり、このため手足の関節の動く範囲が狭くなったり、背中が変形したりする進行性の疾患で、国内の患者数は6-70人という希少難病である。本疾患の原因遺伝子は解明されているものの、現状は病気の進行を緩めたり止めることが不可能で、早急な治療法や治療薬の創出が特に切望されている。
当シンポジウムは発表内容に関して機密保持の契約締結を条件とするクローズド講演会であったので、具体的内容は避けるが、iPS細胞由来の分化マーカーを用いるin vitroスクリーニング法とiPS細胞の体内挙動を解析するin vivoの評価系を共に用いており、既にFOP治療薬としての有望な候補化合物を選択されている。早急な臨床開発、薬事承認、健保収載を経て、1日でも早くFOP患者に届くことを待ち望んでいる。
かかる状況の下、4月14日に起こった一連の熊本地震によって、余震が収まらず未だに生命や生活が脅かされている市中の被害に加えて、熊本大学でも発生医学研究所をはじめ甚大な被害を負っている(http://www.imeg.kumamoto-u.ac.jp/message2016may2/ )。決死の所員の復旧活動によって、研究室周りの整頓は大分進んでいるようであるが、16日の本震による中高層階研究室内の大型測定装置や実験装置の倒壊や落下による損壊については、復旧や更新が当面期待できず、本格的な実験再開はできていないと推察される。
熊本大学発生医学研究所における難病に関する基礎から臨床の研究は、実力、人材、施設、歴史から見て世界的にも超一流で、特に希少難病の治療法、治療薬に関しては、国内では数少ない研究拠点であるので、これが今回の地震によってその業務が一日たりとも停滞や遅延することは、ここからの成果を待ち望む難病患者にとっても大変な打撃と失望で、一日も早い復帰・復旧を心から切望している。
希少難病患者やその家族・支援者として、さらにはその現状に関心を持たれる一般市民にとって、現在同研究所の活動の早期復旧に手を差し伸べ得る唯一の手段は、寄付しかないと思われます。
熊本大学発生医学研究所の震災からの復旧支援には、そのホームページ(http://www.imeg.kumamoto-u.ac.jp/kihu2016/#5 )から「発生医学研究所教育研究支援事業」として、クレジットカードで簡便・確実に寄付することができます。本寄付は所得税法上の特定寄付金に該当し、後日大学から郵送される「寄付金証明書」により、簡便・容易に所定の大幅な所得税の減免処置が受けられます。
私達からも、同発生医学研究所の活動による治療薬のできるだけ早期の創出と供給を待ち望む希少難病患者の期待に沿えるよう、広く一般市民の皆様からの同研究所への寄付をお願いいたします。 (田中邦大)
2016年5月27日
メラトニンは松果体から分泌されるホルモンで、網膜からの光刺激が低下すると分泌が高まることで、私たちの体を概日サイクルに合わせる働きをしている。このことから、時差ぼけの解消の目的で服用される。実際、メラトニンというとすぐに時差ぼけと結びついてしまって、作用についてはなんとなく体のバランスといった漠然とした捉え方をしてしまう。しかし、メラトニン受容体の構造から考えると、細胞内サイクリックAMP合成を抑制するれっきとしたホルモンで、受容体を持つ細胞ごとにその影響を見定めないと、気楽に飲んでいい薬かどうか本当は心配だ。
今日紹介するフィンランド・ヘルシンキ大学からの論文はメラトニンがすい臓ベータ細胞のインシュリン分泌を抑えることを示して、メラトニン服用について注意を促す研究で6月14日号のCell Metabolismに掲載された。タイトルは「Increased melatonin signaling is a risk factor for type 2 diabetes(メラトニンシグナルの上昇は2型糖尿病のリスクファクターになる)」だ。
糖尿病の遺伝子多型を調べる研究はわが国を含め盛んに行われ、今や100以上の多型が糖尿病と関連するとしてリストされている。しかし、一部のすい臓発生とインシュリン遺伝子発現に関わる遺伝子を除くと、リストされた多型のほとんどは明確な因果性を突き止めるところまでは至っていない。この中の一つが欧米では3割に見られるメラトニン受容体B(MTNR1B)遺伝子座にある一塩基多型で、Cの代わりにGを持つと糖尿病リスクが上がる。このグループはこれまでもこの多型について研究を続けてきている。
この論文では、まず膵島移植ドナー細胞204例を調べ、G型を持つとMTNR1B遺伝子の発現が上昇することを見つけている。すなわちこの多型は、遺伝子発現調節領域の多型で、おそらくCからGへの変化で、NeuroD結合サイトが新たに生まれて、MTNR1Bの転写が上昇するからだと結論している。
次に、インシュリンを分泌しているベータ細胞株にMTNR1Bを強制発現させて調べると、メラトニンはインシュリンの分泌を受容体の発現量に応じて低下させることを示している。また、これがグルコースにより誘導される細胞内cAMP濃度の上昇を抑える結果であることも示している。このことから、メラトニンはもともとベータ細胞の細胞内cAMP上昇を抑えてインシュリン分泌抑制を行うが、MTNR1B発現の高いG型の人ではこのメラトニンの効果が倍加していることを示している。
そこで、MTNR1B遺伝子が欠損したマウスモデルを調べると、ベータ細胞数が増加し、インシュリン分泌が上昇していることが確認出来る(体全体のインシュリン感受性を変化させることで、血中ブドウ糖濃度は変化していない)。
最後に人間に戻って、CC型とGG型の人に3ヶ月メラトニンを服用してもらい、GG型の人はインシュリン分泌及びインシュリン反応性の両方が強く抑制されていることを明らかにしている。
以上の結果から、メラトニン自体はインシュリン分泌を抑制する効果があること、またその効果はGGを持つ人に強く現れることから、メラトニン服用にあたっては自分がどのタイプか調べるのが大事なことがわかる。さらに、メラトニン分泌は時差ぼけだけでなく、夜勤シフトなどで起こることから、このような労働に従事するときもこの多型をあらかじめ調べることが重要になる。もちろん、糖尿病検査や治療にあたっても、この多型の頻度を考えると、常に念頭に置いて検査を行うことが重要だ。例えば、この多型ではcAMP濃度上昇が抑えられるため、cAMP濃度を上昇させるインクレチンは他の糖尿病薬よりよく効く可能性がある。
このように、遺伝子多型と疾患の因果性が明らかにされると、臨床現場に様々な変革をもたらすことがわかる。プレシジョンメディシンは一歩一歩実現に近づいている。
2016年5月26日
セリン/スレオニンキナーゼの一つmTORは、様々なシグナル伝達経路と関係しており、一種のシグナル中継のハブとして多くの細胞の増殖や代謝に関わる重要な分子だ。正常の細胞で働いていても、一般の抗がん剤と同じで、増殖性の強いガンに対する薬剤になる。実際mTOR阻害剤が開発され、乳がんや腎癌に使われている。ただ例に漏れず、mTOR阻害剤も一定期間の後必ず薬剤耐性のがん細胞が現れ、効果が失われる。
今日紹介する米国スローンケッタリングガン研究所からの論文は、薬剤耐性がん細胞の出現を抑えるため、あまりに素朴で驚くアイデアを実現した研究でNatureのオンライン版に掲載された。タイトルは「Overcoming mTOR resistance mutations with a new generation mTOR inhibitor (新世代mTOR阻害剤で薬剤耐性突然変異を克服する)」だ。
現在使われているmTOR阻害剤には2種類あり、一つはFKB12との結合部位(FRB)を阻害する分子でラパマイシンがその一つだ。もう一つはキナーゼ部分の阻害剤でAZD8055だ。
この研究では、乳がん細胞をそれぞれの薬剤とともに長期間培養し、耐性を獲得したクローンのmTOR遺伝子配列を解析し、耐性獲得に必要な突然変異を特定している。期待通り、ラパマイシン耐性の場合はFRBに、AZD8055耐性の場合はキナーゼ部位に突然変異が起こっていることを確認される。また、同じ突然変異が治療前のがん細胞に存在することも確認している。すなわち多くの薬剤耐性細胞は、治療前から存在していることになる。
そこで思いついたのが、最初からそれぞれの部位を阻害してしまえば、ほぼ全てのガンを叩けるのではというアイデアだ。最初から二つの薬を併用するのも考えられるが、mTOR構造解析をすると、両部位は近くにあってポケットを作っている。すなわち、両方の薬剤を結合させてポケットに突っ込んだほうが高い親和性が出ると予想できる。すなわち、最初からラパマイシンとキナーゼ阻害剤を繋いだ2兎を追う薬剤を利用すれば、最初から存在する耐性ガンも含め、全てのガンを高い効率で叩くことができると期待される。
研究では、二つの薬剤をリンカーで結合させた薬剤RapaLinkを合成し、それぞれの薬剤に耐性を獲得した細胞の感受性を調べている。結果は期待通り、それぞれの薬剤に耐性を獲得したがん細胞を、比較的低い濃度のRAPA-Linkで全て殺すことができている。すなわち両方の薬を別々に投与するより、最初から結合させて使ったほうが、多くの種類のがん細胞を、高い効率で殺せるという結論だ。
臨床に使うためには、もちろん新しい薬剤として治験を行う必要があるが、素人考えでは、よりmTOR特異的になり、また活性も高いと思える。ただ、逆に正常の細胞への影響も強くなるような気もするが、期待して見守りたい。
2016年5月25日
アイスランドの国民と契約し、全国レベルでGWASゲノム解析を進め、疾患と相関する様々なSNPを明らかにしてきたdeCode社は最近アムジェンに買収されたが、研究レベルでは現在もdeCodeとして元気に活躍している。特にこれまで集めたDNA チップを用いたデータと国民規模の健康データに、全ゲノム遺伝子配列解析が加わり始め、通常研究が難しい生活習慣に関わる遺伝子多型を発見することが可能になってきている。
今日紹介する論文はその典型で、心筋梗塞を防ぐ遺伝子変異を発見した研究で5月23日号のThe New England Journal of Medicineに掲載された。タイトルは「Variant ASGR1 associated with reduced risk of coronary artery disease (冠動脈疾患リスク低下と相関するASGR1変異)」だ。
deCodeは血中のコレステロール値と相関するSNPを多く発見してきているが、今回は心筋梗塞リスクとの相関性が特に高いnon HDLコレステロール値と相関する遺伝子座に注目し、まず17番染色体上の7つのSNPを特定、その中の低いnon HDL値と相関する0.4%程度の頻度の遺伝子座に焦点を当てて研究を行っている。
この遺伝子座について全ゲノム配列解読を行い、シアル化されていない糖蛋白を補足し細胞内へ取り込む受容体遺伝子ASGR1遺伝子の4番目のエクソンに12塩基の欠失が入ると、non HDLを低下させることを明らかにしている。さらに、同じ欠失がデンマークやオランダ人にも存在し、やはりnon HDLを下げる効果があることを明らかにしている。この欠失はRNAスプライシング部位をずらせて、それに伴いASGR1分子機能も消失する。これらの結果から、ASGR1遺伝子が片方の染色体で欠失して量が減るとnon HDLが低下すると結論できる。この研究ではさらに、4塩基の挿入による同じ遺伝子の機能喪失でもnon HDLが低下することを示し、ASGR1分子機能低下とnon HDLの低下に因果関係があることを確認している。
最後に、心筋梗塞の発生率をこのASGR1遺伝子座を持つ人と対照群で比べると、男女ともこの遺伝子座を持つ場合に心筋梗塞のリスクが優位に低下している。すなわち、ASGR1遺伝子の活性が適当に低下したほうが、心筋梗塞になりにくいと言える。原因については、ASGR1の量が減ることで、肝細胞内のLDL受容体リサイクル過程が影響を受け、non HDLの肝細胞への吸収が変化すると説明している。
これまで疾患や様々な検査値と相関する数多くの遺伝子変異が報告されたが、それぞれの変異と疾患の納得いく因果関係を示すには、大規模で地道な研究が必要なことを論文を読んで改めて認識した。
2016年5月24日
大人のガンの多くではアミノ酸配列が変化する多くの突然変異が蓄積しており、そのうちの幾つかは「ガン特異抗原」としてガンに対する免疫反応を誘導していることが知られている。この免疫反応をさらに高めるのが免疫チェックポイント抑制治療だが、この治療が2割程度の患者にしか効果がないという事実は、ガン特異的抗原が存在していても、ガン患者さんでは免疫が成立できていないことを示している。この問題の一つの解決として、ガンのゲノム解析から多くの特異抗原を特定し、それをワクチンとして積極的に免疫する治療が試みられており、ここでも紹介した(
http://aasj.jp/news/watch/3176)。
今日紹介するノルウェー・オスロ大学からの論文は、他人のT細胞を使ってガン特異的抗原に対する反応を誘導し、その細胞から抗原に反応している受容体遺伝子を取り出し、ガン患者さんのT細胞に導入してガンを叩くという、さらに先を行く究極のテーラーメード医療で5月19日にScienceオンラン版に掲載された。タイトルは「Targeting of cancer neoantigens with donor-derived T cell receptor repertoires (第3者のT細胞から取り出したT細胞受容体を使ってガンのネオ抗原を叩く)」だ。
研究ではまずステージIVのメラノーマの遺伝子解析から計算される126種類のガン特異的抗原(ネオ抗原)から、HLA抗原と特に反応が強いと思われるペプチド20種類を選び、患者以外の人から採取したT細胞がこの抗原に反応するか調べている。この結果、1/4に当たる5ペプチドで反応がみられている。次に反応性のT細胞クローンを樹立して特異性や、ガンに対するキラー活性などを調べ、2つのペプチド抗原に対するキラーT細胞クローンを選んでいる。同じことを他のメラノーマ患者でも繰り返し、ほぼ期待通り患者以外の末梢血から、ガン特異的T細胞クローンが樹立できることを確認している。
次はこのクローンからT細胞受容体遺伝子を単離し、患者さんのT細胞に導入して、高い成功率でガン特異的反応を付与できることを示している。最後に一部のペプチドがネオ抗原になり、他は抗原性がないのはなぜかについても調べ、ネオ抗原になりうるペプチドは細胞内での安定性が高いことを明らかにしている。もしこの性質をコンピューター上で予測できるようになれば、より高い確率でガンを殺す活性の高いT細胞を得ることができるだろう。
以上をまとめると、抗がん剤の投与やガンの直接の影響でガンに対する免疫反応が安定しない患者さんの代わりに、第3者の末梢血からネオ抗原特異的キラーT細胞を誘導し、このT細胞受容体を患者さんのT細胞に導入してガンを叩く治療が夢物語でないことをこの研究は示している。ただこのためには、ガンのエクソーム解析、ガンに合わせたネオ抗原の特定、ネオ抗原に対するT細胞クローンの樹立とその抗原受容体遺伝子の単離、受容体遺伝子の患者T細胞への導入と移植が必要だ。このプロセス全部を大至急でやっても、半年はかかるような気がするし、これを厳しい安全性規制のもとで行えば、そのコストはかなりの額になるだろう。大富豪なら当然チャレンジすると思うが、一般の医療に仕上げるためにどこを改良してコストを下げられるのか、プレシジョンメディシンが大富豪のものでないことを示すためにも、研究は新しい段階に進む必要があるだろう。
2016年5月23日
1型糖尿病は一種の自己免疫疾患で、自己の膵臓β細胞を攻撃するT細胞によりベータ細胞が破壊されることで起こる。多くは児童期からの発症で、遺伝的要因も含む様々な要因が重なって起こる。とは言っても、家族発症がはっきりした例を除き、私がこれまで知る限り、発症リスクを遺伝的に特定できるには至っていない。しかしこの病気のエフェクターがβ細胞障害性のT細胞の発生であり、T細胞レセプター(TcR)の抗原特異性に体細胞突然変異が寄与できることを考えると、ある程度偶然が支配することは当然と言える。代わりに、ウイルスや細菌感染がこのような自己免疫疾患のトリガーとなっているのではないかという研究が昔から行われている。すなわち、外来抗原により誘導されたエフェクターT細胞が自己抗原と交差反応を起こして自己免疫が起こるという考えだ。実際、私の知り合いが1型糖尿病にかかったときのことを経験してみると、ある日突然高血糖に気づくというケースが多く、感染症が引き金を引くことは十分考えられる。
今日紹介するウェールズ・カーディフ大学からの論文は1型糖尿病患者から分離されたT細胞のTcRの交差反応性を調べた研究でThe Journal of Clinical Investigationオンライン版に掲載された。タイトルは「Hotspot autoimmune T cell receptor binding underlies pathogen and insulin peptide cross-reactivity (自己免疫性TcR結合のホットスポットが病原とインシュリンペプチドの交差反応性の基礎となっている)」だ。
先に述べた理由で、本当に1型糖尿病を理解しようと思えば、その原因になっているTcRを詳しく調べるのが本道で、これにより遺伝的要因も逆に理解できるようになる。このグループはこれまでの研究でβ細胞のインシュリンペプチドに反応するT細胞クローン1E6を分離し、このTcRがインシュリンペプチドだけでなく、多くのペプチドと反応できることを見出していた。すなわち、TcRの中には自己抗原とともに多くの外来抗原に反応できる厄介なものが確かに存在することを見出していた。この研究は、これを可能にしている分子構造的基盤を明らかにしようとしており、自己抗原としてのインシュリンペプチドとともに、バクテリア由来のペプチドを含む8種類のペプチドと1E6 TcRとの反応の構造的基盤を調べている。
結論を述べると、TcRの中には抗原特異性の融通が効くものがあり、今回調べた1E6 TcRでは3アミノ酸からなるペプチドの中核と強く結合(ホットスポット)してしまうと、残りの部位はどんな配列でも反応できることが構造的に示されている。重要なのは、調べられたペプチドのうち、自己免疫を引き起こしているペプチドは最も反応性が低いペプチドである点だ。すなわち、実際には感染で誘導された1E6が、親和性は低くともベータ細胞のインシュリンペプチドに反応して細胞を障害している順番を強く示唆している。さらに、人に感染できるウイルスゲノムデータを調べると、なんと50種類ものホットスポットと結合できる中核を持ったペプチドが存在する。これを考えると、小児発症、成人発症を問わず、感染症が引き金になるケースがかなり多いのではと考えられる。
このような可能性をさらに実際のヒトで明らかにするには、一定のリスク要因のある健常人を長期に追跡する研究が必要になる。今日紹介するもう一報のミュンヘン・ヘルムホルツセンターからの論文はそのようなコホート研究が始まったことを報告した論文でThe BMJ Open6月号に掲載された。タイトルは「Capillary blood islet autoantibody screening for identifying pre-type 1 diabetes in the general population: design and initial results of the Fr1da study (1型糖尿病の前段階を捉えるための毛細管血液採取による膵島自己抗体スクリーニング:デザインと最初の結果)」だ。
この研究ではドイツババリア州で、2−5歳児をリクルートし、まずキャピラリー採血を用いて3種類のβ細胞由来自己抗原に対する抗体の有無を調べ、陽性群を発病まで追跡する研究だ。この論文では最初のレポートとして、これまでリクルートできた26760人についての結果が示されている。調べた自己抗原のうち2種類以上に反応したのは105人で、そのうち再検査も陽性だったのが63人だった。このうち9%には耐糖検査が低下しており、2%は糖尿病発症と言える状態だったという結果だ。今後、この中からさらに患者さんが出てくるだろう。このような息の長い仕事の中から、初期に何が起こったのか、感染はあるのかが明らかになると思う。
1型糖尿病で失われたβ細胞は細胞移植でしか戻らないが、病気を論理的に予防することも同じように重要だ。そのためには、TcRの研究から生まれた成果を、コホート研究に適用することが今後重要になると思う。
2016年5月22日
rasを始め発がん遺伝子の多くは、細胞内シグナル伝達経路の異常を誘導する。では現在ガンのシグナル経路の研究が盛んかというと、私の印象ではそれほどでもないようだ。一つの原因は20世紀後半に重要なシグナル伝達経路が詳しく研究され、イメージング研究以外になかなか新しい切り口が見つからないことだ。これに加えて、ガンに関してはシグナル経路の特定だけでなく、その経路がガンに関わるかどうかの生物学的意味が問われるため、遺伝子改変を組み合わせる複雑な発がん実験が要求され、一つの研究をまとめるのに時間がかかるようになったこともある。
今日紹介するカリフォルニア大学サンディエゴ校からの論文はそんな苦労を厭わず発がんのシグナル伝達経路に取り組んだ研究でCancer Cell 6月号に掲載予定だ。タイトルは「p62, upregulated during preneoplasia, induces hepatocellular carcinogensis by maintaining survival of stressesd HCC-initiating cells (ガン発生前に発現が上昇するp62はストレスにさらされた肝ガン幹細胞の生存を維持して発がんを誘導する)」だ。
この研究はシグナル研究の大御所Michael Karinの研究室からの論文で、どんな困難があろうとシグナル研究の老舗を守ろうという意思が感じられる。Michael Karinは現在活躍中の多くの日本人研究者を育てたが、この論文にも筆頭著者を始め多くの日本人が著者になっている。この研究ではオートファジーの際にミトコンドリアにユビキチンシグナルを結合させるアダプター分子で、多くの肝ガンで発現が認められていた。しかしmTORC,Myc,TERTといった遺伝子と比べると、この発現上昇の意味は研究されてこなかった。この問題に膨大な実験をつみ重ねて挑戦したのがこの研究で、p62を誘導するシグナル分子、p62が関わるシグナル分子をコードする遺伝子改変マウスとp62遺伝子改変マウスを掛け合わせた発がん実験、あるいはp62をアデノウイルスベクターを用いて肝臓に導入する発がん実験を組み合わせて、p62が様々な原因による肝ガンに関わっていることを証明している。詳細を省いて結論を述べると、
1) p62は脂肪肝やウイルス感染による炎症によりオートファジー機能が弱まった肝細胞で誘導蓄積する、
2) 誘導されたp62はガン予備軍細胞のNRF2,mTORC1,c-Mycを誘導してガン化を促進する、
3) NRF2経路活性化は、活性酸素に対する耐性を獲得し、ガン予備軍細胞に様々な遺伝子変化が蓄積するのを助ける、
などが総合して、肝ガン発生につながるという研究だ。
さらにザクッとまとめると、ガンの周りの環境因子により誘導・蓄積したp62が、細胞自身の様々なシグナル経路のコオーディネーターとなって、環境とがん細胞をつなぎ、発がんが進むことを示した研究で、シグナル伝達経路を扱い慣れているグループならではの研究だと強い印象を持った。最後に人のガンでもp62発現が高いと再発が高いことなどを示しているが、診断よりはp62を抑えるか、p62の作用を抑える方法を発見することがこの研究成果を生かす道になるだろう。期待したい。
2016年5月21日
現役を退いた後ぜひ理解したいと思ったのが、無生物から生物が誕生する過程だ。最初、生命誕生までの過程について自分が納得できる説明に到達できるか半信半疑だった。というより、ほとんど諦めていた。しかし、少しづつ文献を読みながら三年経つと、自分で納得できる、しかも実験可能で具体的な生命誕生のシナリオを描くことはそう難しいことでないと思うようになってきた。
この私自身の理解が進化してきた過程を、顧問を勤めているJT生命誌研究館のホームページに「進化研究を覗く」(
http://www.brh.co.jp/communication/shinka/)として書き綴っている。特に2015年10月15日に書いた「ゲノムの発生学I」以降は(
http://www.brh.co.jp/communication/shinka/2015/post_000020.html)生命誕生に関わる論文や自分の考えを紹介しているので、生命誕生に興味のある方は是非読んでほしい。
この「生命誕生を説明するのは難しくない」という確信をもとに、出張講義を頼まれている医学部学生への講義でもこの課題を取り上げ始めた。昨日皆さんのレポートが送られてきたので、どんな反応が得られたのか読むのが楽しみだ。
生命誕生研究分野には、例えば分子生物学といった中核は存在せず、物理学、有機化学、情報理論、地球学など広い分野にわたっている。これが、この分野を研究したいという気持ちが萎える一つの原因だが、ほとんどカオスの状態から生命が誕生したことを考えると、当然の話だ。今日はその裾野で生体分子の化学合成に取り組むミュンヘン大学からの論文を紹介したい。この研究では、生命誕生前にATP,DNA,RNAの原料となるアデノシンが一回の反応で合成できる条件を探っている。タイトルは「A high yielding, strictly regionselective prebiotic purine nucleoside formation pathway (高収量で部位選択的な生命誕生前のプリンヌクレオシド合成経路)」で、5月13日号のScienceに掲載された。
熱水噴出孔の発見は生命に必要な有機化合物合成についての考え方を大きく変化させ、炭酸ガス、水素、アンモニアなどから、アセトンやメタンといった単純な有機物が作られることはこの分野では自明の事実になっている(http://www.brh.co.jp/communication/shinka/2015/post_000022.html)。このため現在では、より複雑な有機化合物が合成される過程を、重要な分子について説明していくことが研究の焦点になっている。
例えば生命の情報とエネルギーに必須の分子、アデノシンは塩基と糖が結合したヌクレオシドにだが、生体では何段階にもわたる代謝経路に従って合成される。しかしこのような多段階の代謝経路は生命にしか存在せず、生命以前には単純な反応で合成しなければならない。これが可能かどうか研究が続いているが、もちろん研究人口は多くない。
塩基の中でもプリンはより構造が複雑で、これまでOrgelグループによりアデノシンを合成する一つの反応経路が示されていたが、実際合成してみると、生まれる産物は多様で、目的アデノシンの収率が極端に悪かった。
今日紹介する研究では、合成回路の理論的検討に基づき、シアン化アンモニウムから簡単に合成されるフォルミルアミノピリミジン(FaPy)を原料とすることでアデノシンの高収量の合成が可能ではないかと着想した (有機化学の専門家は経路を眺めているだけで頭の中で反応が進むようだが、悲しいかな素人にはこれを体験するのは難しい)。基本的にはFaPyから始めるという着想が全てで、後は様々な条件で(熱したり、結晶化させたり、pHを変えたり)反応させてアデノシンの収率を調べている。
結論としては、FaPyからスタートすることで、生体のように他段階の反応経路を通らなくとも、一回の反応でアデニンを少なくとも20%以上の収量で合成できることを示している。しかも、利用した材料や条件は当時の地球に存在したと十分考えられる条件だ。これをリン酸化するのはそう難しくない。これで生命誕生以前の地球にとって、ATPも核酸も現実に近づいた。
生命誕生研究の裾野は広いが、それぞれの裾野での研究は着実に進歩している。まだまだ研究人口は少ないが、これから野心的な若者の参加が期待できるように思える。この分なら、生きているうちに、生命合成の瞬間に出会えるかもしれない。
2016年5月20日
私たちは様々な通説に囲まれて生きている。子供の頃なんども耳にした「甘いものばかり食べたら虫歯になるよ」という、科学的根拠のある話から、「食べてすぐ横になると太る」と言った、誰が確かめたかわからない話まで、内容は多彩だ。今考えても、確かに横になると肝血流量が増えるので、何か影響が出そうだが、やはり統計的に確かめないと正しいかどうかわからない。問題は、いわゆる健康法や健康食品の多くはもっともらしい通説に頼っていることだ。どれを信じていいのか、結局科学的調査を待つしかない。
今日最初に紹介する英国からの論文は、「遅い時間に夕飯をとると太る」という通説を調べた研究でThe British Journal of Nutrition 115:1616に掲載された。タイトルはズバリ「The timing of the evening meal:how is this associated with weight status in UK children(夕飯の時間:英国の児童にどのような影響があるのか?)」だ。
研究では4−10歳の児童768人、11−18歳の児童852人に4日間食事日記をつけてもらい、8時以降に夕飯をとる児童と、それ以前にとる児童で肥満度を比べている。他にも栄養摂取量など詳しく調べているが、結論は夕飯が遅くとも、児童に関しての肥満度の差は確認できないことが明らかになった。
もう一編のロンドン大学からの論文は水道の水に含まれるカルシウム濃度とアトピーの発生率を比べた論文で、The Journal of Allergy and Clinical Immunologyオンライン版に掲載された。タイトルは「The association between domestic water hardenss, chlorine and atopic dermatitiss in early life:
a population-based cross sectional study(家庭の水道の硬質度や塩素濃度とアトピー性皮膚炎:地域別横断的研究)」だ。
硬水を使っているとアトピーになりやすいという可能性は考えたことがなかったが、これまでも問題にされて来たようで、大人については我が国からの研究も発表されている。ただ、ひふのバリアーが完全でない乳児についてこれを調べた研究はなかったようだ。この研究では、1303人の3ヶ月児をリクルートし、診断基準に従ってアトピー性皮膚炎に罹患しているかどうか調べている。他にも、皮膚からの水分蒸発度を調べたりして、皮膚のバリアー機能を測定している。その上で、それぞれの住む地域の水道データから炭酸カルシウム濃度と塩素濃度を割り出し、アトピー性皮膚炎と水道水の硬度との関係を調べている。
結論だが、この通説は正しいようで、水道水の炭酸カルシウム濃度や塩素濃度が高い地域では、アトピー性皮膚炎が優位に増加している。最近出産時にワセリンを塗ることでアトピーの発症を著明に抑えられることが報告され、乳児期に皮膚のバリアーを守ることの重要性が明らかになっている。その延長で考えると、硬水で体を洗うことで、知らず知らずのうちに皮膚のバリアーを壊しているのかもしれない。
17世紀からの哲学を追いかけていると、イギリス経験論の実証性が大陸の哲学者に大きなインパクトを与えたことがよくわかる。この通説を信じず、自ら確かめる精神がイギリスには生きていることが、これらの論文を読んで改めて実感した。
2016年5月19日
現役の頃はもっぱらマウスを用いて実験を行っており、様々な動物についてあまり知る機会もなかった。しかし引退して分野を問わず論文を読むようになってからは、世界中には様々な変わった動物が存在し、その進化をなんとか説明しようとしてゲノムを調べている人たちがいることを知るとともに、このホームページでもできるだけ紹介していきたいと思っている。今日はそんな論文を2編紹介する。
最初はポーランド・ワルシャワ大学とチェコ・カレル大学からの論文で、、ミトコンドリアを完全に失ったMonocercomonoidesと呼ばれるトリコモナスに近い真核生物がいることを証明した研究だ。タイトルは「A eukaryote without a mitochondrial organelle (ミトコンドリアのない真核生物)」だ。
真核生物の特徴の一つはミトコンドリアを持っていることだが1980年、一部の真核生物はミトコンドリアを始め様々なオルガネラが欠損して、アルケアに近いと考えるArchezoa説が唱えられた。しかし、ミトコンドリア関連オルガネラの存在がみつかり、この説は形態的にもゲノム的にも間違っていることが証明されて、すべての真核生物はミトコンドリア、あるいはミトコンドリア関連オルガネラを持つという命題が受け入れられてきた。
この研究ではMonocercomonoidesの全ゲノムを解読し、この生物にミトコンドリアはおろか、ミトコンドリアを特徴付ける分子がほぼ完全に欠損していることを明らかにした。すなわち、ミトコンドリアもミトコンドリア関連オルガネラも存在しない真核生物が存在しうることが示された。
研究ではまず、Monocercomonoidesゲノム中に現存の真核生物のミトコンドリアに存在する分子の特徴を持つ分子が完全に欠損していることを確認している。その上で、エネルギー生産は嫌気的なグリコリシスで行われること、そして鉄硫黄タンパク質合成系のCIS経路は全く存在しない代わりに、原核生物の持つSUF系を導入して細胞質でFe-Sアッセンブリーを行っていることを明らかにしている。
この結果から、Monocercomonoidesはもともとミトコンドリアを持つ完全な真核生物だったが、嫌気環境に適応してミトコンドリアを消失。同じ環境の多くの生物はFe-Sアッセンブリーのためにミトコンドリア関連分子を保持し、2重膜を持つミトコンドリア関連オルガネラを持つようになったが、Monocercomonoidesだけは原核生物から獲得したSUF系のおかげでミトコンドリア関連オルガネラも完全に消失することができたというシナリオだ。必要なくなればミトコンドリアといえども完全に消し去るのが生物だ。
もう一編のタンザニア、ケニア、アメリカからの共同論文は進化研究の定番「キリンの首はなぜ長い?」についての研究で5月17日号のNature Communicationに掲載された。タイトルは「Giraffe genome sequence reveals clues to its unique morphology and physiology (キリンのゲノムはその特異な体型と生理の手がかりを与えてくれる)」だ。
この定番ともいうべきキリンのゲノムがまだ解読されていなかったのは驚きだが、研究ではマサイキリンと首のまだ短い仲間オカピの全ゲノムを解読し、この疑問に答えようとしている。キリンとオカピは他の有蹄類から2800万年前に分離し、オカピとキリンは1100万年前に分離している。研究ではキリンへの進化で大きく変化した遺伝子を拾い出し、それぞれの分子の機能を調べ、形質の変化と対応させるという手法を用いている。
結論としては、幾つかの鍵となる分子を中核として多くの遺伝子が並行に変化することでキリン特有の骨格が生まれるという常識的なものだ。ただこの中から変化の鍵として提示している分子は確かに面白い。骨格でいえばFGF受容体と拮抗する阻害分子FGFRL1が大きく変化している。FGFシグナルを阻害すると鶏の首が伸びること、あるいはこの突然変異で骨格の大きな変化が起こることが知られており、この分子の変化を皮切りに様々な分子が並行進化するというシナリオはわかりやすい。他にも、長い首の先にある頭に血液循環を維持するための血圧維持機構に関わる分子の変化が集積していたり、あるいはキリンで多くの染色体が融合した原因になったと考えられるMDC1分子の大きな変異の発見など、いろいろな課題を拾うことができている。
ただ残念ながらゲノム解析ともっともらしいシナリオだけでは、トップジャーナルにゲノム研究を掲載するのが難しくなっている。今回得られた課題を遺伝子編集を用いてマウスに導入することで、首の長いマウスを作ることが要求されるだろう。
「首の長いマウスが生まれるのを首を長くして待とうと思っている」