過去記事一覧
AASJホームページ > 2023年 > 9月

9月2日 驚くことに肝臓のVLDL合成はtPAにより調節されている(9月1日号 Science 掲載論文)

2023年9月2日
SNSシェア

善玉コレステロール(=HDL)や悪玉コレステロール(LDL)という言葉は一般の人にもよく知られるようになっている。この言葉を聞くと、コレステロールに異なる善玉、悪玉があるように思うが、実際には HDL と LDL はそれぞれ異なる分子構成を持つ脂肪運搬用構造で、その中にコレステロールが詰まった一種のカーゴで、LDL の場合カーゴへとまとめるのは ApoB として知られるタンパク質だ。このタンパク質の周りに、肝臓でまず Very Low density lipoprotein(VLDL) が形成され、これが血中で加水分解が起こり LDL できる。具体的には、肝臓内で ApoB にトリグリセリド、コレステロール、そしてフォスフォリピッドが付加されてできた構造物が VLDL だ。

今日紹介する米国ミルウォーキーにあるVersiti血液研究所から論文、tPA が低い人は VLDL が高値で動脈硬化リスクが高いという意外な関係についてそのメカニズムを調べた研究で、9月1日号 Science に掲載された。タイトルは「Intracellular tPA–PAI-1 interaction determines VLDL assembly in hepatocytes(細胞内でのtPA-PAI1相互作用により肝臓でのVDLの合成が決められる)」だ。

この研究は一見 VLDL とは何の関係もないように思える tissue plasminogen activator (tPA) が低いと動脈硬化リスクが高まるという現象を理解しようと始まっている。ここでいう tPA とは脳梗塞と診断されたら静脈注射により脳血栓を取り除くために使われる、タンパク分解酵素で、LDL 合成との接点は、この相関以外にほとんど知られていなかった。

そこで、tPA が肝臓での VLDL 合成に影響するかを調べる目的でまず、LDL 受容体をノックアウトして、マウスでも LDL 検出できるようにしたマウスに、tPA のアンチセンスRNAをアデノウイルスベクターで投与し、肝臓でのtPA発現を抑えると、VLDLの合成が増加することがわかった。この効果は、血栓と違って血中に tPA を注入しても得られない。すなわち、肝臓細胞の中で tPA の合成が上がると VLDL 合成が低下、逆に tPA が抑えられると、VLDL が増加する。また、同じ結果は培養ヒト肝細胞でも確認された。

ApoB にコレステロール、トリグリセライド、フォスフォリピッドが集められ VLDL が合成される過程は小胞体内で進み、microsomal triglyceride transfer protein (MTP) がこの過程のドライバーとして働いている。もし tPA が細胞内で VLDL 合成を抑えるなら、ApoB と MTP の相互作用を阻害している可能性が高い。実際生化学的な研究から、tPA は ApoB と直接結合して、MTB が ApoB に作用するのを阻害し、それに続く VLDL 合成を抑えることを明らかにしている。すなわち、tPA は血栓形成を防ぐ線溶系機能だけでなく、細胞内では VLDL 合成阻害剤として VLDL 合成の調節に関わっている可能性が示された。

この tPA の VLDL 合成調節因子としての作用をさらに調べると、これまで tPA の酵素活性阻害剤として考えられてきた PAI-1 が、肝臓内で直接 tPA と結合すると、今度は tPA の VLDL 合成抑制活性が失われ、結果 VDLA の合成が上昇することを示している。

面白いことに肝臓での PAI-1 と tPA の結合は脂肪を摂取することで上昇する。すなわち、脂肪を摂取すると、肝細胞では PAI-1 と tPA の結合が促進され、その結果 tPA による ApoB と MTB 相互作用の抑制が外れるため、VLDL 合成が上昇、その結果 LDL 上昇と動脈硬化へと進むというよくできたメカニズムになっている。人間でも PAI-1 の発現が低い人では LDL が低いようで、おそらく同じ機構が働いていると考えられる。

結果は以上で、脂肪摂取で PAI-1 と tPA の結合がなぜ高まるのかについてはこれからの問題だが、細胞外で働いていると思っていた tPA や PAI-1 が肝臓細胞内で VLDL 合成に関わるという面白い結果で、今後新しい脂質異常治療の標的へとつながる可能性もある。

カテゴリ:論文ウォッチ

9月1日  ロシアによるウクライナ侵略の初期戦線の様子をモニターする(8月31日 Nature オンライン掲載論文)

2023年9月1日
SNSシェア

現在も戦争が続いている今、ウクライナ戦争を分析した論文が Nature に発表されるなど、まず誰も想像できないはずだ。しかし、今日紹介するノルウェイのトロムソ大学とウクライナ国立宇宙機構からの論文は、2022年2月24日、ロシアのウクライナ侵攻から撤退までの期間、チェルニヒウからキーウにかけてのウクライナ北部で行われた戦闘の様子を、地震計や爆轟計を用いてモニターできることを示した研究で、8月31日 Nature にオンライン掲載された。タイトルは「Identifying attacks in the Russia–Ukraine conflict using seismic array data(ロシアーウクライナ衝突での攻撃を一連の地震計測システムのデータから読み解く)」だ。

1963年8月に成立した部分的核実験停止条約では、地上核実験が禁止されたが、核実験をモニターするため、世界200箇所に地震計と低周波音波動を感じるセンサーが設置され、現在も稼働している。この一つがウクライナ、キーウ近くのマリーンに設置されており、データが公開されている。

この研究のすべては、この公開データが、2月24日ロシア侵攻から4月撤退までの戦争の様子を反映しているはずだと着想した点にある。これまで、精密な衛生写真で戦争を読み解く努力が様々な機関で行われているが、時間解像度、すなわち攻撃間隔や一回の規模については、ほとんど0に等しかった。

一方、地震計や爆轟による低周波計は、位置を測定するため複数が一つのセットとして設置されているおかげで、地震速度と、音速を元に、どこで攻撃による爆発が起こったのかを、地震と区別して、ほぼリアルタイムでモニターすることができる。実際には、地震波と低周波が一致するのは全体の3割ほどしかない。検出頻度が低いのは、音の周波数など検出に選んだ閾値の問題と考えている。

最終的に振動と低周波音から場所が特定できた爆発は、ロシアの北部地域侵入から4月初旬のキーウ領域からの撤退まで、地震に換算してマグニチュード0.1-2まで、全部で1282回検出されており、キーウから虐殺で有名になったブチャ、そして北部のコロステン、そしてかなり離れた北部の都市チェルニヒウまで分布している。

検出される爆発の程度もある程度は計算でき、例えばイスカンダルミサイル(TNT火薬相当で700Kg)は、マグニチュード1.7と計算されている。頻度の高い榴弾砲のレベルの爆発はTNTで7kg程度で完璧に捉えられる。

こうして記録した波を、実際の記録と照合して検証することも行なっている。例えば2月27日、有名なホストーメリ空港へのロシアの攻撃が数ヶ所の観測機でどう捉えられたのか、一つの爆発が、それぞれの計測でどのような時間差で現れるかが示され、イムで地上への攻撃をモニターできることを示している。

結果は以上で、これまでのような報道だけでなく、衛星画像に加えて、地震計や爆轟計は完全ではないが、ほぼリアルタイムで爆発の規模と音から、攻撃手段(例えば榴弾砲)まで特定できることから、今後重要な戦争記録手段として利用されると言える。

このような公開データが積み重なることで、当局による発表以外の事実に一般人も触れることができるのが21世紀の戦争と言える。ただ、このような客観的な記録は、現場にいる人間の恐怖や苦悩がすべて捨象されるので、恐ろしい記録とも言える。

カテゴリ:論文ウォッチ
2023年9月
 123
45678910
11121314151617
18192021222324
252627282930