4月25日 抗老化サプリの臨床治験(4月22日 Science オンライン掲載論文)
AASJホームページ > 新着情報

4月25日 抗老化サプリの臨床治験(4月22日 Science オンライン掲載論文)

2021年4月25日
SNSシェア

Nicotinamide adenine dinucleotide (NAD)は、ほぼあらゆる生物に存在する補酵素で、エネルギー受け渡しの一種の通貨として生命の基礎となっている。ただ、NADはシグナル分子合成、タンパク質のADPリボシル化、ヒストンなどのタンパク質脱アセチル化を通して、DNA修復や転写の調節に必須であることがわかり、ミトコンドリアにあるNADプールの現象が老化に関与することが示唆されている。

実際ミトコンドリアのNADプールは老化とともに低下し、この低下をその前駆体NMNなどを投与することで筋肉機能の低下が改善するとする動物実験が発表されたため、NMNは科学性が証明された抗老化サプリメントとして広く使われている。ただNADレベルを高めることが、人間に効果があるかについては、有効、無効の結果が両方発表されていると言っていい。

今日紹介するワシントン大学からの論文は、筋肉のインシュリン感受性に関してはNMN内服が確かに効果があることを示す偽薬を用いた無作為化臨床治験で4月22日Scienceにオンライン掲載された。タイトルは「Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women (Nicotinamide mononucleotideは糖尿病予備軍の女性のインシュリン感受性を上昇させる)」だ。

この研究ではNMN投与の効果が現れやすい対象として、閉経後の肥満の女性に狙いをあてて、半分を偽薬、半分をNMN250mg投与群を無作為的に選び、NMN服用10週間後の全身の状態、および筋肉バイオプシーで得られた筋肉細胞でのインシュリンに対する反応を調べている。

まずNMN服用で確かにNADプールが上昇することを、血清中代謝物の量とともに、白血球細胞内、および筋肉細胞内の代謝物の量から確認している。

面白いことに、全身状態としては体重や脂肪量、あるいは血糖など、ほとんど変化がない。これに対し、バイオプシーした筋肉細胞を用いてインシュリンに対する反応をグルコース処理能で調べると上昇している。また、インシュリンの下流のシグナル分子AKTおよびmTORのリン酸化が高まっていることを明らかにしている。しかし、ADPプールであるミトコンドリア機能については変化が見られていない。

このインシュリンに対する筋肉細胞の反応性の上昇は、インシュリンにより誘導される遺伝子の数がNMNで大きく増加し、その中には筋肉の維持に関わるPDGFR βなどの遺伝子が含まれており、おそらくエピジェネティックな再プログラムが起こっていることを示している。NADがサーチュインの活性化に関わることを暗に示す結果と言える。

以上、筋肉のインシュリン感受性だけが変化するという印象を受けてしまったが、ともかくNMN服用が効果があることを示す研究だと思う。栄養食品やサプリの華々しい宣伝を見ると、本当にこれでいいのかといつも思ってしまうが、このような地道な治験が今後も行われていくことを期待する意味で、重要な研究だと思う。

カテゴリ:論文ウォッチ

4月24日 相分離によるRAS分子活性化 (5月13日号 Cell 掲載論文)

2021年4月24日
SNSシェア

何度も相分離についての研究を紹介してきたが、基本的には難解な話として大学院生以上に向けて書いてきた。今日も同じように相分離による細胞内シグナル活性化の話だが、最近専門向けの論文紹介が続いたので、今日は相分離に関わるテーマをなるべくわかりやすく説明したいと考えている。わかりやすく説明するために、かなり詳細は飛ばしているので、詳しく知りたい専門知識のある方々はぜひ元の文献を読んでいただきたい。

紹介したいのはカリフォルニア大学サンフランシスコ校から発表された研究で、一部の発ガン遺伝子の活性化メカニズムを探る中で、相分離により発ガンのシグナル発生拠点が形成されることを示した、ガン治療を考える上でも重要な発見だ。タイトルは「Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules(RASシグナルを、細胞膜の関与なしに形成される細胞質のタンパク質粒子が媒介する)」だ。

一般の方はタイトルを見ても何を言っているのかわからないと思うので、気にせず読み続けてほしい。

さて、RAS分子は発ガンの鍵になる分子で、多くのガンに関与している。一つの関与の仕方は、RAS自体に突然変異が入り、本来なら外界のシグナルでコントロールされるところが、RAS自体が暴走して発ガンのシグナルが入る場合で、例えば膵臓ガンなどは半分以上がこのタイプになっている。

もう一つは、RASの活性を調節している膜型チロシンキナーゼ受容体が、周りのコントロールを受け付けずに暴走してしまうケースで、例えばEGF受容体の変異により発生する肺ガンなどはその例だ。

この研究では、RASを外界のシグナルに応じて調節しているチロシンキナーゼ受容体遺伝子が、何らかのきっかけで他の遺伝子とゲノム上で結合してしまって、両者が合体したキメラ分子を形成することで、チロシンキナーゼ受容体が暴走するケースについて調べている。実際には、肺ガンを発生させる、微小管結合タンパク質EML4とチロシンキナーゼ受容体ALKが合体したタンパク質が、なぜRASシグナルを活性化できるのかを調べている。

こうしてできたEML4-ALKキメラタンパク質は、膜上で発現する部位が欠損して細胞質内に存在することがわかっている。これまでの考えは、合体した側のEML4部位でいくつかのキメラ蛋白がまとめられると、ALKが暴走を始め、RASを活性化するというものだった。

これに対し、この研究では、ただいくつかのキメラ分子が結合し合うというような単純なものではなく、相分離という現象が起こって、多くのEML4-ALKが濃縮された塊を作ることで、その塊の中にRASを活性化するための様々な分子を集合させ、発ガンのシグナルを発生する拠点になることを証明している。

ここでいう相分離とは、白紙の液晶板に、急に様々な字が現れる現象を考えて貰えばいい。この場合は電気シグナルで相分離を起こすことで、目に見える凝集を起こしている。これと同じことが、細胞内の様々なところで起こることで、関連する分子だけがうまく集まれるようになっていることが急速に明らかになってきている。

EML4-ALKの場合、濃度の濃い凝集は、分子同士が絡まり合うことで形成され、その中にRASやRASとALKをつなぐ分子などが凝集する。実際、これらの分子の細胞内の局在を調べると、膜とは別の場所で粒子状の目に見える点として集まっている、すなわち相分離していることがわかる。

この研究ではどのような条件でEML4-ALKが相分離に至るかを詳しく調べているが、全て割愛する。大事なことは、人工的に相分離を作りやすいタグ(HOtag)を結合させる系で、相分離を人工的に起こしてやると、ALKシグナルは暴走して、RASを活性化することがわかっている。

また、様々なタイプのEML4-ALKキメラガン遺伝子を実際のガンから取り出し調べると、ほとんどの場合相分離を起こすことも確認している。そして、このような凝集体を処理する細胞システムのオートファジーを抑制すると、凝集体が処理されずに残って、シグナルが高まることが示されている。すなわちオートファジーを高めて凝集体を処理するとか、あるいは凝集そのものを抑制する方法も、将来のガン治療につながることを示している。

結果は以上で、他にも同じようなキメラガン遺伝子でも同じことが起こっていることも示しているが、割愛する。

猫も杓子も相分離という皮肉な見方もあるが、この観点で新しいガン治療法が開発されることを期待して、一般の方にも伝えたいと思った。理解していただければ本望だ。

カテゴリ:論文ウォッチ

4月23日 Covid-19ワクチンの副反応1: mRNAワクチン接種によるアナフィラキシーに関する問診(米国アレルギー、喘息、免疫アカデミーからの勧告)

2021年4月23日
SNSシェア

今日の論文ウォッチはあまりにマニアックだったので(https://aasj.jp/news/watch/15431)、Journal of Allergy and Clinical Immunology: In Practiceに掲載された、米国アレルギー、喘息、免疫アカデミーが発表したCovid-19ワクチン接種時の問診についての勧告をエクストラで紹介することにした。

この勧告を読んでいると、先手先手を打つことの重要性がよくわかる。現在、米国ではなんと1日200万人のワクチン接種が行われている様だが、これがバイデン新政権とかぶって、政治のリーダーシップの重要性が印象づけられる。

一方、我が国では、来週から3回目の緊急事態宣言だ。必要なら緊急事態宣言を発することは当然のことだが、この事態に対応する準備が1年前と全く異なっていないことに驚かされる。なぜ1万人以下の感染者で医療崩壊が起こるのか、聞こえるのは言い訳と責任転嫁ばかりで、政治も行政も無能を曝け出している。しかも、医療崩壊目前になって初めてアクションを起こすと言う体たらくだ。

この無能をカバーできるのはワクチンだけだと思い知った様だが、最初の頃「我が国の感染者は少ない」、「ワクチン開発には10年かかる」「国産が安全」「他国の様子を見てからで良い」などと、間違った意見を耳にした結果の初動の遅れで、今になってもワクチンが足りず、医療従事者すらまだ接種が終わっていないという有様だ。実際には、ウイルスゲノムが発表された1月10日の遺伝子配列を参考に、1月14日にはモデルナは人に接種できるワクチンを用意していた。

最近白井聡さんの「主権者のいない国」を読んだが、そこで述べられていた、我が国の政治家にとっても、また彼らを選んでいる国民にとっても、「向き合うべき社会が存在しない」、という観点はコロナ問題で露呈した我が国の問題をうまく説明していると首肯する。

呆れて非難する気も失せるが、なんと連休はしっかり休んでから接種スタートと言う悠長な話とはいえ、ともかく一般へのワクチン接種はようやく始まる。この時、ファイザーであれ、アストラゼネカであれ、問題は以前紹介したアナフィラキシー副反応だ(https://aasj.jp/news/watch/14641)(アデノウイルスワクチンによる血栓は接種時の問題ではない)。

これに対応するため、現場で問診をしながらワクチンを打つと言う話を聞くが、おそらく時間だけかかって混乱するだろう。前回紹介した同じ米国アカデミーからの勧告では、4つの質問、

  1. 以前注射を受けた時強いアレルギー反応が起こらなかったか?
  2. ワクチン接種でアレルギー反応が起こった経験はないか?
  3. 食べ物、ハチ刺され、ラテックスに対してアレルギー反応を起こしたことがあるか?
  4. PEGやPolysorbateを含む注射に対するアレルギー反応の経験はあるか?

を予め読んでおいてもらって、質問4がyesでなければそのまま接種、yesの場合も30分経過観察で良いとしている。

今回はその後の経験を通した改訂版になるが、我が国でも見られた医療従事者にアナフィラキシーが多いと言う結果を考慮して作られたバージョンになる。

まず、アナフィラキシーの経験があるか(質問1)を聞いて、Noであれば文句なく何も聞かずに接種。

次に、あると答えた人には、ワクチンに関連するアナフィラキシーの危険がある具体的抗原を提示する

1、ポリソルベート80、2、ポリエチレングリコール、3、ポリエチレングリコール入りワクチン(mRNAワクチン)、そして4)ポリエチレングリコール入り経口剤(便秘に用いるミララックス)、

(質問2)。

この質問に対し、ポリソルベート80に反応したと自分で特定できる人は、これが含まれていないmRNA ワクチンへ誘導する。とくに、この分子に対する反応を繰り返した病歴がある場合は医師に相談。いずれにせよ接種すると決めれば30分経過観察。

ポリエチレングリコールが含まれる製品に反応した経験がある場合(例えば1回目のmRNAワクチンに反応した人)、米国の場合ヤンセン(我が国ではアストラゼネカなど)といったポリエチレングリコールを含まないワクチンに回し、30分の経過観察。

最後にポリソルベートにも、ポリエチレングリコールにも反応した場合は、医師に相談する。ただ医師に相談した場合も、ワクチンのベネフィットは大きいので、接種の方向で考えると言う勧告だ。

医療関係者ならともかく、一般の高齢者にこのような質問は混乱を招くだけではないかと心配はあるが、ポリエチレングリコールやポリソルベートが含まれている製品は多いわけではないので、日本人の民度であれば自己判断する工夫はあるように思える。

いずれにせよ、接種の基準をきめる我が国のガイドラインも必ずできているはずで、この様な新しいガイドラインも参考にして、安全かつ迅速に、mass shootingをすすめることで、政治家や一般市民ですら向き合うべき社会を失った我が国でも、医学会には「向き合うべき社会は存在する」と胸を張って言ってほしい。

4月23日 双方向に回転できるTCAサイクル(4月23日 Nature 掲載論文)

2021年4月23日
SNSシェア

まずWikipedia Creative Commons 掲載のTCAサイクルの過程を見てみよう。

Wikipedia :https://commons.wikimedia.org/wiki/File:Citric_acid_cycle_with_aconitate_2_ja.svg より転載。

おそらく高校、大学で習ったように、細菌から人間まで、物質からエネルギーを合成するための最も基本的回路だ。ここでの矢印を見てもらうと、糖や脂質の参加により生成されたアセチルCoAがオキザロ酢酸からクエン酸への転換経路に組み込まれ、ぐるっと回ってくるうちにNADHなどが生成される。

これが無生物から生物の誕生過程(Abiogenesis)の早くから物質を作る基本過程になっていたのではと考える証拠がいくつか存在する。その一つは、この回路の中間生成物は、酵素が存在しない条件でも鉱物の触媒作用により合成されサイクルを形成できることを示す論文が報告されている。

Abiogenesisに興味がある私にとっては驚くべき論文だったので、今も講義で利用している。

もう一つの証拠は、光合成なしに有機物を自分で合成できるAutotorophでは、TCAサイクルの方向性を決める不可逆過程を異なる酵素過程で置き換えて、クエン酸からアセチルCoAを介してピルビン酸を合成する逆の過程を動かし、無機物の炭酸ガスの炭素を同化することができることがわかっている。

実際、鉱物触媒で形成されるTCAサイクルでも矢印はピルビン酸合成の方向に向いている。

今日紹介する論文は、Autotorophの中には、単純にTCAサイクル逆回しではなく、どちらにでも回転させられる古細菌が存在していることを示した論文で4月21日Natureにオンライン掲載された。タイトルは「High CO 2 levels drive the TCA cycle backwards towards autotrophy (高いCO2濃度がTCAサイクルを逆回しして自己栄養を可能にする)」だ。

この研究では、データベースの解析とTCAサイクルに関わる酵素の検討から、逆回しのシステムではなく、一般的なTCAサイクルにクエン酸合成酵素を組み入れることで、逆回しが可能であることを明らかにしている。実験としては、炭酸ガスの炭素をアイソトープ標識し、それがTCAサイクル由来のアミノ酸のどの部位に組み込まれるかを調べ、分解の酸化サイクル、合成の参加サイクルのどちらも稼働することを示している。

その上で、逆回しするための自由エネルギーの壁を越える方法に、このような酵素がCO2そのものを使っていることを実験的に明らかにしている。すなわちCO2が高い環境では、合成型のTCA サイクル逆回りが起こり、物質が合成される。その結果、外部から栄養がなくても、生存できることを示している。

実験的にはこれだけだが、生命誕生のあとのCO2の高い地球環境を考えると、還元酸化両方のサイクルがCO2濃度に応じてバランスを取るという話は、確かに魅力的だ。そして、このような生物が現在もなお、サーマルベントのような条件で生きていることに深い感動を覚えてしまう。

カテゴリ:論文ウォッチ

4月22日 南太平洋での民族形成(4月15日号 Nature オンライン掲載論文)

2021年4月22日
SNSシェア

一度は行ってみたいと思うが、ニューギニアからソロモン諸島、そしてバヌアツまで、南太平洋の島々は独自の民族が形成されている。以前紹介したように(https://aasj.jp/news/watch/10041)、この民族にはユーラシア人とは異なるタイプのデニソーワ人ゲノムの流入が見られること、しかもこの遺伝子流入が2万年前後と、ユーラシアではデニソーワ人、ネアンデルタール人が滅んだ後に起こっていることから、デニソーワ人の末裔がこれらの島々にかなり最近まで生きていた可能性が示され、俄然研究が進み始めた。 

今日紹介するパストゥール研究所からの論文は、台湾の現地民族からインドネシアやニューギニア人、そしてバヌアツの人たち、317人の全ゲノムを平均36カバレージの精度で解読し、今生きている民族のゲノムから、南太平洋での民族形成の歴史を解き明かそうとした研究で4月15日Natureにオンライン出版された。タイトルは「Genomic insights into population history and biological adaptation in Oceania(オセアニアでの民族形成と生物学的適応についてゲノムから考える)」だ。

要するに多くの個体のゲノムを出来る限り詳しく調べることで明らかになった3500万箇所にものぼる多型の分布を元に、各人のゲノム形成史を、今回調べた個体及び、これまで知られている古代人ゲノムも含めたゲノムと比較して明らかにすることで、今回の場合南太平洋各島の民族の歴史的関係を明らかにしている。技術的には特に新しい話があるわけではなく、また古代人の骨が新たに発見されたというわけでもないので、解析から見えてきたいくつかの面白いシナリオをまとめておく。

  • 南太平洋の民族は、a)台湾現地人など東南アジア人、b)パプアニューギニア高地人、c)ビスマルク諸島、ソロモン諸島、バヌアツの住人、そしてd)ポリネシア人由来のグループ、の交雑により形成された。
  • パプアニューギニア高地人とビスマルク、ソロモン、バヌアツ諸島の民族は、なんとホモサピエンスが南太平洋に展開する前後4万年前にすでに分かれていた。
  • またソロモン諸島とビスマルク諸島の民族間も、南太平洋展開直後の2万年前に分かれ、原則的に孤立して生きてきた。
  • なんと約3000年前に、台湾現地人はソロモン諸島、バヌアツへ渡ってきて、交雑した可能性がある。一方で、台湾現地人がポリネシア民族を形成して、ポリネシア人を通して南太平洋諸国に台湾現地人のゲノムが入った可能性もある。
  • ネアンデルタール人ゲノムについては、ほぼ共通のオリジンを持ってるが、デニソーワ人ゲノムの流入を調べると、それぞれの地域で異なるパターンが見られ、それぞれの民族は、当時南太平洋に展開していたデニソーワ人と独自に交雑を繰り返した。
  • デニソーワ人由来で、自然免疫に関わる遺伝子や代謝に関わる遺伝子のいくつかが、環境により強く選択を受けたことがわかる。なかでも、HDL代謝に関わる遺伝子は、現在西欧化した食事の影響が、それぞれの島で大きく異なっていることを説明する可能性がある。

以上で、骨が出土するほどの興奮は覚えないが、このような結果を積み重ねて、古代デニソーワ人ゲノムの発掘を静かに待つのも面白い。

カテゴリ:論文ウォッチ

4月21日 DNAメチル化を自由にコントロールするCRISPRテクノロジー(4月29日号 Cell 掲載論文)

2021年4月21日
SNSシェア

生命科学へのCRISPR/CAS最大の貢献はなんだろうと考えてみると、希望する場所で遺伝子を切断するという機能より、ガイドRNA により希望するゲノムサイトにCasタンパク質をリクルートできることだろう。Casに蛍光物質を結合させると、生きた細胞核内で見たい遺伝子の位置を調べることができるし、希望する遺伝子の転写のon/offが可能になる。他にもデアミナーゼを用いた一塩基編集など、ゲノムを正に編集するための技術が続々開発されている。

中でも期待しているのが、エピジェネティックな制御を自由に行う方法の開発で、事実、様々な論文がすでに発表されてきた。DNAメチル化を標的にする場合、素人から見るとCasにDNMT3をキメラにすればそれでいいと思ってしまうし、そのような論文も発表されてはいるが、使い物になる技術になるためには様々な改良が必要だったようで、今日紹介するスタンフォード大学とマサチューセッツ工科大学からの共同論文は、使いやすいDNAメチル化コントロール法開発には、かなり時間がかかったことを示している。論文のタイトルは「Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing(全ゲノムレベルで転写の記憶をプログラムできるCRISPRを基盤とするエピゲノム編集)」だ。

エピゲノムをプログラムするということは、一過性の遺伝子導入によりエピジェネティックな変化を誘導した後、編集に用いた遺伝子が消失しても、編集結果が維持される必要がある。この基準で見ると、例えばCasにDNMT3aを結合しただけのコンストラクトでは、メチル化で抑制された遺伝子も、時間が経つとすぐに発現することがわかっていた。この問題を解決するため、Dnmt3AとCas9に加えて様々な分子を組み合わせる研究が進んでいたが、この研究ではDnmt3a,Dnmt3L Cas9.ZNF10 KRABドメイン(KRABの効果はすでに報告されてきた)の順番で結合させたベクターを用いることで、ガイドとともに一過性の遺伝子導入を行うだけで、50日以上遺伝子発現を抑制する、理想的エピジェネティック編集を可能にしている。

この方法で誘導されるDNAメチル化部位も、極めてガイド特異的で、これにより全ゲノムのどの部位も自由にメチル基を導入できることを示している。

これとセットにして、希望する場所のメチル化されたDNAからメチル基を取り除くTET分子とCas9をXTENと呼ばれる長いポリペプチド・スキャフォールドで繋いだコンストラクトを完成させ、これによりゲノムのどの部位のメチル化も外せることを明らかにしている。例えばこの技術を使えば、山中因子をわざわざ導入しなくとも、その遺伝子のメチル化を同時に外すという工夫も可能になる。

今後の標準となる技術開発としては、これで十分で、ガイドプールを用いて、細胞の増殖に必要な遺伝子をスクリーニングしたり、あるいは様々な遺伝子のエピジェネティックな状態を自由に編集できるなど、応用分野の可能性を示しているが、私自身は基礎生命科学へのポテンシャルに最も感心した。

まず、CpGアイランドが全くプロモーター部位に存在しない遺伝子でも、転写開始点の近くにメチル化されることで転写が抑制される部位を持っていることを示している。このことは、メチル化による制御がCpGアイランドに現局していると考えるのは間違いで、今回発見されたCpGアイランド以外のメチル化による遺伝子発現抑制の研究から、新たな可能性が生まれるのではと期待する。

それとも関係するが、実際どの部分がメチル化されると遺伝子発現が抑制されるのかを、プロモーター前後をカバーするガイドRNAを用いて、転写開始点前後の領域に部分的にメチル化を導入する実験で調べることができる。面白いことに、転写開始点前後かなり広い領域で、メチル化導入が遺伝子転写に大きな影響を持つことも示している。すなわち、任意の部分にメチル化を導入する技術により、部分的なメチル化がヒストン(H3K9)のメチル化を通して、クロマチン変化が導入され遺伝子転写が抑制される過程を、かなり正確に研究できるようになったと思う。

以上、メチル化による制御というと、黒丸が並んだ大きな領域による制御と考えてきたのが、一つの黒丸からスタートする制御として考えることが可能になり、DNAメチル化研究を大きく発展させる予感がする技術だった。

カテゴリ:論文ウォッチ

4月20日 白血球が脳の炎症を抑える(4月15日号 Science Translational Medicine 掲載論文)

2021年4月20日
SNSシェア

例えば脳動脈瘤が破裂して脳出血が起こると、その急性効果だけで浮腫が起こり、脳圧が上がるため、脳外科的に血腫を取り除き、脳圧を下げる治療が必要になる。そして、この時期を乗り越えても、今度は出血が刺激になった炎症が発生し、様々な障害が起こる。ただ、他の部位の炎症と異なり、脳での出血後の炎症のプロセスについてはよくわかっていない。

今日紹介する天津医科大学からの論文は、脳出血に反応して誘導される白血球は、脳内に移行して炎症を抑えて、私たちを救っていることを示した研究で、出来過ぎと違うのかと少し訝しくは思うが紹介することにした。タイトルは「Brain injury instructs bone marrow cellular lineage destination to reduce neuroinflammation (脳損傷は骨髄細胞分化を脳の炎症を抑える方向へ誘導する)」だ。

この研究ではまず脳出血を起こした患者さんの脳手術の際に、頭蓋骨から骨髄を採取し、骨髄内での造血を調べ、血液幹細胞の増殖、および顆粒球/マクロファージ前駆細胞の増加が起こっていることを発見する。すなわち、脳出血が何らかのシグナルを発して、骨髄造血を高めることを発見する。

あとは、正常マウスの脳に自己血を注入して、障害なしに脳出血と同じ状態を作成し、この時同じ様に骨髄造血が高まることを確認している。特に、Ly6発現の低い単球の増殖が高まること、さらにこの細胞は炎症を抑えるIL10を分泌することを発見する。

また、骨髄造血細胞を新しくラベルしたあと、血液を注入して炎症を起こす実験を行い、なんと骨髄のLy6-low細胞はマウスの脳に浸潤し、そこでIL-10を分泌するマクロファージに分化することを明らかにしている。ただ、脳組織の検討が行われていないため、この細胞が実際に炎症を抑えているかどうかは確認できていない。すなわち、IL-10を分泌しているから炎症は抑えるのだろうという話になる。

あとは、なぜ脳への自己血の注入が骨髄に働きかけ、その結果Ly6-low細胞が作られるのかという問題について幾つかの実験を行い、以下の結果を得ている。

  • まず脳に血液が注入されるとおそらくアドレナリン作動性神経を介してノルアドレナリンが骨髄で分泌され、それを受けたβ3アドレナリン受容体を介して造血が誘導され、さらにLy6-low細胞が増殖する。
  • β3アドレナリン受容体シグナルは造血細胞のCd42 を誘導し、このG共役型受容体シグナルを介して、造血幹細胞からLy6-low細胞への分化が促進される。
  • マウスモデルで、β3アドレナリン受容体を特異的に活性化すると、出血による脳の障害が軽減する。
  • また、IL-3を投与して、骨髄でのGM前駆細胞の増殖を高めることでも、脳の炎症を抑えることができる。

などを明らかにしている。白血球がTregの様に炎症を抑えるというのは美しい話だし、荒唐無稽というわけではないが、できすぎた気もする。

カテゴリ:論文ウォッチ

4月19日 サイクリンDの分解機構 (4月14日 Nature オンライン発表論文3編)

2021年4月19日
SNSシェア

昨日紹介した梅森論文のシナプス剪定もそうだが、とっくにわかっていると思い込んでいるだけで、分子メカニズムが明らかになっていなかった重要な過程は多く存在する。今日紹介する論文もその典型で、タイトルを見たとき、「え!こんなことがわかっていなかったの」と唸ってしまった。なんと、細胞周期のG1期からS期への移行に関わるG1サイクリン、CycDの分解に関わるユビキチンリガーゼを発見したという論文が3編も4月14日Natureにオンライン掲載された。

CycDは、G1期に誘導されS期まで一定レベルを維持し、分裂期に入ると分解されてしまう。S期、G2期、分裂期と別々に発現が上下するCycE, CycA, CycBと違い、各時期で発現が維持されてはいるが、必ず分解されてしまう。この分解にはユビキチンリガーゼとたんぱく質分解酵素が関わることがわかっていたが、最初のユビキチン化を誘導する分子が何か決まっていなかったらしい。

今日紹介する論文は、このユビキチン化にAMBRA1分子が関わるという話で、結論は同じでも、違う角度から取り組んできたグループが同時に発表している。

最初の論文はデンマーク・ガンセンターを中心にしたグループで、もともとAMBRA1の機能に興味を持ち、AMBRA1のノックアウトマウス解析を行う過程で、 AMBRA1がCycDと結合して分解を調節していること発見している。

次の、ニューヨーク大学からの論文は、逆にCycDの分解に関わる分子を様々な方法でスクリーニングする過程でAMBRA1を発見している。

そして、最後のスタンフォード大学からの論文は、乳ガンなどに広く使われる様になったCDK4/6(CycDを活性化するキナーゼ)阻害剤抵抗性が誘導される過程に関わる分子を探索する中で、AMBRA1がCycDのユビキチン化に関わることを発見している。

別々に紹介するのは馬鹿げているので、これらの論文からAMBRA1について重要な点をピックアップしておく。

  • AMBRA1はリン酸化されたCycDをユビキチン化する唯一のE3ユビキチンリガーゼ・アダプター。
  • AMBRA1が欠損すると、CycDの分解が起こらず、その結果としてRBのリン酸化が続いて、細胞周期の抑制が効かなくなる。
  • その結果、AMBRA1が欠損すると、細胞増殖の制御が効かなくなり、巨脳症などの様々な異常が起こる。
  • 増殖が高まることで、ミスマッチ修復のためのチェックポイント制御が効かなくなり、細胞死が起こる。
  • AMBRA1はCycDを分解することで、RB1を介して一種のがん抑制遺伝子として働いている。実際、多くのガンでこの分子の発現が低いと予後が悪い。
  • 現在使われているCDK4/6阻害剤の効果がAMBRA1発現低下により失われる。これは、CycDの量が増えることで阻害剤が効きにくいこともあるが、CDK4の代わりにCDK2と結合して機能を発揮するためで、実際CycDとCDK2の結合を阻害すると、CDK4/6阻害剤の効果が復活する

以上が結果で、発生やガンを理解する上で重要な分子が今まで発見されなかったこと、そしてほぼ同時に三方からAMBRA1のCycDユビキチンリガーゼ活性が発見されたのに驚いた。

カテゴリ:論文ウォッチ

4月18日 シナプス剪定に関わるシグナルの解明(4月21日号 Neuron 掲載論文)

2021年4月18日
SNSシェア

内的、外的なシグナルに合わせてシナプスを再調整する神経可塑性こそが、我々の感覚システムの最も重要な特徴で、この背景にシナプス剪定と呼ばれる、シグナルを受けないシナプスを除去し、シグナルを受けたシナプスを分子的、構造的に高める過程が存在することが知られている。私の様な門外漢でも、このときシナプスが大きくなり接着面が高まる機構についてはある程度理解していたが、よく考えてみると、選定される側の神経は競争に負けたから当たり前だろうと考えていた。

今日紹介するハーバード大学、梅森さんからの論文は、シグナルが入らなかった剪定される側のシナプスの除去が、JAK2依存的なシグナルによるアクティブな過程であることを示した研究で、これまでほとんど研究が進んでいないシナプス除去についての研究に道を開くとともに、神経可塑性とその異常について頭の整理をつけてくれる力作だと思う。タイトルは「An activity-dependent determinant of synapse elimination in the mammalian brain (哺乳動物の脳で起こっている神経活動依存的シナプス除去)」だ。

従来の過疎性の研究にシグナルバイオロジーが統合された、実に多くの実験に基づくダイナミックな研究だが、基本はシナプス同士が競合している状況で、シグナルの入った方は、連結相手に働きかけ、残りのシナプスを除去するシグナルを送り、このシグナルにJAK2が必須であるという発見に尽きる。

まず驚いたのが、神経可塑性を調べる方法だ。通常、視覚などのインプットを操作して、その結果起こるシナプス結合を見るのだが、梅森さんたちは脳梁を通って対側の皮質と結合する脳梁神経繊維を胎児期にラベルし、繊維の数が脳の成熟に伴うシナプス剪定により変化する、まさに自然に起こる可塑性過程全体を可視化して調べている。当然最初にラベルされた神経繊維は生後の発達でシナプス数が減るのだが、このときシナプスのシグナルを破傷風トキシンを導入して抑制すると、繊維数が減らないことを明らかにする。しかも、こうして見られる除去は脳全体の活動が抑えられると、除去はみられないことから、シナプスシグナルが入ったときに、入っていない側の線維に起こることを明らかにしている。

そして、このときシグナルの抑えられた神経繊維でJAK2が上昇しており、JAK2を様々な方法でブロックすると、シナプス除去が起こらないことを示している。また、シナプスシグナルに関わらず、JAK2が活性化されるだけで、シナプス除去が起こることを示して、この過程のシグナル伝達にはJAK2が必要十分であることを明らかにしている。

あとは、このシナリオを完璧にするため、神経科学とシグナル科学を組み合わせた、実に多くの実験を行っており、実験自体も工夫に満ちたものだが、詳細は割愛する。是非若い研究者には自分の目で当たって欲しいと思う。この様な実験を基礎に、

  • 脳梁皮質神経だけでなく、視覚の成長過程でも、JAK2依存的なシナプス消去が起こっている。
  • JAK2の下流のシグナルは、炎症にも関わるSTAT1が中心(1型インターフェロンによる炎症に似ているのは面白い)
  • 一つの樹状突起に存在するシナプスは、一つのシナプスが活性化されたときだけに、他のシナプスを除去するシグナルが入り、シナプス自体が活性化されないと、除去は起こらない。すなわち、まだわからないシグナルがポストシナプス繊維からシナプスへ伝達され、JAK2を介してシナプス除去を行う。

と結論している。

ディスカッションでは、何がシナプスを除去する指令なのかが議論されており、一つの可能性としてClass1MHCとPirBの関与という、免疫抑制機構に言及しているが、わざわざ書くからにはよほど自信があるのではと期待する。もしこれが示されれば、ずいぶん昔カーラ・シャツが発表した、発生初期の可塑性にMHCが関与するという話も解ける気がする。詳しく紹介できなかったのが残念なぐらい、勉強できたという実感がある論文だった。

カテゴリ:論文ウォッチ

4月17日 洞窟の土からネアンデルタール人DNAを回収して、洞窟内での人類史を探る(4月21日号 Science 掲載論文)

2021年4月17日
SNSシェア

忘れもしない2017年、古代DNAは骨から採取するものと思っていた私にとって、驚くべき論文が、古代人の骨から採取したDNA研究で先頭を走るライプチヒ・マックスプランク進化人類学研究所から発表された。なんと、土からDNAを回収して、その中から古代生物のミトコンドリアDNAだけを、化学変性を指標に選ぶことで、そこに生きていたネアンデルタール人を含む、多くの動物の存在を特定したという研究だ(https://aasj.jp/news/watch/6788)。

土に還るというと、骨によるバリアーがなくなるため、例えば雨水などで急速に拡散するように思えるが、この研究によると鉱物に守られるおかげで同じ地層に止まることができ、その時代に生きた生物を調べることができるようだ。

今日紹介するのも同じグループからの論文で、4年を経てついに、石器からネアンデルタール人が住んでいたことがわかる洞窟の土からDNAを回収し、洞窟の住人の歴史について推察しようとする研究で4月15日号Scienceに掲載された。ロマンチックなタイトルで「Unearthing Neanderthal population history using nuclear and mitochondrial DNA from cave sediments (洞窟内の沈殿物から回収される核DNA及びミトコンドリアDNAを用いてネアンデルタール人集団の歴史を発掘する)」だ。

この研究では、骨も石器も出土している有名なデニソーワ洞窟、骨が全く見つかっていないEstatuas洞窟、そして1個だけ発見されているChagyrskaya洞窟を選び、様々な有機物が沈殿している様々な層からDNAを抽出し、その中から人類のDNAをハイブリダイゼーションで精製し、そこからDNAの変性の仕方を指標に古代DNAを選択、短い断片のライブラリーを作成している。はっきり言って、あらゆる種類、あらゆる時代の生物が集まったDNAの中から、古代人のDNAを拾い出してくる作業なので、まさに大海の中で針を探すような作業が繰り返されている。これだけで感動してしまうが、努力は報われ、古代人DNAのライブラリーを作ることができた。

もちろんこれだけでネアンデルタール人のDNAとするにはまだまだ不十分で、配列解析から人類以外のDNAを排除していく途方もない作業を行なっている。重要なことは、すでに完全なネアンデルタール人のゲノム解析があるからこそ、土から回収された断片が、本当にネアンデルタール人のものかを判断できる。まさに、骨から初めて、次に土へと範囲を広げることが可能になる。

驚くのは、ミトコンドリアDNA(mtDNA)だけでなく、核内DNA(nDNA)もライブラリーを作成できることだ。

もちろん土に残るDNA断片なので、何人の持ち主から由来するのかを判断するのは簡単ではない。しかし、ミトコンドリアと断片の中のX染色体由来断片の割合を参考にして、なんと場所によっては完全に1人に由来するという断片を採取できている。ただ、基本的には様々な人から由来する断片の集まりになる。

このような複数人から由来する断片を用いて、この研究ではこれまで知られているネアンデルタール人ゲノムとの比較を行い、その洞窟に住むネアンデルタール人の由来を調べている。ただ、論文はまだまだ試行段階といえ、解析に必要なインフォーマティックスを開発したりテストしたりしているといった感じになっている。

それでも骨が全く残っていないEstatuas洞窟では13万年前に起こったネアンデルタール人の分散、及び10万年前の分散の歴史が残っており、異なるネアンデルタール人によって使われたことが明らかになった。

結果は以上だが、これからもっと面白いことがわかるぞという期待が湧いてくる論文だ。今後もなんとか骨を見つけ、完全なゲノムを増やすことが重要だが、点を面へと広げる意味で、このような研究の重要性は計り知れない。

しかしこの研究所での日常がどんなものか是非知りたいと思うし、多くの若い日本人研究者も、ここに参加して新しい人類学、古生物学を学んでほしいと思う。

カテゴリ:論文ウォッチ