8月4日  PCNAはガン治療の標的になるか?(8月1日 Cell Chemical Biology オンライン掲載論文)
AASJホームページ > 新着情報 > 論文ウォッチ

8月4日 PCNAはガン治療の標的になるか?(8月1日 Cell Chemical Biology オンライン掲載論文)

2023年8月4日
SNSシェア

PCNAはProliferating Nuclear Cell Antigenの略で、DNA合成期の細胞の核にあまねく存在することから細胞の増殖マーカーとして使われてきた。もちろんただの細胞マーカーではなく、分裂しているDNA上で様々な分子と相互作用し、DNA 合成、修復に関わることが知られている。さらに最近その詳しい詳細が明らかにされた様に、転写と複製機構が衝突するときRNAポリメラーゼIIと結合することで、複製フォークを超えた転写を継続させるのにも働いている(Fenstermaker et al, Nature 2023, https://doi.org/10.1038/s41586-023-0634 )。このように細胞増殖に必須の分子となるとガン治療の標的として研究されていると思いきや、これまでこの方向での論文をあまり見かけなかった。

今日紹介する米国ベックマン研究センターからの論文は、PCNAにはガン特異的な構造が存在し、これを標的にしてガン治療の標的を開発できることを示した研究で、8月1日 Cell Chemical Biology にオンライン掲載された。タイトルは「Small molecule targeting of transcription-replication conflict for selective chemotherapy(転写と複製の衝突部位を標的としたガン特異的化学療法に用いる低分子化合物の開発)」だ。

この研究グループはおそらくPCNAを長く研究してきたのだと思う。その中で、PCNAには翻訳後の修飾によりガン特異的フォームが存在すること、そしてそれを標的にしてガン細胞の増殖を特異的に抑制する化合物AOH1160を開発していた。ただ、AOH1160は水に溶けにくく、そのまま薬剤として利用は難しいため、この研究ではAOH1160に様々な変更を加えた化合物を70種類合成し、この中から水に溶けて経口投与可能な化合物AOH1996を探し出している。

論文の前半は化学的、分子構造的解析で、AOH1966がPCNAのPIPボックスと呼ばれるポケットに入り込んで、様々なアミノ酸と相互作用することを示している。

また生化学的解析から、AOH1996はPCNAとRNAポリメラーゼの結合を安定化させるため、転写と複製が衝突したときの調整が出来なくなり、その結果DNA複製フォークが破綻させて細胞を殺すことを明らかにしている。

大事なのは効果だが、試験管内ではほぼ全てのガン細胞の増殖を抑制する一方、いくつか調べた正常細胞の増殖には影響がない。まさに理想的なのだが、ガンを移植したマウスの治療実験では思うほど効果は出ていない。すなわち、単独で生存延長効果は10%ほどで、一般的抗ガン剤のトポイソメラーゼ阻害剤に劣る。ただ、トポイソメラーゼと組みあわせると、効果は大きくなるという結果だ。

単独で効果がほとんどないのは意外だったが、作用機序はよくわかっているので、例えばPARP阻害剤などDNA修復阻害剤と組みあわせると、効果が高まるのかも知れない。ガン治療としては道は長いが、PCNA研究には面白い化合物ができたと思う。

カテゴリ:論文ウォッチ

8月3日 言語からたどるインドヨーロッパ語の起源(7月28日 Science 掲載論文)

2023年8月3日
SNSシェア

現在使われている言葉の内400以上の言語がインドヨーロッパ語に属し、世界の半数が日常使っている。このルーツについては、これまで現ウクライナのステップ起源説と、現トルコのアナトリア起源説が存在していた。前者は牧畜の伝搬、後者は農耕の伝搬とともに言葉が拡大したと考えていた。

2003年、ニュージーランドのグループは、言語の比較からアナトリア起源説を提唱したが、その後古代DNAを調べる研究からは、インドやシベリアまでステップに暮らしたヤムナ民族のゲノム流入が発見されるとともに、アナトリアとステップとのゲノム交流がほとんどないこともわかり、最終的な起源は不明のままだった。

そこに昨年8月紹介した、インドヨーロッパ語(IEL)の分布に重ね合わせた徹底的古代ゲノム研究が行われ(https://aasj.jp/news/watch/20429)、現在アルメニア地方で生まれたIEL先祖がステップとアナトリアへ別々に伝搬したとするシナリオが提案された。

今日紹介するペルーのポンティフィシア大学やドイツ・ライプチッヒのマックスプランク研究所を中心とする、多くの言語学研究者が集まるコンソーシアムからの論文は、言語の系統樹を解析する方法を見直し、古代語を含めた多くの言語を比較してIELの起源を調べ、IELが8000年前にアルメニア地方で発生した可能性が高いことを示した研究で、7月28日号 Science に掲載された。タイトルは「Language trees with sampled ancestors support a hybrid model for the origin of Indo-European languages(古代語のサンプルを含めた言語系統樹はインドヨーロッパ語起源のハイブリッドモデルを支持する)」だ。

個々でハイブリッドモデルというのは、ステップモデルと、アナトリアモデルを組みあわせたモデルで、ステップとアナトリアの起源語のさらに先祖がおそらくカスピ海と黒海に挟まれた地域で生まれたと考えている。

言語や古代語が変化しているわけではないので、新しい考え方は解析方法を見直したことで生まれている。まず、比較可能なデータがある言語を古代語も含めてできるだけ多く比較している。この時古代語は、ともすると、それ以降の言語の起点として扱われてきたが(例えばラテン語とイタリア語や他のロマンス語の系統樹)、起源ではなく兄弟として緩く扱うことで、起源としてしまうことで起こる年代測定の間違いを防いでいる。

さらに、これまでの方法で間違いの原因となる様々なポイントを洗い出し、それを排除している。例えば意味で比べるとき、複数の同義語を含めないとか、ポリモルフィズムに影響されない処理方法などを用いて解析している。

その結果、8100年ぐらいにアルメニア地方で生まれたIELは、すぐに7種類の言語に分かれ、その一つがステップに伝搬、3種類がアナトリアに移行したモデルを提出している。

以前紹介したゲノム解析結果と近いが、このモデルではインドとイランが同じ起源と考えており、ステップから直接インドに入ったと考える説は否定されている。

結果は以上で、データサイエンスの進展を実感するとともに、情報として残っているゲノムと言葉の研究が今後も協調しながら進んでいき、人間とは何かを教えてくれることがよくわかった。

カテゴリ:論文ウォッチ

8月2日 エピジェネティック発ガン過程を解明する(7月25日 Cell オンライン掲載論文)

2023年8月2日
SNSシェア

遺伝子変異なしに起こる腫瘍がどのぐらい存在するかわからないが、例えば体全体に腫瘍が広がった後に、急速に収束する神経芽腫などを見ると、稀ではあっても確かに存在しているのではとおもう。ただ、どんな細胞でも様々な遺伝子変異を積み重ねていることを考えると、これを証明することは簡単ではない。

しかし、エピジェネティックな過程を調節する分子をコードする遺伝子変異から始まる腫瘍では、腫瘍増殖のドライバーやガン抑制遺伝子の制御などは全てエピジェネティックに進んでいくと考えられる。その例の一つがグリオーマで、これまで何度も紹介した様にIDH遺伝子の変異により、αケトグルタレートから2ハイドロオキシグルタレート合成が高まり、これがDNA脱メチル化酵素TETの活性を阻害する。結果、様々な領域でDNAメチル化が上昇し、これが細胞の増殖を狂わすことになる。ただIDH遺伝子の変異からグリオーマの発生までのエピジェネティックな過程はまだ解明されていない。

今日紹介するハーバード大学からの論文は、DNAメチル化によりグリオーマが発生する過程を明らかにした研究で、7月25日 Cell にオンライン掲載された。タイトルは「Modeling epigenetic lesions that cause gliomas(グリオーマの原因になるエピジェネティックな異常のモデル)」だ。

グリオーマの研究から、PDGFα受容体(PDGFRA)遺伝子の発現上昇と、CDKN2Aがん抑制遺伝子の発現抑制が一部のグリオーマの増殖を支えていることがわかっており、この研究ではこの変化をエピジェネティックな過程として説明し、再現できるかが問題になる。

まずPDGFRA遺伝子領域のクロマチントポロジー(TAD)、DNAメチル化、そしてTAD形成に重要な働きをするCTCF分子の結合箇所などを、正常グリア細胞とIDH変異グリア細胞で比べると、PDGFRA遺伝子支配エンハンサーの領域を決めている境界に、DNAメチル化される領域が存在し、IDH変異によりこのメチル化の程度が高まり、その結果CTCF結合が消失することを発見する。すなわち、PDGFRA領域の境界が失われて、他の領域のエンハンサーの作用を受ける可能性が示された。

そこでマウスグリア細胞でTAD境界にあるCTCF結合部位をクリスパーでノックアウトすると、PDGFRAの発現が高まり、細胞の増殖性が高まることを示している。また、この時PDGFRA領域に作用を及ぼすエンハンサーについても特定し、これをノックアウトすると領域境界のCTCF結合が失われても、細胞の増殖には変化が起こらない。

次にCDKN2Aガン抑制遺伝子プロモーターを、Cas9にDNAメチル化酵素活性を付与した分子を用いてメチル化すると、発現がシャットオフされ、細胞の増殖が亢進することを確認している。そして、この二つの要因を遺伝的に組み合わせると、グリオーマと同じ様な増殖様態を示す腫瘍が発生することを示している。

以上が結果だが、マウスとヒトのPDGFRA領域のトポロジーは極めて似ているが、境界を決めるCTCF結合領域のメチル化されるCpG領域の密度が、ヒトではマウスと比べ極めて高い。すなわち、メチル化されやすいことから、CTCF結合が失われやすく、その結果グリオーマの発生リスクが高い。なぜこの様な違いがあるのかだが、発生過程で同じCTCF結合場所をDNAメチル化制御でずらすことで、グリア細胞の増殖を調節している可能性を示唆している。

以上が結果で、グリオーマを支える増殖機構のエピジェネティックスを見事に説明した面白い研究だ。

カテゴリ:論文ウォッチ

8月1日 リピッドナノ粒子を用いた骨髄幹細胞遺伝子治療(7月28日号 Science 掲載論文)

2023年8月1日
SNSシェア

骨髄幹細胞の遺伝子治療は症例数も増えていると思うが、CRISPR/Casによる遺伝子編集が登場してから、ヘモグロビンの遺伝子変異による鎌形赤血球症の治療が一つの焦点になっている。現在治療として試みられている方法の一つは、変異ヘモグロビンの代わりに、成体では抑えられている胎児型ヘモグロビンを作らせる方法で、抑制に関わるBCL11Aをノックアウトする方法だが、もう一つは変異自体を組み換えやデアミナーゼを用いて正常化する方法で、どちらもおそらく臨床治験まで進んでいる。

ただ、どちらの場合も遺伝子編集は体外に取り出した骨髄幹細胞に対して行われるため、自分の細胞でももう一度身体に戻すためには、既に存在する骨髄幹細胞を減らしてニッチを開けるため、骨髄アブレーションと呼ばれる処理が必要となる。

今日紹介するペンシルバニア大学からの論文は、生体内の骨髄細胞に直接働きかけて遺伝子編集を可能にする方法の開発で、7月28日号の Science に掲載された。タイトルは「In vivo hematopoietic stem cell modification by mRNA delivery(mRNAを直接体内の血液幹細胞に届けて遺伝子改変を行う)」だ。

この研究では、RNAワクチンで一般の人も広く知る様になったリピッドナノ粒子(LNP)に、血液幹細胞に発現しているc-Kitに対する抗体を発現させ、直接骨髄幹細胞へ遺伝子を届ける方法を検討している。

LNPに抗体などを発現させて特定の細胞へ遺伝子を運ばせる方法は様々な研究機関で開発が行われており、実際この論文を見たとき、逆に何を今更と思ったほどだ。自己再生能力のある骨髄幹細胞は全てc-Kitを発現していることから、標的としては最適で、とっくに試みられていると思っていた。

この研究では、このテクノロジーを、一つは直接骨髄幹細胞の遺伝子編集を行い鎌形赤血球を治療するため、もう一つは放射線や抗ガン剤による骨髄アブレーションをせずに、骨髄幹細胞を傷害してニッチを開ける方法に使えるか検討している。

まず期待通り、c-Kitに対する抗体を発現させたLNPの効果は抜群で、試験管内ではほぼ全ての幹細胞に遺伝子導入が可能で、導入された幹細胞は移植されたマウスの中で長期に造血を維持できる。

また、LNP自体がマクロファージに取り込まれるため、肝臓や肺に多くがトラップされる問題はあるが、抗体を発現させたLNPは骨髄まで届き、静脈注射するだけで6割を超える血液細胞でCre-分子による遺伝子改変が可能になっている。

次に、試験管内で人間の鎌形赤血球骨髄幹細胞の遺伝子編集が可能か、Cas9にデアミナーゼの活性を付与した遺伝子編集法を用いて、特定の部位の塩基を変化(アデニンからグアニンへと代える)させ、正常ヘモグロビンに代える実験を行い、これもほぼ100%編集が可能であることを示している。ただ、モデルマウスを用いて生体内で高率を調べる実験は行われていない。

同じc-Kit抗体LNPで生体内の骨髄幹細胞を特異的に傷害できるか調べるのがもう一つの目的で、骨髄幹細胞の生存に必要なMCL-1を抑制するPUMA分子をLNPに詰めて注射している。ただ、この実験では肝臓や肺に対する毒性のために、どうしても量を減らす必要があり、処理動物に移植した細胞は5−10%の割合にとどまり、現状では利用は難しそうだ。

以上が結果で、なぜこれまで調べられなかったのかが不思議なくらい、遺伝子デリバリーとしては優れていると思う。ただ、骨髄アブレーションの実験に関しては、より骨髄幹細胞特異的分子を探索する必要があるが、他の細胞に毒性がない分子が見つかればこれも期待できると思う。

カテゴリ:論文ウォッチ

7月31日 新石器時代のフランスの7代記(7月26日 Nature オンライン掲載論文)

2023年7月31日
SNSシェア

久しぶりに古代DNAを用いた考古学研究を紹介する。ボルドー大学からの論文で、紀元前4850ー4500頃パリ南東100kmに位置するギュルジーのフランス新石器時代発掘現場の墓に埋葬されていた128体の骨を元に推察される当時の家族形態の解析で7月26日Natureにオンライン掲載された。タイトルは「Extensive pedigrees reveal the social organization of a Neolithic community(広範囲の系図によって新石器時代の社会組織が明らかになる)」だ。

これまで墳墓に埋葬された骨のゲノム研究のほとんどは有力者や支配者の家族が多く、一般家族についての研究は希だった。その意味で、この研究は新石器時代の7世代にわたる一般人の系譜を追跡出来た点で大きな意義が存在する。

研究では、ゲノムから測定される親族関係と、埋葬の位置情報、そしてストロンチウムアイソトープを用いる生活場所の推定などを組みあわせ、埋葬された家族の構造と歴史を探っている。一方、有力者の墓と異なり、副葬物はほとんど存在していない。

この場所からは7代にわたる系譜と、それとは異なる5代にわたる系譜、およびこれらの系譜に属さない親子、夫婦、あるいは個人の骨も見つかっている。

考古学の面白さはできるだけ多くの証拠を集め、証拠と証拠の隙間を推理で埋めてストーリーを仕上げる過程で、論文の読者から見ると、あたかもシャーロックホームズの登場する推理小説を読む感じがある。

まず、家族形態は完全に父系家族で、女性は15歳以上になると、この場所から離れて嫁いでおり、一方7世代の全てで母親は他の場所から嫁いできたことがわかる。すなわち、同じ家族出身で15歳以上の女性の骨は同じ墓に埋められておらず、女性の骨は全てこの系譜の外から来ていることがわかる。1例を除いて近親婚は明確に避けられているので、この目的で、一般の家族でも女性は生殖年齢になると、他の場所に移動していたことがわかる。しかし、よく調べると、女性同士のゲノムから近親を示すケースが見られることから、例えばよその村の、しかし同じ家族から2人の嫁を迎えると言うことが行われていたことがわかる。

女性が例外なく他の場所から嫁いできたことは、DNA解析だけでなく、ストロンチウムを用いた生活圏の解析からもわかる。

父系が尊重される規範があったことは、父親と息子の埋葬場所が一番近いことからも推察される。そして、基本的には家族は同じ場所に、また夫婦は隣接して埋葬され、埋葬に明確なルールが存在したことがわかる。埋葬を示す遺物は全く残っていないが、これらの結果は何らかの墓碑が存在してことを示している。

有力者にはよく見られる、同じ配偶者を兄弟が順番に共有して子孫を残すレビラト婚の痕跡は全く見当たらない。そして、一夫一婦が原則になっていることがわかる。

このような家族関係に加えて、それぞれの家族で多くの子供が生殖年齢に達するまで育っており、多くの子供が健康に育つ環境が既に生まれていたことがわかる。

以上が主な結果で、以前紹介した青銅器時代のドイツで見られる家族形態(https://aasj.jp/news/watch/11516)が新石器時代の一般人でも見られることが明らかになった。

今後さらに解析が他の場所にも拡大することで、このルールの普遍性、例外の社会的意義などがわかってくるだろう。ゲノムのおかげで、考古学がますます面白くなってきた。

カテゴリ:論文ウォッチ

7月30日 発ガンに必要な変異転写因子を自殺分子に変える(7月26日 Nature オンライン掲載論文)

2023年7月30日
SNSシェア

発ガンには、増殖や生存に関わるシグナル分子に加えて、様々な転写因子も関わることが多い。しかし、細胞内から核内へ移行するエストロジェン受容体などのようにエストロジェンと拮抗する化合物を用いることで、機能を阻害できる核内受容体分子を除くと、転写因子の機能を標的にする薬剤の開発は遅れている。

そこにサリドマイドの作用機序の研究から生まれた薬剤、すなわち転写因子にユビキチンリガーゼをリクルートして分解してしまう薬剤で、レナリドマイドなど骨髄腫に対する薬剤は成功した例と言える。

今日紹介するスタンフォード大学からの論文は、転写因子にエピジェネティックな転写活性因子BRD4をリクルートして活性化することで細胞を自殺に追い込む化合物の開発で、7月26日 Nature にオンライン掲載された。タイトルは「Rewiring cancer drivers to activate apoptosis(ガンのドライバーを細胞死活性化に転換する)」だ。

最初に断っておくが、この研究はBCL6遺伝子の変異をベースに発生するB細胞リンパ腫に限っての話で、どこまで一般化できるかわからない。ただ、一年に数万ケースが発症し、その3割は治療に反応しないことから、治療法の開発は重要だ。

さて、この病気を理解するためにはBCL6を理解する必要があるが、これが簡単でない。BCL6はB細胞でノックアウトすると、胚中心が全くできなくなるB細胞成熟に必須のマスター分子で、それが支配する遺伝子は多い。ただ、様々な分子と相互作用してその活性が調節されており、変異による影響が多様であるため、発ガン過程を単純なシナリオに落とし込むことは簡単でない。ただ、BCL6は正常細胞で細胞の成熟を促すため、細胞周期を止め、細胞死を誘導するのだが、多くの腫瘍の発生過程で、BCL6機能がBTBドメインを介してこの機能が抑制されている。

そこで、リンパ腫の変異型BCL6にエピジェネティックに転写を活性化させるBRD4をリクルートして、BCL6本来の機能を回復させ、細胞周期を止め細胞死を誘導して、主要細胞を自殺に追い込もうと考えたのがこの研究だ。

このため、BCL6のBTBドメインに結合する化合物と、BRD4のブロモドメインに結合する三菱田辺製薬が開発したJQ1化合物をリンカーで結合させた化合物を開発した。

これを薬剤耐性のリンパ腫細胞に加えると、期待通り速やかに細胞死を誘導できることがわかった。また薬理的実験から、この作用が期待通りBCL6にBRD4が結合して活性化した結果であることを様々な実験で確認している。

ただこの化合物は単純にBCL6のアポトーシス誘導機能を高めるだけでなく、実際には抑制される遺伝子も多く存在し、中でもMycの転写が阻害されることは、リンパ腫治療から考えると一石二鳥の効果が得られたことになる。他にも、RNA 合成酵素の活性を高める効果もあり、自殺を誘導する様々な遺伝子を速やかに誘導する、多くの機能を備えた化合物になっている。

残念ながら、動物を用いた効果や安全性の実験結果は、十分には解析できていないので、最終評価は難しい。BCL6ノックアウトで見られる胚中心の消失や、炎症は強くない様だが、リンパ系細胞はBRD4とBCL6を発現していることが多く、臨床応用までは副作用の詳しい解析は必須になる。

しかし、アイデアは面白く、多くの遺伝子を動員する点で効果が高く耐性もできにくいと思われ、期待したい。

カテゴリ:論文ウォッチ

7月29日 TRIM11はアルツハイマー病の画期的治療を可能にするか(7月28日号 Science 掲載論文)

2023年7月29日
SNSシェア

レカネマブが上梓され、アルツハイマー病(AD)治療も一歩前進した感があるが、本当の治療まではまだまだ先が長いと感じるのは、ADの神経変性を誘導する張本人はリン酸化されたTauタンパク質だとわかっているためだ。神経変性はTauが細胞内で凝集し、それがプリオンのように神経間を伝搬して病気を拡大させることで進行する。したがって、Tauの凝集を止める、さらには凝集したTauをもう一度可溶性にすることができれば、アミロイドの蓄積があったとしても神経変性を抑える可能性が高い。

このための研究として、抗体薬やTau凝集を抑える化合物まで開発されているが、道は険しいと思ってきた。しかし、今日紹介するペンシルバニア大学からの論文は、遺伝子治療になるとはいえ、中期から後期のADにも対応できる画期的な治療に結びつくのではという期待を持たせる研究だった。タイトルは「TRIM11 protects against tauopathies and is down-regulated in Alzheimer’s disease(TRIM11はタウ異常症を防ぎアルツハイマー病では発現が低下している)」だ。

TRIM分子は後生動物で初めて見られるユビキチンリガーゼで、タンパク質のクオリティーコントロールに関わることが知られている。この研究では、77種類存在する人間のTRIM分子の中にTau分子の凝集を抑える分子が存在するのではと着想し、全てのTRIM分子をそれぞれ導入した細胞でTau凝集を誘導する十んを行い、三種類のTRIMが凝集を抑える活性があることを発見する。

このなかでTRIM11が最も強い活性があったので、この分子に焦点を当てて研究を続けている。

これまで発見されなかったのが不思議なくらいで、ADでTRIM11遺伝子発現の変化はないが、タンパク質発現レベルで見ると、AD患者さんではTRIM11が低下している。また、TRIM11遺伝子のレアバリアントがADリスクであることも示されていた。すなわち、TRIM11によるタンパク質のクオリティーコントロールがAD発症を抑える重要な働きをしていることがわかった。

次に凝集を起こしやすい変異Tau分子を導入した細胞内にTRIM11遺伝子を今日発現させる実験を行い、ユビキチンではなくTauをSUMOタンパク質を結合させ、これによりプロテアソーム依存的に分解することを明らかにしている。さらに、凝集Tauにより、正常Tauが凝集する、プリオン様の伝搬も抑えることができることを明らかにする。

この様に異常Tauをたまたま分解するだけではなく、正常神経細胞ではTau分子と結合して、一種のシャペロンとして働いていること、さらに一般的なシャペロンと考えられているHSP70やHSP40と比べると、その機能のために全くエネルギーを必要としないシャペロンの役割を演じていることを明らかにしている。

以上の結果から、この分子を導入することでTau異常症を防げる可能性が示されたので、細胞レベルの実験の後、変異Tau遺伝子を導入したADモデルマウスに、アデノウイルスベクターを用いてTRIM11遺伝子を導入する実験を行い、Tauの凝集や拡大を抑えるとともに、行動レベルで記憶など認知機能の改善が見られることを示している。

また、Tau異常症だけでなく、変異アミロイドβ遺伝子を導入して誘導する実験系でも、その後に起こるTau異常症を抑え、ADの症状を改善することを示している。また、直接海馬へベクターを駐車するだけでなく、脳室注射により脳脊髄液を介してもTRIM11遺伝子を導入して、AD症状を改善できることも示している。

結果は以上で、治療のモダリティーとしては遺伝子治療になるが、凝集が始まった後のTau以上症に対応できることから、かなり有望な治療法が開発できるのではと期待する。

カテゴリ:論文ウォッチ

7月28日 心臓病で睡眠が傷害されるメカニズム:臨床研究の手本(7月21日号 Science 掲載論文)

2023年7月28日
SNSシェア

睡眠が足りないと心疾患のリスクを高めることが知られているが、逆に心不全になると睡眠障害が起こることも知られている。この原因は一種の無呼吸症候群によると言われているが、睡眠のサイクルを概日サイクルと連動させてくれているメラトニンが低下しているので、これが最も重要な要因と考えられる。

今日紹介するドイツ・ミュンヘン工科大学からの論文は、メラトニンの分泌異常と心疾患の関係を、臨床例と動物実験をうまく組みあわせながら明らかにした臨床研究の手本と言える研究で、7月21日号の Science に掲載された。タイトルは「Immune-mediated denervation of the pineal gland underlies sleep disturbance in cardiac disease(松果腺の神経が免疫的障害を受けることが心疾患で睡眠障害が起こる原因である)」だ。

松果腺(体)は、視床に挟まれた小さな脳の内分泌器官だが、解剖学的には古くから知られており、その位置からデカルトが人間の心が据わっている臓器と考えたことで有名だが、現在はメラトニン分泌器官として、概日サイクルと睡眠サイクルを連合させるのに重要な働きをしている器官として位置づけられている。

この研究では亡くなった心疾患の患者さんの松果体を、心疾患のない剖検例と比べ、松果体を取り巻く自律神経の数が減少していることを発見する。そこで、今度はマウスの大動脈を縛って人為的心不全を誘導して、同じような変化が見られるか調べると、メラトニン分泌が低下するとともに、松果体を取り巻く自律神経数が減少することを観察し、人間の状態を再現できることを確認する。

松果体に投射する自律神経は上頸神経節由来なので、まずマウスで上頸神経節を調べると、心不全を誘導した場合、神経節が肥大し、線維化が起こっていることを発見する。そこで、実際の心不全患者さんの上頸神経節をエコーで調べると、肥大が認められることがわかり、今度はマウスモデルから臨床症状が示されたことになる。

この肥大の原因を探るべくマウス心不全で肥大が誘導された上頸神経節をsingle cell RNA sequencingで調べると、松果体へ投射する自律神経細胞が低下するとともに、マクロファージの数が上昇していることを発見する。すなわち、原因はわからないが、心不全により上頸神経節の炎症が誘導されることがわかる。ヒトの剖検例で調べた遺伝子発現でも、同じようにマクロファージの増加と交感神経の減少が確認される。

また転写されている遺伝子から細胞間相互作用に関わる分子セットを検索すると、マクロファージと交感神経との間で、密接相互作用を示す分子の発現が見られる。また、直接上頸神経節にマクロファージ活性阻害剤を注射すると、自律神経の減少を止めることが出来ることもわかった。

以上、ヒトの臨床検査と、マウスモデルを組みあわせて、心不全で起こる睡眠障害の原因を上頸神経節炎症として特定し、またこの部位を標的とした局所治療の可能性を示した。ここまで、臨床とモデルをサイドバイサイドで比較するという研究を見ると、臨床と基礎ががっちりタッグを組んでいることがわかり、臨床研究のお手本だと感心する。

カテゴリ:論文ウォッチ

7月27日 少し見方を変えて人間の条件を探る(7月19日 Nature オンライン掲載論文)

2023年7月27日
SNSシェア

人間の条件を探るため、ゲノムを中心に様々な研究が行われており、多くの論文を紹介してきた。単純化して言ってしまうと、ゲノム上での人間特異的変化が、細胞レベルでの遺伝子発現に影響し、その結果が細胞の数、位置、機能を変化させることで人間の特徴が生まれる。従って、ゲノムの比較は、細胞や組織レベルの解析と相関させる必要がある。

Single cell RNA sequencing はこの比較をより解像度の高いものにしてくれている。しかし、例えば脳の場合、構造や細胞は多様で、ただ脳の single cell RNA sequencing の比較を行えばすむという話ではない。

今日紹介するテキサス大学サウスウェスタン医学センターからの論文は、アカゲザル、チンパンジー、人間の脳細胞の差を徹底的に調べた研究だが、細胞を取り出す場所をブロードマン23(辺縁系の一部で大脳各部に投射を持つ、意識にも関わる領域)に限り、そこに存在する細胞の Single cell RNA sequencing から存在する細胞の種類や、各細胞での遺伝子発現の違いを調べ、人特異的な条件を調べた点がユニークで、7月19日 Nature にオンライン掲載されている。タイトルは「Molecular features driving cellular complexity of human brain evolution(人間の脳の進化で細胞の複雑性推進に関わる分子的特徴)」だ。

この論文の様に、領域を限った上で細胞を比べるという研究がどのぐらい行われていたかは把握していないが、ここまで徹底的に行ったのはこの研究が最初だろう。このように、全体にこだわらずに少し焦点を当てることで、なかなか面白い話に仕上がっている。

まず面白いのは、発達が終わった成体の脳であるにもかかわらず、成熟オリゴデンドロサイトがヒトへの進化とともに減少し、逆にオリゴデンドロサイト前駆細胞の数がヒトへの進化とともに上昇する点だ。組織学的な解析から、この傾向は脳のほとんどの領域で見られることが確認されており、遺伝子発現でもオリゴデンドロサイトの移動に必要な細胞骨格調節遺伝子が低下するなど、特徴的な変化が見られる。元々オリゴデンドロサイトが関わるミエリン化がヒトでは遅いことが知られているが、しかし既に成体での結果なので、おそらくオリゴデンドロサイトが神経の可塑性など他の機能にも関わることを示している。

遺伝子発現、エピジェネティック解析をそれぞれの細胞で行うと、細胞共通に見られる人間特異的な変化は少ないが、細胞ごとに見ていくと、特異的変化を数多くリストすることが出来る。

中でも面白いのは、ヒトの言語に関わるのではと最初考えられ、サルと人間で発現に差がないので、言語に直接関わる可能性は少ないと断じられたFOXP2遺伝子の発現が、限られた興奮ニューロンでヒト特異的に発現が上昇していることを発見する。また、これらの細胞ではFOXP2が調節する遺伝子の発現上昇も確認できるので、FOXP2の機能を異なる視点で今後見直す必要が出てきた。

遺伝子発現とクロマチン構造両方が各細胞種で調べられており、それを比べると両者の相関性は高い。すなわち、クロマチンが開く、あるいは閉じるエピジェネティックな変化がそのまま遺伝子発現につながっている。しかも、ヒトとチンパンジーのゲノム上の配列変化は、クロマチン変化の場所に集中しており、ゲノム進化の結果、クロマチン状態が変化し、遺伝子発現進化へとつながることが示された。

クロマチン状態が変化した部位に見られる人特異的ゲノム変化の中で最も目を引くのが、神経刺激で誘導されるFos/Junが結合するモチーフの濃縮で、特に皮質の上層の神経細胞特異的に見られる。機能は示されていないが、おそらく神経興奮による変化を遺伝子発現の変化へと転換する過程で強い進化が起こっていると考えられる。

以上が結果で、異なる視点で見ることで、面白い人間の条件を見つけられることを示した重要な貢献だと思う。

カテゴリ:論文ウォッチ

7月26日 A*02:01型HLAを持つ人への耳寄りな情報(7月24日 Cell オンライン掲載論文)

2023年7月26日
SNSシェア

腫瘍に浸潤してきたT細胞を移植してガンを抑制するTIL治療は、他のガン免疫治療と比べて普及に至っていないが、たまに完璧な効果が得られることがある様で、このHPでも紹介したことがある。この時重要なのは、完璧な効果が得られた症例のガン抗原とそれに対するT細胞を精査して、効果のメカニズムを明確にし、次の治療に生かすことだ。

今日紹介する英国・カーディフ大学からの論文は、ステージ4のメラノーマ患者さんを完全寛解させ、10年以上再発のないTIL治療ケースを解析し、成功の秘密を明らかにした一種のケースレポートで、7月24日 Cell にオンライン掲載された。タイトルは「Targeting of multiple tumor-associated antigens by individual T cell receptors during successful cancer immunotherapy(免疫治療の成功例では、個別のT細胞が複数の腫瘍関連抗原を認識していた)」だ。

この研究では、移植したTILを保存しており、成功が確認された一人の患者さんで、注入したTILの中のガン抗原特異的キラー細胞を解析、キラー活性の全てがA*02:01型HLA抗原+ペプチドであること、さらにこの患者さんのメラノーマにとどまらず、同じA*02:01型HLAを持っているガンであれば、キラー活性を持っていることを発見する。 すなわち、ガンのネオ抗原ではなく、ガン細胞で発現が高いガン関連抗原に対して反応するT細胞が、この成功の秘訣であることを発見する。

そこで、同じTILからA*02:01型HLAを持つガンに反応するT細胞クローンを樹立し、T細胞受容体が認識するペプチド抗原を探索すると、驚くことに、メラノーマで発現している3種類の蛋白質由来の3種類の異なるペプチドに対して、同じように反応することがわかった。

T細胞受容体とペプチドが結合したA*02:01型HLAとの構造解析を行った結果、配列は異なるがそれぞれのペプチドは構造的相同性を示す、類似抗原であることが明らかになった。それぞれのペプチドは単独で同じT細胞を刺激できるが、不思議なことに3種類同時に加えると相乗効果も発揮する。

そして、この研究のハイライトと言える発見、すなわちA*02:01型HLAを持つ人であれば頻度は少ないが同じT細胞を有しており、さらにメラノーマに限らず、様々なガンでこれらのガン関連ペプチドは発現しており、骨髄性白血病や、慢性リンパ性白血病でも同じようなメカニズムでガンを消失させることが出来た例があることが示された。すなわち、A*02:01型HLAを持っている人は、ガンのネオ抗原でなくても、この3種類のペプチドのどれかをワクチンとして免役することで、様々なガンに対するT細胞を誘導できる可能性が示された。さらには、同じ抗原受容体を導入したT細胞を用意することすら可能だ。

もう一つ驚くのは、移植されたTILが腫瘍が消えた後も長期間持続している点で、ガンとは異なる細胞で少しづつ刺激が続いている可能性があるが、自己免疫の様な副作用はない。

以上、COVID-19感染でも、B*15:01型HLAを持っていると、他のウイルスペプチドとの抗原類似性のおかげで、T細胞免疫が前もって存在しており、感染しても重症化しないという論文が最近発表されていたが、全く同じメカニズムでA*02:01型HLAを持つ人は、複数のガン関連ペプチドに反応するT細胞が準備されており、様々な免疫治療が可能なラッキーな人たちであることが明らかになった。

ちなみにBardに「A*02:01型HLA抗原を持っていると、ガンになりにくいというデータはあるでしょうか。」と聞いてみると、全般的なガン発症リスクが乳ガンで15%、大腸ガンで10%低いことを教えてくれた。

日本人では10%がこのラッキーな集団と言うことになる。この方達向けの特別な予防や治療プログラムが出来ても悪くはない様に思う。

カテゴリ:論文ウォッチ
2024年11月
« 10月  
 123
45678910
11121314151617
18192021222324
252627282930