11月15日  LDL受容体分解に関わるPCSK9はチェックポイント治療を高める(11月11日 Nature オンライン掲載論文)
AASJホームページ > 新着情報

11月15日  LDL受容体分解に関わるPCSK9はチェックポイント治療を高める(11月11日 Nature オンライン掲載論文)

2020年11月15日
SNSシェア

コレステロールが高いと発癌のリスクが高くなることは多くのガンで知られている。確かに臨床的にも、コレステロール代謝を正常化することで、ガン自体や周りの環境を変化させることで、ガンの増殖を制御することができることは報告されているが、実際のメカニズムについてはほとんど理解が進んでいない。

今日紹介するデューク大学からの論文はコレステロール代謝と思って行った介入が実際には組織適合性抗原の発現に関わっていたため、ガン免疫を高めることができたというわかりやすい話で11月11日Natureに掲載された。タイトルは「Inhibition of PCSK9 potentiates immune checkpoint therapy for cancer (PCSK9阻害はガンの免疫チェックポイント治療効果を高める)」だ。

おそらくこの研究は、コレステロール代謝とガンの関係を解明する目的で始められたと思う。タイトルにあるPCSK9はLDL受容体に結合してエンドゾームで分解することで、受容体のリサイクルを止める働きがある。したがって、細胞表面場のLDL受容体が低下してコレステロールが高まる。最近になって、PCSK9に対するモノクローナル抗体を用いて、LDLの分解を防ぎリサイクル率を高めるコレステロール血症の治療が始まった。もしPCSK9機能阻害でガンの増殖を抑制できれば、既にFDAに認可された治療法を組み合わせることができるというわけだ。

まず様々ながん細胞株からPCSK9遺伝子を欠損させて、マウスに移植すると、ガンの増殖が抑えられる。これはホスト側のコレステロール代謝とは無関係で、LDL受容体を欠損させたマウスでも同じ効果が見られる。一方、免疫システムが欠損しているマウスに移植した場合は、抑制効果が全く見られないことから、ガン免疫を介して増殖抑制が起こっていることが明らかになった。

次に、本来の目的であるPCSK1阻害と、チェックポイント阻害を組み合わせることで、ガンを抑制できるかを調べ、ヒトの高脂血症に用いられるevolocumabとPD-1抗体を組み合わせることで、ガンの増殖を抑えられることを示している。

最後はこのガン免疫が高まるメカニズムだが、LDL受容体の再利用との関わりを調べる実験は全て否定的結果で終わり、結局ガン抗原を提示するときに使われるクラス1MHCの発現をPCSK9阻害が直接高めるという結論に落ち着いている。事実、PCSK9はClassIMHCに直接結合し、またPCSK9阻害の効果は、MHC遺伝子を過剰発現させることでキャンセルされる。

以上の結果から、最初コレステロール代謝と癌との関わりで始められた研究が、PCSK9によるMHCの代謝変化によるガン免疫の活性化という結論で終わっている。面白いことに、チェックポイント治療に抵抗性を獲得した癌細胞でも、PCSK9抗体処理により再度免疫の標的になることも示されており、evolocumabやalirocumabなどをPD-1組み合わせる治療は期待できる様に思う。

結果よければ全てよし。

カテゴリ:論文ウォッチ

11月14日  Covid-19感染予防の科学3題(11月9日 Nature オンライン掲載論文他)

2020年11月14日
SNSシェア

Interim reportとはいえ、ワクチンの有効性が報告された。我が国では結果の解釈をめぐって議論がある様だが、新しい感染症と特定されてから11カ月でinterim reportが出たことを個人的には評価している。すなわち、その背後に強い科学が存在しているということで、それを伝えていくことが必要だ。並行して、新型コロナウイルス(Cov2)に対する人免疫反応に関する論文がひしめいてきたので、11月26日岡崎さんと論文ウォッチでまとめて報告することにする。代わりに今日は予防薬の観点から面白いと思った論文を紹介する。

現在我が国でも、急速に感染者数が増加してきた。経済優先にして人と人が集まると当然のことだが、このことを示す興味深い解析がNatureにオンライン掲載された。

なんと9800万人のスマフォデータについて、例えばレストラン、教会、病院などのポイントに集中する機会と時間を計算し、実際の感染者数増加との相関を見た研究で、どう人が動けば感染が拡大するかうまく解析できている。この解析によれば、一番危険なのはフルサービスのレストランでの会食で、他のカフェやホテル、フィットネスセンターなどと比べて5倍以上感染機会があることを示している。もちろんレストラン自体が危険なわけではなく、長時間滞在し、飲んで食べ、歓談することにより感染が起こることを示している。すなわち、会話時の飛沫が最も危険であることの裏返しだが、歯科医の治療を受ける際に推薦されている様に、洗浄液で口腔内のウイルスを不活化したあとレストランで食べるなどの工夫が必要かもしれない。ただ洗浄で味が損なわれれば難しい。アルコール度70前後のアブサンを口に含むのが私向きだが、まず手に入るか調べてみよう。

以上の結果は、感染しないだけでなく、感染ささない工夫の重要性を意味するが、感染初期の動態を解析するには動物モデルが必須になる。しかし適したモデル動物は少なく、手軽なマウスは受容体になるACE2との相性の違いか利用されにくい。そのため、マウスの上皮にヒトACE2を発現させたマウス作成し、これを簡便な動物モデルとして使うことが行われている。このマウスを使って感染初期過程について調べた研究がやはり11月9日Natureにオンライン掲載された。

ヒトACE2を発現させたマウスを用いた感染実験など、新しくも珍しくもないが、鼻に感染させたあとの初期過程に絞っている点で学ぶことも多かった。

まず何よりもウイルス感染は、最初の量が重要であることを再確認した。ウイルス感染単位を千単位、一万単位、十万単位で鼻から感染させると、10万単位感染させたマウスは全例死亡するが、千単位では全く死亡しない。そして、1万単位ではちょうど半分が10日程度で死亡するが、あとは回復する。しかも感染2日目から、肺には多くのウイルスが侵入しており、上気道が一体化していることがわかる。ただ、この結果を人間にそのまま当てはめるのは難しいと思う。というのも、ACE2の発現量は人間の場合、鼻粘膜上皮と比べて肺の上皮は低いため、おそらく拡大の速度は異なる可能性がある。

この研究が面白いと思ったもう一つの理由は、鼻粘膜に感染した場合、ウイルスは速やかに脳へ移行する可能性を示した点だ。この実験系では、Cov2はもっぱら上皮細胞のみに感染し、嗅細胞には感染を認めない。それでも、感染後6日で他の臓器より先に脳でウイルスが認められることには驚く。重症例での検討が中心だが、Covid-19感染により脳は異常が見られることが知られている。脳への伝搬に神経細胞は関与しないのかも含めて、詳しい解析が必要だと思う。

神経細胞には感染しないことを利用して、感染による嗅覚障害のメカニズムについて調べ、神経支持上皮細胞が失われるだけで、十分嗅覚障害が出ることを確認している。人間では、嗅細胞への感染を示すデータもあるが、おそらく初期の症状として見られる嗅覚障害は、神経細胞への感染は伴わない様に感じた。

この研究からわかるのは、初期の気道へのウイルス感染量を一桁減らすことで大きな効果があることを示している。もちろん、話す時間を一桁減らすこと、あるいは口内洗浄を繰り返すことでこれは可能かもしれない。ただ、ラマやラクダのH単鎖抗体を用いると、安くて有効な感染防御が可能だと主張する論文が11月5日、Scienceにやはりオンライン掲載された。

このHPでもラマのH単鎖抗体については何度も紹介してきたが、この抗体の利点はバクテリアや酵母で活性の高い抗体を産生できるので、価格を安く抑えることができる点だ。以前、抗体を発現する酵母を家畜に食べさせて腸炎を抑えるという論文を紹介したが(https://aasj.jp/news/watch/9968)、この技術をウイルス感染に必要なSタンパク阻害抗体作成に利用する話だ。我が国も含め、Cov2を中和するH単鎖抗体の論文は多く報告されているが、この研究では、トライマーにすることで、極めて高い中和活性を達成するとともに、なんと生産コストが安いだけでなく、凍らせても、凍結乾燥しても、さらには熱を加えても安定で、エアロゾルスプレーとして使える抗体へと進化させている。是非、食事の前に鼻にスプレーする製品を早く完成させて欲しい。

以上、感染が拡大しているが、感染防御の手段の開発も加速していることを伝えたい。

カテゴリ:論文ウォッチ

11月13日 嗅覚のメタマーをデザインできるか(11月11日 Nature 掲載論文)

2020年11月13日
SNSシェア

メタマーとかメタメリズムという言葉は一般には馴染みがないかもしれないが、服飾、建築、さらにはカラーディスプレー設計まで、色彩を扱う人には広く知られている。すなわち混じり合っている色の成分は違っていても、感覚的には同じ様に見える組み合わせを意味している。三種類の錐体細胞からのシグナルと、稈体細胞からの光度の情報を統合して色を感じる我々の情報処理システムを考えると、当然の概念だと思うが、どの組み合わせが同じに見えるかを科学的に決定するための情報科学は現在極めて重要な分野となっている。

今日紹介するイスラエルワイズマン研究所からの論文は匂いの成分からメタマーを設計できるかチャレンジした面白い研究で11月11日Natureにオンライン掲載された。タイトルは「A measure of smell enables the creation of olfactory metamers(匂いを測定することで嗅覚メタマーを創造できる)」だ。

三種類の錐体細胞と稈体細胞のシグナルから統合される色彩感覚と違い、嗅覚細胞は何百種類もあり、メタマーの研究が簡単でないことは想像がつくが、要するに匂いの成分を組み合わせて、匂いという感覚をデザインできるかという問題になる。このために、一つ一つ、あるいは組み合わせた匂いを実際に嗅いでもらってその結果を情報処理することになるが、匂いの場合表現があまりに主観的なので(ワインテースティングの表現を考えればわかる)、結局二種類の匂いがどの程度違っていると感じるかを数値化して、これをもとに各匂いを情報空間上に位置付けるという情報処理方法に頼るしかない。

実際には4種類から10種類の成分を組み合わせた14種類を2種類づつ嗅ぎ比べ違いを数値化してもらい、これをもとに各組み合わせの感覚の違いを予想するモデルを構築している。これができると、実際の匂いも、この合成の匂いと比較してもらうことで、数値化することができ、それぞれの匂いの近さを、このモデルから予想することができる。実際、専門家に調合してもらったバラ、すみれ、香辛料アサフェティダの違いを予測することができることを示している。

また、この方法を用いることで、各人の匂い感覚の鋭さについてもかなり正確に推定することが可能であるようで、例えばワインのテースターに向いているか予測するテストになるのではと興味が湧く。

最後に、ほとんどの人が同じと感じる匂いのメタマー(構成成分の異なる組み合わせ)が存在するかどうか、匂いの比較実験結果から選んだ二種類の組み合わせを比べさせる実験を行い、80%以上の人がほとんど同じと感じる、成分が全く異なる2種類の組み合わせが存在することを確認し、匂いのメタマーを作ることができたと結論している。

よく考えると、2種類を感覚的に比較してスコア化した数値をもとにモデル化することで、各成分の感覚を数値化できるという話で、確かに異なる匂い成分を組み合わせて同じ感覚を誘導できたとしても、メタメリズムを本当に理解できたのか疑問に感じる。実際、例えば異なる成分を組み合わせて同じ匂い感覚をデザインするという究極の課題には、まだまだ遠い。これは、色彩と違って、異なる刺激に対する神経細胞の数が多すぎるからだが、この研究はこの長い道のりの第一歩として評価できると期待している。

カテゴリ:論文ウォッチ

11月12日 抗原特異的T細胞を標識する(11月12日号 Cell 掲載論文)

2020年11月12日
SNSシェア

免疫反応モニタリングの難しさは、元々極端に頻度の低い抗原特異的細胞の反応を見なければならない点だ。例えばツベルクリン反応を考えてみよう。私たちの世代は、何らかの形で結核菌やBCGの感染経験があるため、結核菌濾液から生成したPPDを注射されると、24時間で皮膚に発疹が現れる。すなわち、抗原特異的反応を24時間以内にモニターできることになる。しかし、私たちの体がPPD反応性T細胞で満たされているわけではなく、注射した抗原に特異的に反応するT細胞はあっても数個程度だろう(実際、一個の特異的T細胞が発疹を誘導できるという研究も見たことがある)。とすると、反応局所のT細胞のほとんどは、抗原に反応しないバイスタンダーと呼ばれるものだ。抗原がはっきりしないとき、その中から抗原特異的T細胞だけを取り出すための技術開発は重要だ。

今日紹介する米国スクリップス研究所からの論文は、糖転移酵素を用いて相互作用している細胞を標識して、抗原特異的T細胞を生成できないか調べた研究で、まだまだ実験モデル段階だが面白い方向性の研究だ。タイトルは「Detecting Tumor Antigen-Specific T Cells via Interaction-Dependent Fucosyl-Biotinylation (抗原特異的T細胞を相互作用依存的fucosyl-biotinylationを用いて検出する)」だ。

この研究のポイントはヘリコバクターの持つ強力なフコース転移酵素(FT)を、その酵素活性を利用してまず細胞上の糖タンパク質に結合させ、大体10時間ぐらいは安定に細胞表面上に維持されるFTを使って、今度はその細胞と相互作用する相手の細胞を標識する方法の開発に尽きる。

あとはこの方法で、抗原をロードされた樹状細胞と反応するT細胞を補足できるか、簡単な条件から始めて、徐々に実際のガン免疫反応の起こる条件に合わせて調べている。原理は一緒なので、最後の最も複雑な条件での実験だけを紹介すると以下の様になる。

メラノーマを移植してできた腫瘍組織をすりつぶして溶解物を調整、それを樹状細胞にロードしたあと、FTを樹状細胞表面に結合させる。次に、腫瘍組織に存在する細胞と、FTと腫瘍抗原がロードされた樹状細胞を今日培養し、そこにビオチン標識したフコースを加えると、FTを発現した細胞と、それと反応していたT細胞がビオチンでラベルされるため、ガン抗原をロードしたT細胞がビオチンで標識される。

この実験では、ガン抗原としてガンに発現させた卵白アルブミンを使ってわかりやすくした系にしており、抗原刺激により発現されるPD-1と組み合わせることで、卵白アルブミン由来ペプチドに対するCD8T細胞を精製することができ、また精製した細胞を移植すると、より強いガン抑制活性が見られることを明らかにしている。

他にも、精製TしたT細胞の遺伝子発現や、さらにはCD4ヘルパーT細胞も標識できるかなどについてもデータを示しているが、結論としては、ガン抗原特異的T細胞をある程度濃縮することは可能であることが示された。

実際の臨床現場で使うには、まだまだ改良や新しい方法と組み合わせることが必要だと思うが、遺伝子操作を用いずに特異的細胞を標識する方法は、今後の研究にとって貴重だと思う。

カテゴリ:論文ウォッチ

11月11日 SARS-CoV1, SARS-Cov2, MERSを多面的に比較する(10月15日号 Science オンライン掲載論文)

2020年11月11日
SNSシェア

今日の時点で、Covid-19をキーワードにPubMedをサーチすると、72578編の論文がリストされる。一部は無関係な論文も含まれるだろうが、間違いなく7万は突破しており、科学者がはっきりとこの病気を知ってからまだ10ヶ月であることを考えると、驚異的な数字だ。この科学が、急速に進むワクチンや抗体薬など、Covid-19に対する迅速な治療法開発の背景にある。要するに世界の研究者が連合してCovid-19を研究しているのだが、そのことがよくわかる、しかもこれまで見たこともないようなスタイルで書かれた論文がScienceにオンライン掲載された。どのようにして集まったのか想像もつかない9つのグループが英米仏独伊の5カ国から集まり(なにか第二次世界大戦の連合国と枢軸国が集まった感があるが、残念ながら我が国の参加はない)、それぞれが専門を生かして3種類のウイルス、特にそのnon-structural proteinとホスト側の分子との相互作用について比較して、結果をコンパクトにまとめて一つの論文に仕上げた、これまで見たこともないような論文だ。もちろんそれぞれの結論の一部は、別の論文として目にしているが、しかし、Covid-19が他のコロナウイルスとどう違うのかよく聞かれることがあるので、大変役に立つ論文になっている。タイトルは「Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms (ホストとコロナウイルスとの相互作用ネットワークの比較によりウイルス共通の疾患メカニズムが明らかになる)」だ。

それぞれの節について、面白い点のみ抜き出して紹介する。

  1. コードされているタンパク質:3種類のウイルスのタンパク質は予想通りよく似ているが、Orfと呼ばれるアクセサリー分子は大きく異なり、これがウイルス間の違いに大きく寄与している。
  2. コロナウイルス分子の細胞内局在:Nsp13のように、MERSと2種類のSARS と大きく変化しているタンパク質があることは、ウイルスとホストの相互作用の様式が変化し続けていることを示唆する。ただ、3種類のウイルス分子で細胞局在の差は極めて小さい。
  3. 相互作用するホスト分子のオミックス:ウイルス分子と相互作用するホスト側の分子を網羅的にリストして、それぞれのウイルスの共通性と差異を調べると、当然ながらMERSと2種類のSARSの間の差ははっきりとしており、基本的にウイルス分子の配列の差異が、ホスト分子との相互作用に反映していることがわかる。面白いのは、MERSとCov-1の間で似ていて、Cov-2では異なるホスト分子だが、これらは翻訳開始とミオシン関連分子に集中しており、Cov-2研究にとっては重要なポイントになるように思える。
  4. Differential interaction scoring: このようなホストタンパク質との相互作用を量的に表現することが可能だが、これで見るとCov-1とCov-2の差はほとんどない。一方SARSとMERSは大きく異なることが確認できる。この違いを生み出すホスト側の分子は興味深いが、ここでは割愛する。
  5. 機能的遺伝学を用いた解析:ノックダウンやクリスパーを用いて、遺伝的にウイルス機能に関わるホスト分子の探索が可能だが、この研究からいくつかの面白いホスト側の分子が発見され、これらについてさらに解析が以下に示すようにさらに進められた。
  6. Orf9とTom70: Tom70はミトコンドリアに存在するホスト分子で、ウイルス感染により細胞をアポトーシスに誘導してウイルス増殖を防ぐ働きがある。このTom70にCov-1、Cov-2のOrf9は結合するが、MERSのOrf9は結合しない。ウイルス側から考えると、細胞は生かさず殺さずが最も都合がいいので、2種類のSARSはTom70まで標的にしてこれを実現している。
  7. Tom70/Orf9の構造解析:Tom70についてはクライオ電顕を用いた構造学的解析を行っている。この結果、Tom70のインターフェロン誘導に関わる機能やミトコンドリアへのPTENなどの輸送への関与が示唆され、今後これらの可能性を機能的に調べる必要性が示唆された。いずれにせよ、「生かさず殺さず」のための重要な相互作用であることは明らかだ。
  8. Orf8とIL-17RA: IL-17は言わずと知れた、炎症性サイトカインの親玉だ。その受容体IL-17Aも一部は分泌型として、IL-17と結合して炎症を抑える。このIL-17RAとCov-2のOrf8だけが結合することも、サイトカインストームのタイプを考える上で極めて興味深い。じっさい、Orf8が欠損したウイルスが単離され、炎症の程度が弱いことが知られている。また、IL-17RAが高い患者さんは、軽症で終わることも知られている。個人的には、最も面白い現象だった。
  9. プロスタグランジンE2合成酵素とSigma1:3種類のウイルス共通に相互作用する分子としてタイプ2プロスタグランジンE合成酵素とSigma-1受容体が発見された。これらの分子は既に阻害剤が存在し、治療に使われている。そこで、タイプ2プロスタグランジンE合成経路阻害剤インドメタシンを処方された外来患者さんとそうでない患者さんを比較しており、インドメタシンが重症化を抑える効果があることが確認された。また、Sigma-1阻害剤は精神科の患者さんで使われており、この阻害剤の使用と入院率との関係も調べている。結果はインドメタシンと同じで、sigma-1を投与されている患者さんでは、Covid-19にかかっても入院する率が半分以下に減っている。

以上、ウイルスとホストのタンパク質の相互作用の包括的解析から、面白い分子相互作用を抜き出し、治療可能性に至るまで示した、大変勉強になる論文だ。当分座右において、折に触れ見てみたいと思う。

カテゴリ:論文ウォッチ

Zoom勉強会 「ALS患者さんたちと学ぶ最新研究動向~研究者に直接聞こう」 のお知らせ。

2020年11月10日
SNSシェア

今週14日、夜8時から「ALS患者さんたちと学ぶ最新研究動向~研究者に直接聞こう」を開催します。ご存知の様に、最近FDAは田辺三菱製薬のラジカヴァを含む二種類の薬剤をALSの治療薬として認可しました。そこで、さくら会理事で、『逝かない身体――ALS的日常を生きる』の著者川口有美子さんと、これらの薬剤への期待度とともに、ALS治療薬開発の現状について、zoom勉強会を企画しました。 我が国のこの分野の第一人者、iPS研究所の井上先生が講義を快諾いただきましたので、当日は、まず井上先生に自らの研究の現状にお話しいただき、西川がALS に対する治療可能性について総説を紹介します。  参加希望の方は、 nishikawa@aasj.jp  まで連絡いただければ、zoomアカウントを送ります。

カテゴリ:ワークショップ

11月10日 甘い誘惑の危険性(10月28日号 Science Translational Medicine 掲載論文)

2020年11月10日
SNSシェア

昨年のちょうど今頃、Nature Communicationにちょっと面白い論文が古代ゲノム研究では先頭を走るコペンハーゲン大学から発表された。

5700年前のスカンジナビア狩猟採取民は、白樺の樹皮から抽出された一種のタールをチューインガムの様に噛んでいたことが知られている。このタールを遺跡から回収して、そこに存在するゲノムを調べることで、当時の口内細菌叢を知ることができる。この論文を読んでわかるのは、当時の口内細菌叢には、歯周病菌は存在するが、虫歯菌が存在しないことだ。すなわち、虫歯というのは甘いものを食べる様になった結果の、一種の文明病と言える。

今日紹介するテキサス・サウスウェスタン大学からの論文は、砂糖の甘い誘惑が腸内の細菌叢を通して、腸管を守る粘膜を減少させるという、単純だが恐ろしい話で、10月28日号のScience Translational Medicineに掲載された。タイトルは「Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice (食事中の単純な糖は腸内細菌叢の生態系を変化させマウス腸炎を悪化させる)」だ。

研究自体は単純で、10%グルコース(一応甘いソフトドリンクを想定している)を7日間摂取させたあと、硫酸デキストラン投与による腸管上皮障害による腸炎がどう変化するか見て、グルコース投与により腸炎が悪化することをまず確認している。グルコースと比べると程度は少し改善するが、ショ糖や果糖を同程度食べさせた場合も、同じ様に硫酸デキストランによる腸炎が悪化する。

この変化が、免疫系炎症を介した変化でないことを確認したあと、砂糖単独の腸管への影響を調べ、砂糖自体は腸管上皮細胞に対してほとんど影響はないが、腸内細菌叢を変化させて、腸管上皮を覆う粘液層が減少してしまうことを明らかにする。

この砂糖摂取で変化した細菌叢を移植すると、同じ様に粘膜層の厚みが低下し、また砂糖投与による腸炎は抗生物質投与で改善することから、砂糖を摂取すると腸内でAkkermansia Muciniphilaなどの細菌を増加させることで、粘膜層形成が抑えられ、最終的に腸炎になりやすいと結論している。

話はこれだけの単純な結論だが、要するに虫歯と同じ様なことが腸内でも起こっていることになる。とはいえ、甘い誘惑には逆らい難い。

カテゴリ:論文ウォッチ

11月9日 見れば見るほど新しい発見がある新型コロナウイルス・スパイク分子  (11月6日 Science 掲載論文)

2020年11月9日
SNSシェア

新型コロナウイルス(Cov2)のスパイク分子の構造に関する論文は、もはや専門家でないと読み切れないほど多く発表されていると思う。ほんの一部については以前紹介したが(https://aasj.jp/news/watch/13811)、決まった一つの構造というより、分解されたあと相手側と相互作用しながらトライマーを形成し、伸びたり縮んだりしながら最終的に細胞膜同士の融合を誘導する。不謹慎を許してもらえれば、惚れ惚れする。

しかしこれほど寄ってたかって同じタンパク質を見ても、まだまだ新しい発見がある様で、今日紹介する英国ブリストル大学からの論文は、スパイク分子にリノレイン酸が食い込んで構造を調節しているという発見で11月6日号のScienceに掲載された。タイトルは「Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein (SARS-CoV-2スパイクタンパク質の閉じられた構造には脂肪酸が結合している)」だ。

この研究では昆虫細胞に遺伝子を発現させて、最初からトライマー型のスパイク分子が分泌される様にし、ここから精製したタンパク質の構造をクライオ電顕を用いて観察している。約6万個のタンパク粒子を調べ、こうして用意したスパイク分子の7割が閉鎖型の構造を持ち、閉鎖型ではリノレイン酸が受容体結合部位に存在する小さな裂け目に食い込んでいることを発見する。

生成したタンパク質を質量分析にかけて、リノレイン酸の存在が確認できるので、合成途中で脂肪酸を取り込んだ構造が分泌されていたことがわかる。もともと閉鎖型はACE2への結合が低いことが知られているので、まずリノレイン酸が遊離する処理すると、ACE2への結合力が高まることを明らかにしている。すなわち、リノレイン酸結合は感染性を低下させる。

最後に試験管内で上皮細胞への感染実験を行い、リノレイン酸の抑制効果を調べているが、単独ではうまくいかないのか、実際にはレムデシビル処理によるウイルス増殖阻害と組み合わせることで、ウイルス増殖を抑えることができることを示している。。

これだけ聞くと、リノレイン酸で感染が抑えられるという話になるが、実際は開放型と閉鎖型の移行はダイナミックなので、このダイナミズムを壊して完全にロックできる様なリガンドを探索する方向に研究が進むと思う。いずれにせよ、この裂け目構造はSARS, MERSなど病原性の高いコロナウイルスには存在し、狙い目としては有望だと思う。

最後の問題は、どうしてわざわざロックがかかって感染性が低下する鍵穴を持っているのかだが、リノレイン酸と結合して感染組織のリノレイン酸濃度を低下させることで、アラキドン酸経路を抑えて、免疫や炎症から逃れる機能があるのでは考えている様だ。

おそらくプロの手にかかれば、安定的に感染性を低下させるリガンドが見つかると期待できる。体内での再感染を抑えることができなくても、鼻粘膜や気道への感染を抑える目的の予防薬を是非開発してほしい。

カテゴリ:論文ウォッチ

11月8日 ガンに対する免疫トレーニング (10月29日号 Cell 掲載論文)

2020年11月8日
SNSシェア

今年3月、新型コロナウイルス感染症(Covid-19)の感染をBCG摂取で抑制する、いわゆる免疫トレーニングについて紹介した(https://aasj.jp/news/watch/12665)。その後、我が国でも過去のBCG接種が感染予防に効果があるか議論が行われた様だ。ただ、この免疫トレーニングがどの程度持続するかについては明確なデータはなく、基本的には接種後数ヶ月単位の予防効果を期待して使われているのではないだろうか。

よく考えてみると、我が国も免疫トレーニングについてはもともと関心が高い。例えば、BCGや結核菌の細胞膜成分、あるいは有名なところではサルノコシカケといった菌類がガンに効果があると実際の臨床に使われていたことは、年配の方なら記憶にあると思う。ただ、ほとんど根治につながらないことから、結局標準治療にはなり得なかった。

今日紹介する英国ヨーク大学とドイツ・ドレスデン大学からの論文は、タイムスリップした様な気になるガンに対する免疫トレーニングのメカニズムを扱った研究で、10月29日Cellに掲載された。タイトルは「Innate Immune Training of Granulopoiesis Promotes Anti-tumor Activity(顆粒白血球の自然免疫トレーニングにより抗ガン作用を高めることができる)」だ。

タイムスリップしたと言ったが、新しいテクノロジーが駆使されているとはいえ、Cellによく採択されたなというのが正直な感想だ。この研究ではBCGの様な複雑な刺激剤ではなく、グルコースが結合した多糖類βグルカンを刺激に用いている。

実験では、βグルカンを注射後腫瘍を摂取して、腫瘍の増殖を調べると、これまで広く認められている様に様々な腫瘍モデルでβグルカンは腫瘍の増殖を抑える(ただ、増殖自体は続くので根治はできない)。さらに、この抵抗性をトレーニングした好中球移植で、他の個体に移すことができることを明らかにする。

βグルカンの場合の主役を好中球と特定した上で、トレーニングとは何か、まず遺伝子発現を調べ、自然免疫や炎症に関わる様々な分子の発現が上昇して、ガン攻撃型の好中球にプログラムされ直していることが示唆された。

ここまでなら古典的な研究だが、この研究では次にこのプログラムの書き換えが骨髄の好中球の前駆細胞レベルで起こっており、2ヶ月程度活性が維持されていることを明らかにし、持続的エピジェネティックな変化がトレーニングにより誘導される可能性を示した。その上で、このエピジェネティックな変化を調べるために、バーコードを用いるsingle cellレベルのATACseqで染色体の状態をsingle cell levelで調べている。これは、可能であることはわかっているが、情報処理も含めて利用できたという点で、新しいと言える。

実際のデータを見ると、single cell RNA seqと比べてまだまだ使いにくいのではと感じるところもあるが、染色体の構造の違いで、βグルカン処理好中球が全く新しいクラスターとして分類できることは印象深い。RNAseqと異なり、詳しく見れば遺伝子発現のリプログラム以上のことがわかると思うので、これは期待したい。

わざわざscATACseqと違っても同じ結論は得られたと思うが、βグルカンにより誘導される1型インターフェロンにより、白血球の幹細胞がエピジェネティックにリプログラムされ、活性酸素の産生などを通して、ガンの増殖を抑制すると、常識的な結論になっている。

この研究では、最初からリンパ球のないマウスを用いてこの効果を調べていることから、自然免疫トレーニングは、獲得免疫からは独立していることはわかるが、なぜ腫瘍増殖が抑制できるのかなど、まだまだわからないことは多い。とすると、免疫トレーニングが臨床現場に復活するには、時間がかかりそうだ。

カテゴリ:論文ウォッチ

11月7日 心房細動とカルシトニン (11月4日  Nature オンライン掲載論文)

2020年11月7日
SNSシェア

心房細動は、高齢とともに急上昇する病気の一つで、70歳を超えると3%近くに有病率が上昇する。事実、歳とともに、私も友人から相談を受ける回数が増えている。以前は、チャンネル阻害剤など完治には程遠い薬剤治療しかなかったが、現在ではカテーテルによる様々なアブレーション法が開発され、異常興奮部位を除去することで、治療可能性は一変している。しかしこれらは心房細動の分子メカニズムに基づく治療ではない。

今日紹介する英国オックスフォード大学を中心とする研究グループからの論文はカルシトニンという意外なペプチドホルモンが心房細動に関わる可能性を示し、新しい治療法開発に道を開く重要な研究で、11月4日Natureにオンライン掲載された。タイトルは「Paracrine signalling by cardiac calcitonin controls atrial fibrogenesis and arrhythmia(心臓由来のカルシトニン・シグナルは心房の線維形成と不整脈を調節する)」だ。

カルシトニンは通常甲状腺由来で、カルシウム代謝に関わると考えられているが、この研究では最初からこのカルシトニンシグナルの異常が心房細動の犯人だと考え研究を行なっている。というのも、カルシトニンノックアウトマウスで心房細動が誘導され、また心房細動とカルシトニンとの相関がゲノム解析から示されていたからだ。

そこでまずカルシトニン(CT)が心房で合成されるか調べ、CTが心房の筋肉細胞で造られ、そしてその受容体が心房の線維芽細胞で発現することを明らかにする。

次にヒト心房線維芽細胞にCTを点火する実験を行い、線維芽細胞の増殖や移動などの活性が低下し、さらにコラーゲンを分解するBMP1の発現が低下し、コラーゲンなどのマトリックス量が低下することを示している。心房細動では心房に線維化が見られ、これが異常興奮を誘導すると考えられており、この結果はこの可能性にフィットする。ただ、全体の効果が転写より、タンパク質の特異的な変化によることから、さらにメカニズムの解明が必要だと思う。

いずれにせよ、CTにより、心房細動の原因と考えられてきた心房の線維化を抑制できる可能性が示されたので、次に心房細動の患者さんでこのシグナル経路がどうなっているか調べ、心房細動の患者さんの線維芽細胞では受容体の細胞表面への移行が阻害され、CT シグナルが機能しないことを示している。

最後に、マウス心房細動モデルを用いて、CTシグナルを増減させ、CTが十分に機能すると、心房細動を防げることを明らかにしている。

もちろん心房細動の原因には様々あると思うが、多くの患者さんでCT受容体の細胞膜への移行が阻害されることで、線維化が進み、心房細動が起こるとすると、CTに対する反応性も含めた、心房の線維芽細胞の変化を止める方法の開発が重要になる。まだまだ、詳しいメカニズムが示されたわけではないが、心房細動理解の大きなブレークスルーになる様な気がする。

カテゴリ:論文ウォッチ